Climate Change Impact Analysis

Patrick Breach M.E.Sc Candidate

pbreach@uwo.ca

Western S Engineering

- July 2, 2014
- Global Climate Models (GCMs)
- Selecting GCMs
- Downscaling GCM Data
- **KNN-CAD** Weather Generator
- **KNN-CADV4** Example

In IPCC AR4 socio-economic driven SRES were used

- In IPCC AR5 representative concentration pathways
- Future GHG concentrations converted to radiative forcing of climate

CSIRO-Mk3.6.0 Duolun -0 0 Weichang Fengning Chengde Res / Qinglong Zunhua \mathbf{O} 0 Qinhuangdao km Leting 50

FIDS

 Multiple Model Ensembles (MME) approach is recommended to encompass uncertainty in model structure and parameterization

- Large number of GCMs available
 - Multiple emissions scenarios (4 RCPs)
 - Multiple realizations for each GCM-Scenario combinations

Methods are needed for model selection

- 1) Selection of GCMs by required climate variables for hydrologic modelling during time of interest (e.g. 2050's, 2090's)
 - 2)GCM reanalysis data is used to compare with historical data

Pdfs generated using bin-size of 0.5°C

Facility for Intelligent Decision Support

• 3) Calculate skill score of each probability density function for each GCM

$$S_{score} = \sum_{1}^{n} \min(Z_m, Z_o)$$

 Cumulative minimum value measures common area between probability density functions

User defined weights can be applied to each bin to provide higher influence to models that can reproduce range

 4) After models have been selected further reduction can take place by graphical methods

Scatter Plot Method

 Selections of models encompossing scenarios likely to produce hydrologic extremes

Percentile Method

• Selection of future GCM-Scenario combinations corresponding to 5th, 25th, 50th, 75th, and 95th, percentile

Facility for Intelligent Decision Support

Develops relationship between large scale
 "predictor" & single site "predictand" variables

Standard Regression Model:

$$\mathbf{y} = \sum_{j=1}^m \beta_j \mathbf{x}_j + \mathbf{u} = \mathbf{X}\beta + \mathbf{u}$$

• Multiple regression, Artificial Neural Networks, Canonical correlation, etc.

Statistical **Regression-**Based Weather Classification Weather Generators

- Most popular technique for statistical downscaling
- Ability to generate synthetic climate data of any length
- Statistically reproduces attributes of climate variables include mean and standard deviation
- Main types are parametric, non-parametric, and semi-parametric

<u>Parametric</u>

Statistical Regression-Based

Weather Classification

Weather Generators

- Markov chains to determine wet or dry day probability
 - Probability distributions are derived for precipitations amounts, temperatures and other variables
- Spatial correlation must be assumed for multisite applications

Semi-Parametric

Statistical

Regression-Based

Weather Classification

Weather Generators

- Empirical / parametric components
- Each model uses a different approach
- Spatial correlations must be assumed for multisite applications
- Examples:
 - Statistical Downscaling Model (SDSM)
 - LARS-WG

Non-Parametric

Regression-Based Weather Classification Weather Generators

Statistical

• Resampling is used to select daily weather

- No underlying statistical assumptions are needed regarding the probability distribution of weather variables
- KNN approach from Young (1994)

- KNN "K" Nearest Neighbor algorithm (Yates, 2003)
- Reshuffles daily climate data for multiple stations
- Potential neighbors are determined within temporal window
- Potential neighbor averages compared to current day averages using Mahalanobis distance
- Closest "K" nearest neighbors selected
- Next days weather from KNNs randomly selected from probability distribution

- KNN-CAD version 1 (Sharif and Burn, 2006)
 - Perturbation component is added
- KNN-CAD version 2 (Prodanovic and Simonovic, 2008)
 - Leap year modification
- KNN-CAD version 3 (Eum and Simonovic, 2008)
 - Principal component analysis for calculation of Mahalanobis distance
- KNN-CAD version 4 (King, McLeod, and Simonovic, 2012)
 - Improved perturbation scheme
 - Block bootstrapping method

KNN algorithm consists of 9 steps

<u>Step 1 –</u> Compute regional means of p variables (x) across all q stations for each day in the historical record

$$\overline{X_{t}} = \left[\overline{x}_{1,t}, \overline{x}_{2,t}, \dots, \overline{x}_{p,t}\right] \quad \forall t = \{1, 2, \dots, T\}$$
where,
$$\overline{x}_{i,t} = \frac{1}{q} \underbrace{\sum_{j=1}^{q} \overline{x}_{i,t}}_{j}^{j} \quad \forall i = \{1, 2, \dots, p\}$$
where,
$$\overline{x}_{i,t} = \frac{1}{q} \underbrace{\sum_{j=1}^{q} \overline{x}_{i,t}}_{j}^{j} \quad \forall i = \{1, 2, \dots, p\}$$

