

Application of Centrifuge Testing for Sustainable Infrastructure

Prof. Hesham El Naggar, PhD., P.Eng., FEIC, FASCE

Geotechnical Research Centre

May 2, 2019

Advantages of Centrifuge Modeling

Centrifuge testing offers several advantages:

- 1. Small cost and fast construction time compared to full scale testing,
- 2. Allows gathering abundant and reliable information.
- 3. Enables simulating complex problems and studying the physics involved in these problems (e.g. behaviour of structures resting on or embedded in stratified soils and subjected to earthquakes or waves).
- 4. Can expedite long term process such as consolidation and low frequency loads.

Western Experience with Centrifuge Testing

- Centrifuge Modeling of Tapered Piles in Sand (Sakr, MESc 1999).
- Investigation on Seismic Site Response and Soilstructure Interaction In Soft Soils (Rayhani, PhD. 2007).
- Static and Seismic Soil Culvert Interaction (Abuhajar, PhD 2013)
- Performance Of Micropiled Raft In Sand And Clay–centrifuge And Numerical Studies (Alnauim, PhD 2014).
- Hybrid Foundations for Wind Turbines in Cohesive Soil (Alsharedah, PhD on-going)

Investigation on Seismic Site Response and Soil-structure Interaction In Soft Soils

Probabilistic seismic hazard analysis with ground motion generation

-Previous earthquakes: Kobe (1995), Northridge (1994), and Loma Prieta (1989) highlighted the role of local site conditions on strong motions and associated major damage.

-Mexico City, 1985: Damage patterns demonstrated site effect

Centrifuge Model/Container/Shaker

- Payload (mass) 400 kg
- Container ext. dimensions: 1m x 0.5m x 0.6m
- Max. earthquake acceleration: 40g (50%)
- Max. centrifuge acceleration: 80g
- Max. shaking force: 160 kN
- Material for rings: Aluminum Alloy
- Rubber material : G = 1.06 MN/m2

ACTIDYN Earthquake Simulator MODEL QS 67-2 Payload: 1m x 0.5m x 0.6m, 400kg mass

40 -200Hz
220 kN
2.5mm
0.75m/s
40–60g
10 -80g

Pretest on Dummy Sample
Hammer Test (g levels)
T-bar and CPT Test (soil strength)
P-Wave (soil stiffness)
West Canada Earthquake
Kobe Earthquake

	Prototype		Centrifu	ige Test (scale 1:80)
Input acceleration	Peak Acc. (g)	Dominant Frequency (Hz)	Peak Acc. (g)	Dominant Frequency (Hz)
A0.5×WC2475	0.1	0.93	8	74.5
A1×WC2475	0.2	0.93	16	74.5
A2×WC 2475	0.38	0.93	32.5	74.5
Kobe (1996)	0.54	1.85	43	148

Earthquake Amplification

Ratio of Surface to Base Response (RRS)

Soil-Structure Interaction

References

1. Rayhani, M. and El Naggar, M.H. 2012. Physical and numerical modeling of seismic soilstructure interaction in layered soils. Journal Geotechnical and Geological Engineering, Vol. 30, No. 2, pp. 331-342.

2. Rayhani, M. T. and El Naggar, M.H. 2008. Dynamic Properties of Soft Clay and Loose Sand from Seismic Centrifuge Tests. Journal of Geotechnical and Geological Engineering, Vol. 26, No. 5, pp.593-602.

3. Rayhani, M. T. and El Naggar, M.H. 2008. Numerical modeling of seismic response of rigid foundation on soft soil. International Journal of Geomechanics, ASCE, Volume 8, Issue 6, pp. 336-346.

4. Rayhani, M. T. and El Naggar, M.H. 2008. Seismic Response of Sands in Centrifuge Tests. Canadian Geotechnical Journal, Vol. 45, No. 4, pp. 470-483.

5. Rayhani, M.T., El Naggar, M.H. and Tabatabaei, S.H. 2008. Nonlinear Analysis of Local Site Effects on Seismic Ground Response in the Bam Earthquake. Journal of Geotechnical and Geological Engineering, Vol. 26, No. 1, pp. 91-100.

6. Rayhani, M. T. and El Naggar, M.H. 2008. Characterization of Glyben for Seismic Applications. Geotechnical Testing Journal, ASTM, Vol. 31, No. 1, pp. 24-31.

