

Offshore renewables: Is centrifuge modelling the right tool?

Western Geotechnical Centrifuge Opening Symposium

Prof. Christophe Gaudin

The University of Western Australia **Oceans Graduate School**

2 May 2019

Outline

Model pipe **Current direction** of pipe mover

- The National Geotechnical Centrifuge Facility
- Offshore renewable energy: new challenges?
- Suction caisson: installation
- Suction caisson: VHM capacity
- Pile under multidirectional loading

©NGCF

General

- 240 g-tonne beam centrifuge
- 5 m radius
- 130 g max acceleration
- 1.2×1.2×1.2 m, 2,400 kg payload

Specific

- 2 AC 110 kW induction motors
- Automatic balancing system

• Building integration and laboratory layout

Control command room organisation

Internal development and upgrades

Sample preparation and characterisation

- Sand rainer
- Electrical consolidation press

On-board equipment

- 2D actuator
- Control software

The transition to offshore renewables

Offshore renewable energy

Development projects

Commercial projects

Development projects

Challenges

Knowledge transfer?

Knowledge transfer?

Back in time ?

Economical constrains

Wave Energy Cost Breakdown

Research landscape

Suction caisson installation

Suction caisson

Installation

Image analysis

Ragni, R., Bienen, B., Stanier, S.A., O'Loughlin, C. and Cassidy, M.J. (2019). Observations during suction bucket installation in sand. *IJPMG*

Image analysis

Caisson under combined loading

Caisson under combined loading

Swipe tests

Swipe tests

Yield envelope

$$V_0^* = V_0(\Delta_p) = V_0(w_p + C_1|u_p|)$$
 Horizontal plastic displacements

New yield envelope formulation

$$F = \left(\frac{h}{h_0}\right)^2 - \beta_{12}^2 (\nu + t_0)^{2\beta_1} (1 - \nu)^{2\beta_2} = 0 \qquad h = H/V_0^*, \ \nu = V/V_0^*,$$

Flow rule

$$\frac{\delta w_p}{\delta u_p} = -b_1 \left[b_2 \left(1 - \frac{V}{V_0^*} \right) \left(\frac{V}{V_0^*} + t_0 \right)^{b_2 - 1} - \left(\frac{V}{V_0^*} + t_0 \right)^{b_2} \right]$$

Plasticity model

Improved plasticity model

Multidirectional loading

Anchor sharing concept

- Moving to array of WECS requires innovative anchoring systems
- Foundation sharing promising but challenging to design

Multidirectional loading configuration

Load regime characterisation

Wave period = 7.3 s

Phase angle = π rad (brought by longer wave periods) Mooring loads are out-of-phase Important variation of the loading direction

Load regime characterisation

Rough piles embedded in medium dense sand

Load inclination: 40° in the vertical plan 60, 90,120, 180° in the horizontal plan

Pile motion monitored in the 6 degrees of freedom through combination of accelerometers and displacement transducers

Experimental programme

- 2 and 3 mooring lines
- 60, 90, 120 and 180° loading direction
- Alternate and phased loading
- Increasing load levels (25%, 50 and 75% of F_{mono})
- Nbr of cycles

Results snapshots

3 mooring lines - 120° - Alternate loading

Results snapshots

3-line cyclic multidirectional loading

Pile under inclined cyclic loading

Caisson under multidirectional loading

- Offshore renewable is diverse and will play an important role in the energy mix
- New boundary value problems raise new scientific challenges
- Centrifuge modelling will provide insights and answers
- New modelling techniques are required