Structural and Infrastructural Courses

CEE 9512 - Finite Element Method (Theory and Applications)

Objective of this course is to apprise the students about the basic theory of finite element method in linear analysis; to understand modelling aspects and techniques for 1-D, 2-D and 3-D problems; to learn about modelling of simple and complex structural systems, develop their mathematical and computational models and analyze the results; and to learn how to model structures using professional programs like Sap2000 and ETABS. [Course Outline]

 

CEE 9518 - Building Information Modelling

The objective of this course is to provide essential knowledge required to manage and implement BIM technologies in construction process, provide professionals with relevant skills to use BIM in the design and construction of facilities, with an emphasis on structural and civil roles, and Use of BIM software in the process of preparing the models, analysis and documentation. [Course Outline]

 

CEE 9538 - Introduction to Wood Design (with 4428B)

This course is intended to extend the Civil Engineering Program in the area of structural engineering to include the design and analysis of wood structures. Recent advances have lead to an increase in the prevalence of engineered wood structures, notably multistory buildings. As wood is a green building material, it is expected that its use will continue to grow as efforts to address climate change expand. Students completing this course will be well positioned to lead the emergence of wood as a structural material and participate in the design and construction of wood structures. [Course Outline]

 

CEE 9548 - Advanced Design & Behaviour of Steel

Topics covered in this course include: analysis and behaviour of steel structures and industrial buildings; design of steel structures, understand the concepts of structure stability and lateral torsional buckling of steel beams, design of crane-supporting steel structures, plate girders, and steel connections. [Course Outline]

 

CEE 9549 - Advanced Design & Behaviour of Concrete Structures

Analysis and design of prestressed, partially prestressed, and reinforced concrete sections and members to resist flexural, shear, and axial loads. Serviceability and durability criteria. Slender columns. Strut-and-tie methods for design. [Course Outline]

 

CEE 9550 - Seismic Analysis and Design of Buildings

The objectives are for the student to become able to: Understand the fundamentals of structure dynamics; Perform seismic analysis of buildings manually and using computer modelling; Apply the seismic-resistant steel buildings; and Design seismic-resistant reinforced concrete buildings. [Course Outline]

 

CEE 9571 - Advanced Concrete Technology

Cement hydration and microstructure. Rheology of cement-based materials. Mechanical properties and dimensional stability of concrete. Special concretes: high-performance concrete, self-compacting concrete, shotcrete, lightweight concrete, fibre-reinforced concrete, polymer-modified concrete. Introduction to advanced laboratory techniques including: scanning electron microscopy, X-ray diffraction, DSC-TGA analysis, calorimetry, mercury intrusion porosimetry, laser diffraction particle size analysis, and BET surface area measurement. [Course Outline]

 

CEE 9598 - Durability, Monitoring & Rehabilitation of Concrete Structures

This course is intended to provide graduate students with practical experience in identifying mechanisms of degradation of concrete structures, understanding the potential causes of such degradation, and developing repair strategies that can efficiently and economically extend the service life of deteriorated structures. [Course Outline]

 

CEE 9603 - Random Vibration

Vibrations of structural systems subjected to stationary and nonstationary excitations; stochastic processes; power spectral density function; peak response of single and multi-degree of freedom systems and design code. [Course Outline]

 

CEE 9610 - Advanced Structural Dynamics

The objectives of the course are for the student to become able to:
Understand and derive the governing equations of motion of a single and multi-degree of freedom system.
Perform free and forced vibration response of a dynamical system under a general loading.
Develop the ability to characterize random variables and stationary stochastic processes.
Develop the ability to interpret and analyze random vibration data with the aid of auto-correlation function and power-spectral density functions.
Perform different system identification methods and analyze time-invariant linear dynamical systems.
Develop the ability to perform vibration testing including free vibration, forced vibration and ambient vibration testing to extract relevant system information of structures. [Course Outline]

 

CEE 9628 - Prestressed Concrete

Principles and methods of prestressing, material properties, prestress losses, analysis and design of prestress members subjected to axial, flexural, combined axial and flexural, and shear, restraint action in indeterminate prestressed concrete structures, calculation of width of cracks and deflections, design of anchorage zones and shear interface of composite beams, fire resilience of prestressed concrete structures. [Course Outline]

 

CEE 9720 - Introduction to Pipeline Design

Pipelines are the safest and most economical means to transport large quantity of hydrocarbons.  There are about 500,000 km and 100,000 km of onshore natural gas transmission pipelines in the US and Canada, respectively. The safe operation of these vast pipeline networks is the top  priority for the pipeline operators in the US and Canada, and has significant social and economic implications. The design and integrity assessment of pipelines is a multi-disciplinary undertaking and involves a broad spectrum of engineering knowledge such as basic structural mechanics, elasticity and plasticity, soil mechanics, fracture mechanics, fatigue, reliability and risk assessments, and corrosion. [Course Outline]