7. Rayhani, M. T. and El Naggar, M.H. 2007. Centrifuge modeling of seismic response of layered soft clay. Bulletin of Earthquake Engineering, Vol. 5, No. 4, pp. 571-589.

Centrifuge Testing of Piled Rafts

- The centrifuge testing program was carried out at C-Core Centrifuge facility located at Memorial University, St. John's, Newfoundland.
- The tests were conducted under 50g centrifugal acceleration.
- The results of the vertical loading test were used to calibrate the 3D finite element model for the current investigation.

	Symbols	Model	Prototype
Diameter (mm)	D	9.53	150
Materials	-	PVC	Concrete
Pile length	Lp	200 mm	10 m
Modulus of Elasticity	E	71 GPa	41.7 GPa
Raft thickness	t	16.4 mm	0.6 m
Raft width (square)	В	105 mm	5.25 m
Number of piles	-	4	4
Axial rigidity	EA	207 kN	517 MN

Model dimensions in both model and prototype scales

Centrifuge Model for Piled Raft

Vertical cross-section of centrifuge package: (1) vertical actuator for; (2) sand cone for CPT; (3) LVDTs; (4) load cell; and (5) laser (all dimensions in mm).

3D Finite Element Model and 3D FEM Verification

Comparison of the FEA results with the data obtained from the centrifuge test.

References

 Alnuaim, A., El Naggar, M.H. and El Naggar, H. 2018. Performance of micropiled rafts in clay: numerical investigation. Computers and Geotechnique, Vol. 99, pp. 42-54.
 Alnuaim, A.M., Elnaggar, H. and El Naggar, M.H. 2017 Evaluation of piled raft Performance using a verified 3D nonlinear numerical model. Journal of Geotechnical and Geological Engineering. Vol 35, pp. 1831-1845; DOI 10.1007/s10706-017-0212-1.
 Alnuaim, A., El Naggar, M.H. and El Naggar, M.H. 2016. Numerical investigation of the performance of micropiled rafts in sand. Computers and Geotechnics, Vol. 77, pp. 91-105..
 Alnuaim, A., El Naggar, M.H. and El Naggar, H. 2015.Performance of micropiled raft in clay subjected to vertical concentrated load: centrifuge modeling. Canadian Geotechnical

Journal, 52(12): 2017-2029.

5. Alnuaim, A., El Naggar, H., and El Naggar, M.H. 2015. Performance of micropiled raft in sand subjected to vertical concentrated load: centrifuge modeling, Canadian Geotechnical Journal, Vol. 52, No. 1, pp. 32-45.

Static and Seismic Soil-Culvert Interaction

Construction of Box Culverts

Western S Engineering

Kim and Yoo (2005)

Static Earth Pressure

Soil Culvert Interaction Factors (
$$F_e$$
) = $\frac{Actual Soil Pressure (σ_v measured)}{Theoretical Soil Pressure ($\sigma_v = \gamma H$)$

Seismic Analysis of Box Culverts

General Effects of Earthquakes: (Anderson, 2008)

Ground Shaking (Seismic waves) leads to transit ground deformations (TGD) Ground Failures (lateral spreading, liquefaction, etc) leads to permanent ground deformation (PGD)

Racking deformations of box culverts (Wang, 1993)

 Δ_s is the differential sideways movements between the top and bottom slabs Imposing Δ_s in simple frame analysis can give the required internal forces

AASHTO: No seismic analysis provided

CHBDC: The seismic bending moment is equal to the static bending moment times the vertical component of the PGA (Av)

Wang (1993), Anderson et al. (2008)

Soil-Box Culvert Interaction: Research Objectives

- 1. Evaluate arching effect of soil around box culverts under static and seismic loading (soil density, surface foundation and culvert thickness).
- 2. Investigate seismic response of box culverts considering earthquake amplitudes and frequency content.
- 3. Compare effects of static and seismic loading on box culverts.
- 4. Develop a numerical model to simulate the effect of soil arching by performing static and seismic parametric studies.
- 5. Develop static and seismic design guidelines for the soil pressures and bending moments on box culverts.

Free Field (FF) vs Structural Field (SF)

Test Case

(100 kPa)

Sand surface alone

Test No.	Culvert	Dr(%)
Test 1 (T1)	Thick	90
Test 2 (T2)	Thick	50
Test 3 (T3)	Thin	50
Test 4 (T4)	Thin	90

Test No.

