WesternWater Centre

RESEARCH THEME

Groundwater

- >\$20M in external funding
- Current HQP: 25 graduate students & PDFs
- 5 state-of-the-art laboratories

FOCUS

- Fate and transport of contaminants
- Novel site characterization techniques
- Innovative remediation technologies
- Waste reduction/conversion to energy

OVERVIEW

- 25 postdocs and graduate students
- >\$20M in external funding
- 15+ industrial partners
- 25+ international academic collaborators
- 5 state-of-the-art laboratories
- Advanced computer modelling capabilities
- Field equipment for characterization/monitoring

Jason Gerhard

Clare Robinson

Chris Power

Fate and Transport of Contaminants

FIELD ANALYSIS: GROUNDWATER, SOIL, SURFACE WATER

- Metals
- Emerging contaminants
- NAPLs

Nestern

Engineering

Nutrients

2. Groundwater Fate and Transport of Contaminants

ADVANCED NUMERICAL MODELING CAPABILITIES

Multi-phase flow

Coupled Hydro-Electric

Reactive transport

Wastewater Groundwater Water Resources Value Recovery

Novel Site Characterization Techniques

GEOPHYSICAL TECHNIQUES

- Electrical resistivity tomography
- Electromagnetic induction
- Induced polarization; ground penetrating radar

Ground penetrating radar

Electromagnetics

Novel Site Characterization Tech

APPLICATIONS OF GEOELECTRICAL IMAGING

- Monitoring of NAPL migration
- Site remediation monitoring
- Mine waste: composition and cover integrity or

Mine Waste Composition

NAPL migration

NAPL Remediation

Waste Cover Defects

Novel Remediation Technologies

- Bioremediation
- Dual-phase recovery
- In situ chemical oxidation
- Electrokinetics
- Nanoparticles
- In situ thermal
- Smouldering destruction (STAR)

2. Groundwater Novel Remediation Technologies

EXAMPLE: FIELD TRIAL OF ELECTROKINETICS TO ACHIEVE BIOREMEDIATION IN CLAY

- Chlorinated solvent contamination in clay
- EK to deliver lactate to stimulate bioremediation
- Extensive analysis of soil and gw including qPCR and metagenomic sequencing

Novel Remediation Technologies

EXAMPLE: NANOPARTICLE TECHNOLOGY

- Several successful field trials
- Destruction of groundwater pollutants in short- and long-term

Iron Nanoparticle

←50 nm→

2. Groundwater Novel Remediation Technologies

EXAMPLE: SMOULDERING DESTRUCTION (STAR) OF CONTAMINATED SOIL

- Novel site treatment
- Highly destructive for organic pollutants
- Developed from concept to full scale *in situ* and *ex situ* applications

Waste Reduction/Conversion to Energy

EXAMPLE: STAR TREATMENT OF ORGANIC WASTES

- Destruction of organic wastes using minimal energy
- WWTP biosolids, pulp and paper waste, faeces, agricultural waste
- Recover excess energy, recover metals and nutrients, treat emissions