<u>Step 2 –</u> Choose temporal of length "w" and select a subset of potential neighbors "L" days long for "N" years

$$L = N * (w+1) - 1$$

Step 3 – Compute mean of "L" potential neighbors, $\overline{X_l}$ for each day

$$\overline{X}_{l} = \begin{bmatrix} \overline{x}_{1,1} & \cdots & \overline{x}_{1,p} \\ \vdots & \ddots & \vdots \\ \overline{x}_{L,1} & \cdots & \overline{x}_{L,p} \end{bmatrix}$$

<u>Step 4 –</u> Compute covariance matrix C_t for day t with $\overline{X_l}$

$$C_{t} = \begin{bmatrix} var(\overline{x}_{1,1}) & \cdots & cov(\overline{x}_{1,1}, \overline{x}_{1,p}) \\ \vdots & \ddots & \vdots \\ cov(\overline{x}_{p,1}) & \cdots & var(\overline{x}_{p,p}) \end{bmatrix}$$

<u>Step 5 –</u> Random selection of first simulation day from historical record consisting of "p" variables at "q" stations from the "N" years

<u>Step 6</u>

a) Calculate eigenvector (\vec{E}) & eigenvalue (e) from C_t b) Retain \vec{E} with highest e c) Calculate first principal component using \vec{E}

$$\begin{aligned} PC_t &= \overline{X}_t \vec{E} \\ PC_l &= \overline{X}_l \vec{E} \\ \end{aligned} \quad \forall l = \{1, 2, \dots, L\} \end{aligned}$$

d) Calculate Mahalanobis distance

$$d_l = \sqrt{\frac{(PC_t - PC_l)^2}{var(PC)}}$$

<u>Step 7 –</u> Sort the Mahalanobis calculated for each potential neighbor from smallest to largest and retain the "K" nearest neighbors

$$K = \sqrt{L}$$
 Yates et al. (2003)

<u>Step 8 –</u> Use discrete probability distribution weighting closest neighbors the highest for resampling one of the "K" nearest neighbors

$$w_k = \frac{1/k}{\sum_{i=1}^k 1/i}$$
 $\forall k = \{1, 2, ..., K\}$ $p_j = \sum_{i=1}^j w_i$

<u>Step 9</u> – Generate random number, u(0,1), to determine current neighbor from probability distribution

<u>Step 10 –</u> Resample block of data preceding selected day

NN	NN + 1	NN + 2	-	-	-	NN + B
----	--------	--------	---	---	---	--------

<u>Step 11(a)</u> – Perturbation of resampled temperature values

$$y_{i,t+b}^{j} = \lambda_{temp} * x_{i,t+b}^{j} + (1 - \lambda_{temp})Z_{t+b}$$

where,
$$b = 1, 2, ..., B$$

 $Z_{t+b} \sim N(\mu, \sigma)$
 $Z_{t+b} \sim N(x_{i,t+b}^{j}, \sigma_{i,t})$
From KNN

Step 11(b) – Perturbation of resampled precipitation values

$$y_{ppt,t+b}^{j} = \lambda_{ppt} * x_{ppt,t+b}^{j} + (1 - \lambda_{ppt})Z_{t+b}$$

Where,

 $\sigma_{j,t}$

$$Z_{t+b} = e^{Am_{j,t} + Bm_{j,t} * z_t}$$
$$Am_{j,t} = \log(x_{j,t}) - \frac{Bm_{j,t}}{2}$$
$$Bm_{j,t} = \sqrt{\log\left(\frac{\sigma_{j,t}^2}{x_{j,t}} + 1\right)}$$

→ From LNN

<u>Step 12-</u> Repeat process until end of historical record is reached

*Process can be repeated any number of times for longer generated climate records

*Longer records are extremely useful for risk analysis in hydrologic modelling

Temperature

■ Historical ■ GCM

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temperature Change Factor

Precipitation

Historical GCM

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Precipitation Change Factor

*using CGCM3T47 with A1B SRES Scenario for LondonA weather station

User interface developed by Shardong, King and Simonovic (2012)

🛠 KnnCAD Beta, Version 4.0.10.0	
New Close Save As Help Chout Close	Scenario Generation 🞯 4. Simulation 🖋 5. Results 🔹 🕩
Provide the basic information for your problem.	
Description Description Image: Station Names Image: Scenario Names Scenario Names Image: Scenario Names Number of Runs 1 Block Length: 10 Interpolation Factor For: Temperature: 0.9 Historical Data Timespan, From: 1/ 1/1979 Image: Scenario Names Image: Scenario Names	Variables Precipitation Precipitation + Max. and Min. Temperature Precipitation + Mean Temperature Max. and Min. Temperature Mean Temperature Precipitation in mm and Temperature in ^o C
Set output folder (Output files will be stored here) Output Folder C:\Users\Patrick\Desktop\KnnCAD Set Output Folder	