T1A, T2A, T3A, T4A

T1B, T2B, T3B, T4B

(b)

Soil model is 120-Nevada sand

T3D, T4D Rectangular

Box Culvert model

Strip and Rectangular Foundation models

Final model test cases

Shakings applied to the Cases A, C, and D of each test

Earthquake Simulation

One – Dimensional Shaker

FF vs SF: Acceleration time history, Frequency and Response Spectrum

Kinematic Soil Culvert Interaction

Effect of Soil Density 0.8 T1A-FF 0.7 T1A-SF PGA (g) - Surface 0.6 – T2A-FF - T2A-SF 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0 PGA (g) - Base 0.8 T1C-FF 0.7 T1C-SF PGA (g) - Surface 0.6 T2C-FF T2C-SF 0.5 0.4 0.3 0.2 0.1 0 0.2 0.3 0.1 0.4 0 PGA (g) - Base

Soil Culvert Interaction Parameters: Soil Culvert Interaction Factors (F_e)

Test	Ton Slab (F)	Side Wall (F_e) at
1631		rest
Τ1 Λ	Edge 1.21	Top 1.11
	Center 1.04	Bottom 1.12
 TO A	Edge 1.15	Top 1.09
	Center 1.09	Bottom 1.10
Т3 Л	Edge 1.29	Top 1.13
IJA	Center 0.90	Bottom 1.18
T4A	Edge 1.53	Top 1.14
	Center 0.68	Bottom 1.22

Rocking of Structures

Rock	king	of	Box	Cul	vert

Rocking of Foundation

	PGA (g)	Rocking	-		PGA (g)	Rocking
	Base	Angle	_		Base	Angle
Shaking	Test 1	C_{250}		Shaking	T (4)	0 0
Туре	1631 1			Туре	lest 1	Case C
KEQL	0.098	0.0088		KEQL	0.098	0.0112
KEQM	0.203	0.0088		KFQM	0.203	0.0104
KEQH	0.319	0.0120	-	KEOH	0.319	0.0192
					0.010	0.0102

Racking of Box Culverts

Tost	Shaking	PGA	ΔPGD_{SF}	
1051	Туре	(Base) (g)	ΔPGD_{FF}	
T1A	KEQL	0.122	0.76	
T1C	KEQL	0.098	0.78	
T1A	KEQM	0.205	0.77	
T1C	KEQM	0.203	0.76	
T1A	KEQH	0.308	0.46	
T1C	KEQH	0.319	0.31	

Teat	Shaking	PGA	ΔPGD_{SF}
Test	Type	(Base) (g)	ΔPGD_{FF}
T2A	KEQL	0.105	1.45
T2C	KEQL	0.101	1.59
T2A	KEQM	0.201	1.73
T2C	KEQM	0.200	1.74
T2A	KEQH	0.333	1.69
T2C	KEQH	0.306	1.72

Test	Shaking Type	PGA (Base) (g)	$\frac{\varDelta PGD_{SF}}{\varDelta PGD_{FF}}$	_	Test	Shaking Type	PGA (Base) (g)	$\frac{\varDelta PGD_{SF}}{\varDelta PGD_{FF}}$
T3A	KEQL	0.113	6.11	•	T4A	KEQL	0.122	4.77
T3C	KEQL	0.098	14.52		T4C	KEQL	0.105	4.20
T3D	KEQL	0.104	11.24		T4D	KEOL	0.104	4.86
T3A	KEQM	0.214	15.92		T4A	KEOM	0.189	6.27
T3C	KEQM	0.201	-45.60		T4C	KEOM	0 179	7 23
T3D	KEQM	0.203	-158.50			KEQM	0.196	7.25
T3A	KEQH	0.313	48.13		14D	KEQM	0.180	7.52
T3C	KEQH	0.298	-91.82		T4A	KEQH	0.266	7.07
T3D	KEOH	0.301	156.03		T4C	KEQH	0.271	6.81
	`			-	T4D	KEQH	0.270	6.34

Soil Culvert Interaction Parameters: Static Bending Moment

Soil Culvert Interaction Parameters: Static Soil Pressure

Numerical Modeling

FLAC 2D

Structure – Linear Elastic Model Box Culvert – Liner Element Foundation – Beam Element

