Professor Andy Xueliang Sun's Advanced Materials for Clean Energy Group Professor Andy Xueliang Sun's Advanced Materials for Clean Energy Group Western University Engineering Logo

Atomic Layer Deposition

Atomic layer deposition (ALD) has emerged as an important technique for thin film depositions, owing to its unique advantages including highly uniform and conformal coverage on high-aspect-ratio substrates and exquisite control of thickness at atomic level.

ald.jpg

Our group has been working on this area since 2010 and has accumulated a lot of experience. Various oxide systems have been developed as active battery components. For the anode, amorphous and crystallized TiO2, SnO2, and Fe2O3 can be grown in a well-controlled manner and have proven be presented excellent battery performances. In addition, LiCoO2 and LiFePO4 have been successfully prepared as cathode materials. Other lithium-containing materials obtained can be applied as SSEs including LiTaO3, Li3PO4, Li4SiO4, and LiNbO3. Besides, there are other coating materials available like ZrO2, AlPO4, FePO4, etc. Meanwhile, surface modification by ALD also can be applied as protecting layer for Li and Na anode. Our group also demonstrates different ALD coatings for Li and Na anode to achieve the reduced dendrite growth and longer life time.

Molecular layer deposition (MLD), as an analogy of ALD, can be employed to produce pure polymeric or inorganic–organic hybrid thin films, which holds many advantages such as lower growth temperatures, tunable thermal stability, and improved mechanical properties. Our group also has rich experience on the synthesis of different MLD thin films, including alucone, zircone, polyuria and conductive polymers. Furthermore, we apply different MLD thin film as coating layers in different battery systems, including Li-S batteries, Li/Na metal protection to significantly improve the performances of the batteries.

Typical References:

Review papers

    1. Y. Zhao, K. Zheng, X. Sun, Addressing Interfacial Issues in Liquid-based and Solid-State Batteries by Atomic and Molecular Layer Deposition, Joule 2 (2018) 2583-2604.
    2. Y. Zhao, X. Sun, Molecular Layer Deposition (MLD): Overview and Energy Related Applications, ACS Energy Lett. 3 (2018) 899–914.
    3. X. Meng, X. Q. Yang, X. Sun, Emerging Applications of Atomic Layer Dposition for Lithium-ion Battery Studies. Adv. Mater. 24 (2012) 3589-3615.
    4. J. Liu and X. Sun, Elegant Design of Electrode and Electrode/Electrolyte Interface in Lithium-Ion Batteries by Atomic Layer Deposition. Nanotechnology 26 (2015) 024001.
    5. N. Cheng, Y. Shao, J. Liu and X. Sun, Electrocatalysts by Atomic Layer Deposition for Fuel Cell ApplicationsNano Energy 29 (2016) 220-242.

 