Sand – Elastic-Plastic Model (Mohr Coulomb)

Interface Elements – Glued interface (No slippage or gap opening)

In Dynamic analysis:

Vs and G obtained from centrifuge results used. Hysteretic damping Acceleration applied at the base

Model parameters	Medium dense	Dense
Relative density Dr (%)	50	90
Mass density $ ho$ (kg/m³)	1605.7	1687.7
Elastic modulus <i>Es</i> (MPa)	10	30
Shear modulus <i>G</i> (MPa)	3.91	11.7
Bulk modulus <i>K</i> (MPa)	7.58	22.7
Poisson's ratio v	0.28	0.28
Friction angle ϕ (°)	40	40
Dilation angle ψ (°)	5	5
Cohesion c (kPa)	1	1

Numerical Modeling

Verification of Static results

Verification of Seismic results

Static and Seismic Design Guidelines

5. Obtain the ratio BM_{dy}/BM_{st} using H/Bc - t/Bc relations, the seismic bending moment can be obtained.

Seismic Design Guidelines

- 1. Shape of Seismic Bending Moment:
 - a. No single shape for the seismic bending moment
 - b. Recommended to run nonlinear dynamic numerical analysis
 - c. Several factors affecting such as PGA and Frequency of EQ
- 2. The BM_{dv}/BM_{st} ratio:
 - a. Useful in defining the seismic bending moment
 - b. Can be used for specific *H/Bc* and *t/Bc*
 - c. Can help in define the right value of *H* of soil fill and *t* of the culvert
- 3. Total Bending Moment:
 - a. Not recommended to use
 - b. Design separately for static BM and seismic BM and then combine.
- 4. Kinematic Soil Culvert Interaction:
 - a. Should be considered for buried structures
 - b. Leads to large reduction in PGA values at SF vs FF
- 5. Racking of Box Culvert method:
 - a. Combined effect for the soil density and culvert thickness
 - b. Should be used with caution

Interesting Findings

- 1. Kinematic soil culvert interaction can reduce the PGA (SF) at the surface by considerable amount comparing to the PGA (FF). The results show about a 50% reduction at 0.3g KEQ and a minimum effect below 0.1g. Soil density effect appears more for the (FF) condition.
- 2. The rocking angles of structures are very small, the values obtained for the box culvert is less than the surface foundation because of the soil confinement.
- 3. The PGD and PGA at the top of the foundation increase as the PGA at the model base increase.
- 4. The racking ratio of box culvert is soil density and culvert thickness dependent. For thick culvert and dense sand, the ratio is < 1.0, while for all the other cases > 1.0 and even higher with some negative values. Therefore this method should be used with caution.

References

1. Abuhajar, O., El Naggar, M.H. and Newson, T. 2016. Numerical modeling of soil and surface foundation pressure effects on buried box culvert behaviour. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 142 (12).

2. Abuhajar, O., El Naggar, M.H. and Newson, T. 2015. Static soil culvert interaction the effect of box culvert geometric configurations and soil properties. Computers and Geotechnics. Vol., 69, pp. 219-235.

3. Abuhajar, O., El Naggar, M.H. and Newson, T. 2015. Experimental and numerical investigations of the effect of buried box culverts on earthquake excitation. Soil Dynamics and Earthquake Engineering, Vol. 79, pp. 130-148.

4. Abuhajar, O., El Naggar, M.H. and Newson, T. 2015. Seismic soil culvert interaction. Canadian Geotechnical Journal, 52(11): 1649–1667.

5. Abuhajar, O., Newson, T and El Naggar, M.H. 2015. Scaled physical and numerical modelling of static soil pressures on box culverts. Canadian Geotechnical Journal, 52(11): 1637:1648.
Performance Assessment and Design Guidelines for Three-Sided Precast Concrete Culverts

(Funding by MTO and Canadian Concrete and Precast Pipe Association)

Three-sided Culvert Shapes

https://www.westsidepioneer.com/Articles/082216/Chestnut.html

http://www.paraeva.toloonsieo.co/procest/book-raybate/baxosulvave/tb/boxidace-toox2cpbgert.html

- Soil arching
- Active vs Passive arching

(b) Stress distribution across Plane AA or BB

PAsstiwe anching (Evans, 1984)

- Factors affecting the applied stresses on culverts
 - Geometry and stiffness of the structure

Current design of practice (CHBDC S6-14)

Installation Type	Vertical Arching Factor, $\lambda_{\rm v}$	Horizontal Arching Factor, λ_h		
	· ······	Minimum	Maximum	
B1	1.20	0.30	0.50	
B2	1.35	0.25	0.50	

Arching factors for box sections in standard installations. (CHBDC, 2014)

Soils and compaction requirements for standard installations. (CHBDC, 2014)

Installation type	Soil group	Equivalent minimum Standard Proctor compaction in sidefill and outer bedding zones		
	Ι	90%		
B1	II	95%		
	III	Not permitted		
	Ι	80%		
B2	II	85%		
	III	95%		

Current design of practice (CHBDC S6-14)

CHBDC, 2014

Current design of practice (AASHTO LRFD 2014)

$$W_E = F_{e \text{ or } t} \times_{\gamma s} \times B_c \times H$$

$$F_e = 1 + 0.20 \frac{H}{B_c}$$

For installations with compacted and un-compacted fill along the sides of box culverts, F_e shall not exceed 1.15 and 1.40, respectively.

$$F_t = \frac{C_d B_d^2}{H B_c} \le F_e$$

- Arch culverts (McGrath et al., 2002)
 - Two full-scale field tests on a 9.1 m span arch culvert
 - Different backfill depths
 - Different compaction (92% and 85% relative compaction)

Arrangement of tested culverts (McGrath et al., 2002)

Arch culverts (McGrath et al., 2002)

(McGrath et al., 2002)

Research Motivation

- Large span three-sided concrete culverts are gaining popularity and are currently used to provide an economical alternative for short span bridges replacement.
- Design practice, as currently specified in Codes and Standards, does not distinguish between box and three-sided culverts.
- Stress distribution on large span arch culverts is different than that used for box culverts.
- No research on the structural performance and soil-structure interaction of three-sided culverts.
- Results of our preliminary numerical analyses.

Objectives

- Develop design methodologies, specific to precast concrete threesided structures, for Section 7, Buried Structures for CSA S6-CHBDC.
- Enhance knowledge on behaviour of three-sided culverts and the influencing parameters.
- Investigate actual loading conditions due to soil pressures and vehicle live loads.
- Investigate long term performance of three sided culverts.
- Assess the applicability and limitations of the current state of practice design methods for three-sided culverts.
- Provide recommendations for representative numerical modelling of three-sided culvert-soil systems.

Methodology

Preliminary Analysis (results for 4.5 m span culvert)

$$\lambda_v = \frac{\sigma_{33}}{\gamma H}$$

Preliminary Analysis (results for 4.5 m span culvert)

Preliminary Analysis (results for different spans)

Preliminary Analysis (Reinforcement)

Backfill Height (m)	S (m)	R (m)	T (mm)	W (mm)	H (mm)
3.0			800	700	700*700
4.5	12.0	4.5	850	700	700*700
6.0			900	750	750*750

12.0m span culvert dimensions

12.0m	span	culvert	quantities
			1

Backfill	Concrete	Steel Quantity (kg)		Difference	Difference
Height (m)	Quantity (m ³)	CHBDC	Numerical	(kg/m)	(%)
3.0	21.36	1889	1677	176.7	11.2
4.5	22.18	2055	1831	186.7	10.9
6.0	23.74	2505	2166	282.5	13.5

- Full-scale field tests are funded by MTO and CCPPA
- Geometry of the approved projects

Culvert ID	Culvert type	Span (m)	Backfill height (m)	Foundation type
Culvert 18	Three-sided	16.1	1.2	Shallow
Pickering Culvert	Three-sided	13.5	3.0	Shallow
Oshawa Culvert	Three-sided	10.3	3.8	Shallow
Barbut Creek	Three-sided	10.0	1.4	Shallow
Locha Creek	Three-sided	7.3	6.5	Deep
Muskrat Creek	Box or three-sided	4.0	0.7	To be determined
Meloche Creek	Box	3.6	5.0	Shallow

Details of the approved field tests

- Field tests design (Oshawa Culvert)
 - 3-D Preliminary numerical analyses have been conducted for the approved

projects.