Battery Applications

      1. P. Yan, J. Zheng, J. Liu, B. Wang, X. Sun, C. Wang, and J. Zhang. Tailoring of Grain Boundary Structure and Chemistry of Cathode Particles for Enhanced Cycle Stability of Lithium Ion BatteryNat. Energy, 3 (2018) 600-605.
      2. X. Li, M. Banis, A. Lushington, X. Yang, Q. Sun, Y. Zhao, C. Liu, Q. Li, B. Wang, W. Xiao, C. Wang, M. Li, J. Liang, R. Li, Y. Hu, L. Goncharova, H. Zhang, T-K Sham, X. Sun, A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nat. Commun. 9 (2018) 4059.
      3. Y. Sun, Y. Zhao, J. Wang, J. Liang, C. Wang, Q. Sun X. Lin K. Adair, J. Luo D. Wang R. Li M. Cai T‐K Sham, X. Sun, Novel Organic “Polyurea” Thin Film for Ultra-Long-life Lithium Metal Anode via Molecular Layer Deposition. Adv. Mater.  (2018) 1806541.
      4. Y. Zhao, L. Goncharova, A. Lushington, Q. Sun, H. Yadegari, B. Wang, W. Xiao, R. Li, X. Sun., Superior Stable and Long-Life Sodium Metal Anodes Achieved by Atomic Layer DepositionAdv. Mater. 29 (2017) 1606663.
      5. B. Xiao, H. Liu, J. Liu, Q. Sun, B. Wang, K. Kaliyappan, Y. Zhao, M. Banis, Y. Liu, R. Li, T-K Sham, G. Botton,M. Caid and X. Sun, Nanoscale Manipulation of Spinel Lithium Nickel Manganese Oxide Surface by Multisite Ti Occupation as High Performance Cathode.  Adv. Mater. 29 (2017) 1703764.
      6. X. Li, J. Liu, M. Banis, A. Lushington, R. Li, M. Cai, X. Sun, Atomic Layer Deposition of Solid-State Electrolyte Coated Cathode Materials with Superior High-Voltage Cycling Behavior for Lithium Ion Battery Application. Energy Environ. Sci.7 (2) (2014) 768-778.
      7. Y. Zhao, L. Goncharova, Q. Zhang, P. Kaghazchi, Q. Sun, A. Lushington, B. Wang, R. Li, X. Sun, Inorganic-organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal AnodeNano Lett. 17 (2017) 5653-5659.
      8. X. Li, A. Lushington, Q. Sun, W. Xiao, J. Liu, B. Wang, Y. He, K. Nie, Y. Hu, Q. Xiao, R. Li, J. Guo, T.-K. Sham and X. Sun, Safe and Durable High-Temperature Lithium-sulfur Batteries via Molecular Layer Deposited Coating. Nano Lett.,16 (2016) 3545-3549.
      9. C. Wang, Y. Zhao, Q. Sun, X. Li, Y. Liu, J. Liang, X. Li, X. Lin, R. Li, K. Adair, L. Zhang, R. Yang, S. Lu, X. Sun. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer depositionNano Energy 53 (2018) 168–174.
      10. C. Zhao, C. Yu b, M. Banis, Q. Sun, M. Zhang, X. Li, Y. Liu, Y. Zhao, H. Huang, S. Li, X. Han, B. Xiao, Z. Song, R. Li, J. Qiu, and X. Sun, Decoupling Atomic-Layer-Deposition Ultrafine RuO2 for High-Efficiency and Ultralong-Life Li-O2 Batteries.  Nano Energy (2017) 34,399-407.
      11. B. Xiao, B. Wang, J. Liu, K. Kaliyappan, Q. Sun, Y. Liu, G. Dadheech, M.P. Balogh, L. Yang, T.K. Sham, R. Li, M. Cai, X. Sun, Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coatingNano Energy 34 (2017) 120–130.
      12. B. Wang, Y. Zhao, M. Banis, Q. Sun, K. Adair, R. Li, T-K Sham, and X. Sun, Atomic Layer Deposition of Lithium Niobium Oxides as Potential Solid-State Electrolytes for Lithium-Ion BatteriesACS Appl. Mater. Interfaces 10 (2018) 1654–1661.
      13. B. Wang, J. Liu, M. Banis, Q. Sun,Y.  Zhao, R. Li, T.-K.  Sham, X. Sun, Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All Solid-State Batteries. ACS Appl. Mater. Interfaces 9 (2017) 31786−31793.

 

Fuel cell applications

      1. Z. Song, M. Banis, L. Zhang, B. Wang, Y. Zhao, J. Liang, M. Zheng, R. Li, X. Sun, Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition, Nano Energy, 2018, 53, 716-725.
      2. L. Zhang, Z. Zhao, M. Banis, L. Li, Y. Zhao, Z. Song, Z. Wang, T-K Sham, R. Li, M. Zheng, J. Gong, X. Sun, Selective Atomic Layer Deposition of RuOx Catalysts on Shape-Controlled Pd Nanocrystals with Significantly Enhanced Hydrogen Evolution Activity. J. Mater. Chem. A, 2018,6, 24397-24406 .
      3. N. Cheng, S. Stambula, D. Wang, M. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L. Liu, G. Botton and X. Sun, Platinum Single-atom and Cluster Catalysis of the Hydrogen Evolution ReactionNat. Commun., 7 (2016) 13638.
      4. N. Cheng, M. Banis, J. Liu, A. Riese, X. Li, R. Li S. Ye, S. Knights and X. Sun, Extremely stable platinum nanoparticles encapsulated in zirconia nanocages by area-selective atomic layer deposition for oxygen reduction reaction. Adv. Mater.,27 2 (2015) 277.
      5. N. Cheng, M. Banis, J. Liu, A. Riese, S. Mu, R. Li, T.-K. Sham and X. Sun, Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly stable electrocatalysts. Energy Environ. Sci. 8(2015) 1450.
      6. Z. Song, M. Banis, L. Zhang, B. Wang, Y. Zhao, J. Liang, M. Zheng, R. Li, X. Sun, Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition, Nano Energy 53 (2018) 716-725.
      7. S. Sun , G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M. Banis, R. Li, S. Ye, S. Knights, G. Botton, T.-K. Sham, X. Sun, Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports 3 (2013) 1775.
        1.