- Field tests design (Oshawa Culvert)
 - Measurements will include interface pressures, culvert internal strains, and soil settlement.
 - Instruments: pressure cells, strain gauges (surface and embedded), SAA, and multipoint borehole extensometers.

Field tests design (Meloche Creek Culvert)

Centrifuge Modeling

- Expanding the full-scale field testing to cover other important parameters, e.g. installation method and foundation soil conditions.
- Centrifuge testing on long span culverts with arched top slab.

Centrifuge facility at RPI, Troy, NY, USA

Centrifuge Modelling of Three Sided Culverts

Model Scaling (N=200)

Dimensions in (mm)

Centrifuge Modelling under Static and Seismic Loading

- Static Loading
- Seismic Loading

Summary of the proposed input motions						
T (Prototype		Centrifuge test (scale 1:200)		
acceleration	PGA (g)	Predominant frequency (Hz)	PGA (g)	Predominant frequency (Hz)		
VCL	0.10	0.464	20.0	92.8		
VCM	0.16	0.464	32.0	92.8		
WCL	0.09	0.647	18.0	129.4		
WCM	0.24	0.647	48.0	129.4		
KEQL	0.12	1.453	24.0	290.6		
KEQM	0.20	1.453	40.0	290.6		
KEQH	0.31	1.453	62.0	290.6		

Test Instrumentation

1- Linear Variable Differential Transducers (LVDT)

Dimensions in (mm)

Test Instrumentation

2- Accelerometers

Dimensions in (mm)

Test Instrumentation

3- Strain Gauges

Strain Gauges

Design Alternatives for Damietta International Port - Second

Container Terminal

Funded by Research Contract – Geotechnical Research Centre

The por otian Mediterra port is approxi west of Port Sa The total Damietta relocated main port road tediterranean Sea container Terminal). existing Export Gate all of guides construction access road and temporary port gate SAUDI ARABL Construction Site New container termin:

Project Description

- 1. Soil stratigraphy (Soft Clay)
 - Regional geology
 - Site investigation and soil profile

- 1. Soil stratigraphy (Soft Clay)
 - Regional geology
 - Site investigation and soil profile

Soil Profile along North Quay Wall

Soil Profile along South Quay Wall

Soil Profile along East Quay Wall

1. Soil stratigraphy (Soft Clay)

- 2. Old Design
 - Components
 - a) Front DW
 - b) Rear DW
 - c) Piles
 - d) Top Concrete slab
 - e) Ground Anchors

- 2. Old Design
 - **Construction phases** •

to be completed days after commencement date 420 days 480 days 510 days 540 days 600 days 630 days

Quay wall section ready for taking over

Terminal infrastructure section ready for use

- that the quay wall has to be completed (stable) to carry the full horizontal load 60 days before completion date, - that the terminal infrastructure contractor has to commence pavement and drainage works between front and back crane beams 30 days before completion - that the dredging contractor has to commence dredging in front of quay wall 60 days before completion date, - that inspection of wall on water side and remedying works can only commence after dredging 30 days before completion -1 pavement in quay area diaphragm wall/ remedying defects dredging in front of quay

quay wall stable

Western S Engineering

0

2. Old Design

Analysis of Old Design (Existing Construction)

- 2D and 3D FEA analyses
 - Undrained and drained conditions

Analysis of Existing Construction

Construction Stages

Phase title	Phase description
Initial equilibrium	Inserting the diaphragm walls and the piles
1 st excavation [*]	Excavate from the ground surface (3.0 m) to level (1.0 m)
2 nd excavation	Excavate to level (-1.0 m)
3 rd excavation	Excavate to level (-3.0 m)
4 th excavation	Excavate to level (-5.0 m)
5 th excavation	Excavate to level (-7.0 m)
6 th excavation	Excavate to level (-9.0 m)
7 th excavation	Excavate to level (-11.0 m)
8 th excavation	Excavate to level (-13.0 m)
9 th excavation	Excavate to level (-15.0 m)
10 th excavation	Excavate to level (-17.0 m)
Live load	Apply the live loads
Safety factor	Determine the global factor of safety of the problem

Analysis of Existing Construction

- 2D and 3D FEA analyses
 - Considered loads

Load	Location	Value
Dead	-	Own self weight
Live	All berth	60 kN/m/m
Crane	Sea side	$P_V = 900 \text{ kN/m}$ $P_H = 70 \text{ kN/m}$
	Land side	$P_{V} = 600 \text{ kN/m}$

Analysis of Existing Construction)

- Results
 - Undrained analysis

Analysis of Existing Construction)

Results

2D Analysis			
Structural element	Output	Undrained condition*	Drained condition
Front wall	Total displacement	50.46 cm	31.62 cm
	Max. axial force	-1277.0 kN/m	-2092.0 kN/m
	Max. shear force	688.5 kN/m	423.3 kN/m
	Max. bending moment	3918.0 kN.m/m	3474.0 kN.m/m
	Total displacement	44.43 cm	26.97 cm
Backwall	Max. axial force	-1189.0 kN/m	-1828.0 kN/m
DACK WAII	Max. shear force	162.3 kN/m	106.1 kN/m
	Max. bending moment	1004.0 kN.m/m	481.1 kN.m/m
	Max. axial force	-964.5 kN	-1604.0 kN
Pile 1 (seaside)	Max. shear force	211.2 kN	127.1 kN
	Max. bending moment	2037.0 kN.m	1259.5 kN.m
	Max. axial force	-911.5 kN	-1986.0 kN
Pile 2	Max. shear force	171.9 kN	94.6 kN
	Max. bending moment	1455.0 kN.m	901.5 kN.m
	Max. axial force	-921.5 kN	-2209.5 kN
Pile 3	Max. shear force	210.2 kN	157.2 kN
	Max. bending moment	1707.0 kN.m	949.0 kN.m
Pile 4	Max. axial force	-935.5 kN	-1918.0 kN
	Max. shear force	258.4 kN	121.2 kN
	Max. bending moment	1798.0 kN.m	652.0 kN.m
Pile 5 (landside)	Max. axial force	-864.5 kN	-1192.0 kN
	Max. shear force	144.0 kN	62.0 kN
	Max. bending moment	1321.5 kN.m	451.7 kN.m
Ground anchor	Max. axial force	680.3 kN	972.9 kN
-	Global F.S	1.50	1.58

Main Findings of Analysis of Existing Construction

- The analysis results for the undrained condition (i.e. immediately after excavation) indicate that the front wall would exhibit a maximum deformation of 50.5 cm due to the 20.0 m excavation and the model failed in the stage of applying the live loads (FS < 1 in short term).
- This means D-Walls will fail upon applying the live loads. The total pile loads would exceed the pile ultimate capacity, resulting in failure of all piles and leading to the failure of the entire structural system.
- The total tension axial force in the ground anchors would exceed 900 kN and failure would occur. Likewise, unacceptable performance was detected from the drained analysis.
- Thus, retrofitting solutions are proposed and analyzed.

Design Alternative 1 (Design 1)

- Design 1 analysis
 - 2D and 3D analyses (Drained and Undrained conditions)

- Design 1 analysis
 - Construction stages

Clary

- Design 1 analysis
 - Results

	2D Analysis		
Structural element	Output	Undrained condition	Drained condition
	Total displacement	20.18 cm	15.67 cm
Front wall 1	Displacement due to excavation	12.44 cm	9.43 cm
	Total displacement	20.15 cm	15.69 cm
Front wall 2	Displacement due to excavation	12.48 cm	9.19 cm
	Total displacement	17.70 cm	14.43 cm
Back wall	Displacement due to excavation	8.90 cm	7.78 cm
	Max. axial force	-1790.5 kN	-1037.5 kN
Pile 1 (seaside)	Max. shear force	113.4 kN	120.8 kN
File I (Seaside)	Max. bending moment	780.5 kN.m	641.5 kN.m
	Max. axial force	-964.5 kN	-990.0 kN
Pile 5 (landside)	Max. shear force	99.9 kN	64.4 kN
0 (Max. bending moment	443.4 kN.m	281.2 kN.m
	Max. axial force	-3447.5 kN	-3547.5 kN
A-frame pile 1	Max. shear force	61.1 kN	101.2 kN
/	Max. bending moment	395.3 kN.m	602.3 kN.m
A-frame pile 2	Max. axial force	+1079.8 kN	-1534.3 kN
	Max. shear force	106.4 kN	144.1 kN
	Max. bending moment	575.5 kN.m	753.3 kN.m
Micropile	Max. axial force	+770.8 kN	+782.0 kN
	Max. shear force	211.7 kN	188.5 kN
	Max. bending moment	203.3 kN.m	160.4 kN.m
-	Global F.S	2.632	2.669

Design Alternative 2 (Design 2)

- Design 2 Analysis
 - Results

2D Analysis			
Structural element	Output	Undrained condition	Drained condition
	Total displacement 27.88 cm		17.67 cm
Front wall 1	Displacement due to excavation	14.86 cm	10.74 cm
	Total displacement	27.90 cm	17.47 cm
Front wall 2	Displacement due to excavation	14.78 cm	10.18 cm
	Total displacement	26.91 cm	17.01 cm
Back wall	Displacement due to excavation	12.64 cm	8.40 cm
	Max. axial force	-401.9 kN	-334.3 kN
Pile 1 (seaside)	Max. shear force	84.5 kN	86.0 kN
	Max. bending moment	906.5 kN.m	593.0 kN.m
	Max. axial force	-1067.5 kN	-671.5 kN
Pile 5 (landside)	Max. shear force	60.5 kN	36.7 kN
	Max. bending moment	524.0 kN.m	271.2 kN.m
	Max. axial force	-4285.0 kN	-3837.5 kN
A-frame pile 1	Max. shear force	244.4 kN	144.2 kN
A-frame pile 1	Max. bending moment	1388.3 kN.m	784.0 kN.m
	Max. axial force	+1371.5 kN	-1274.5 kN
A-frame pile 2	Max. shear force	214.1 kN	181.2 kN
	Max. bending moment	1247.0 kN.m	917.5 kN.m
Micropile	Max. axial force	+775.3 kN	+783.3 kN
	Max. shear force	234.8 kN	196.5 kN
	Max. bending moment	248.0 kN.m	174.0 kN.m
-	Global F.S	2.376	2.497

Proposed Designs (New Construction)

Schematic for New Construction 2 (clay layer 17.0 m thick)

Proposed Designs (New Construction)

Schematic for New Construction 2 (clay layer 22.0 m thick)

Proposed Designs (New Construction)

Schematic for New Construction 2 (clay layer 17.0 m thick)

- Detailed monitoring plan measurements:
 - 1. Deformations of the diaphragm wall panels.
 - 2. Excavation-induced ground movements of the adjacent soils.
 - 3. Straining actions in different structural elements (e.g. A-frame piles and micropiles).
 - 4. Variations in the applied lateral earth pressures.
 - 5. Water and piezometric levels.
- Data is to be collected during the ongoing construction activities and throughout the lifetime of the project.

- Detailed monitoring plan Instruments:
 - 1. Inclinometers.
 - 2. Shape accelerometer arrays.
 - 3. Probe extensometers
 - 4. Pressure cells
 - 5. Strain gauges
 - 6. Piezometers.
 - 7. Precision survey monitoring

Inclinometers; Shape accelerometer arrays; Probe extensometers; Pressure cells; Strain gauges; Piezometers; Precision survey monitoring

Instrument	Total number	Comment
Wall inclinometer	10	-
Soil inclinometer	16	-
SAAF	16	-
Extensometer	3	Horizontal or inclined up to 7.5° with the
		horizontal.
Piezometer	13	-
Pressure cell	37	-
Sister bar strain gauge	924	3 groups of 7 A-frame piles.
Vibrating wire strain gauge	40	5 micropile anchors.
Survey points	272	Include survey points on D-Walls,
		inclinometers and 40 groups of A-frame piles.

Summary of the monitoring instruments.

• Detailed monitoring plan sections:

• Detailed monitoring plan sections:

• Detailed monitoring plan sections:

Centrifuge Modelling for the Retaining System

Centrifuge Modelling for the Retaining System

Retaining Existing Soil Stratigraphy

Dimensions in (mm)

Centrifuge Modelling for the Retaining System

Retaining + Soil Improvement

Dimensions in (mm)

Test Instrumentation

1- Linear Variable Differential Transducers (LVDT)

Dimensions in (mm)

Test Instrumentation

2- Linear Potentiometer

<u>3- Camera Monitoring</u>

 High speed video cameras captures the motion of targets installed on the surface of the retaining wall.

Test Instrumentation

4- Strain Gauges

5- Tactile Pressure Sensors

Front Wall 2

Dimensions in (mm)