InnCAD Beta, Version 4.0.9.0									×
New 🍐 Open 🔚 Save 🔏 Save As 🤇	🖓 Help 🕕 Abou	t 😢 Close							
_					_				
1. Problem Definition	2. Historica	l Data 🐴	3. Scena	rio Genei	ration 💿	4. Simulation	🥔 .	5. Results	
-									
Provide data for each of the followi	ng stations								
Gelect a station:	Input	data on spread	sheet bellow	v:					
Blythe		_		Blythe				Import From Excel	
Embro		Date	PPT (mm)	T.Max (°C)	T.Min (ºC)			A	
Folden	1	01/01/1979	2.50	0.00	-5.00			Import From CSV	
LondonA	2	02/01/1979	10.00	-5.00	-10.00				
strattord	3	03/01/1979	0.00	-7.50	-11.00				
	4	04/01/1979	0.00	-12.00	-16.00				
	5	05/01/1979	2.00	-14.50	-18.50				
	6	06/01/1979	3.50	-12.00	-17.00				
	7	07/01/1979	2.00	-11.00	-18.50				
	8	08/01/1979	2.50	-12.00	-17.00				
	9	09/01/1979	12.00	-10.00	-15.00				
	10	10/01/1979	2.50	-12.50	-18.00				
	11	11/01/1979	0.00	-12.00	-20.00				
	12	12/01/1979	6.00	-15.00	-19.00				
	13	13/01/1979	9.50	2.00	-20.50				
	14	14/01/1979	12.00	-14.00	-16.50				
	15	15/01/1979	6.50	-10.00	-18.00		-		
	•						Þ.		

Calibration procedure begins with historical data simulation

😵 KnnCAD Beta, Version 4.0.9.0
쒐 New 🍐 Open 🔚 Save 🥁 Save As 🤣 Help 📵 About 😢 Close
 1. Problem Definition 2. Historical Data 3. Scenario Generation 4. Simulation 5. Results Select a scenario and hit 'Run Model' to start simulation. Depending on your model configuration, the simulation process might take a while.
Please select a Scenario: Matorical CGCM3747_A28_2020s CGCM3747_A38_2020s CGCM3747_A38_2020s Calculating Potential Neighbours Stop

KnrCAD Beta, Version 4.0.9.0 New Open Save & Save As Help About Close I. Problem Definition 2. Historical Data 3. Scenario Generation 4. Simulation 5. Results Select scenario and station you wish to analyse Scenario: Historical CockM3747_ALB_2020s CockM3747_ALB_2020s CockM3747_ALB_2020s CockM3747_ALB_2020s CockM3747_ALB_2020s CockM3747_ALB_2020s Station: Historical Compute Statistics Implicit Station: Historical Compute Statistics Implicit Folden LondonA Stratford			
 New Opn Sove Sove As Help About Cose 1. Problem Definition 2. Historical Data 3. Scenario Generation 4. Simulation 5. Results Select scenario and station you wish to analyse Scenario: Station: Biythe Compute Statistcs Folden LondonA Stratford 	😪 KnnCAD Beta, Version 4.0.9.0		
 C 1. Problem Definition [®] 2. Historical Data [®] 3. Scenario Generation [®] 4. Simulation [®] 5. Results [●] [●]	🗄 🐴 New 摿 Open 🔚 Save 🖓 Save As	s 🦚 Help 📵 About 😥 Close	
 Select scenario and station you wish to analyse Scenario: Station: Blythe Compute Statistics Show Graphs and Tables 	1. Problem Definition	🖹 2. Historical Data 🔌 3. Scenario Generation 🐵 4. Simulation 🖋 5. Resu	alts •
Scenario: Station: Hatorical Blythe CGCM3147_A18_2020s Embro CGCM3147_A38_2020s Folden LondonA Stratford	Select scenario and station you	wish to analyse	
	Scenario: Historical CGCM3T47_A1B_2020s CGCM3T47_A2B_2020s CGCM3T47_A3B_2020s	Station: Embro Folden LondonA Stratford	

Results from Scenario: Historical for Station: Blythe

Graphs Coefficient of Determination

Coefficient of Determ	nination
Total Monthly Precipitation	0.725
Mean Daily Precipitation	0.878
SD Daily Precipitation	0.791
95th Percentile Precipitation	0.674
99th Percentile Precipitation	0.72
Mean Wet Spell Length	0.92
Mean Dry Spell Length	0.83
MaxWet Spell Length	0.938
Max Dry Spell Length	0.886
Mean TMAX	0.999
Mean TMIN	0.998
99th Percentile TMAX	0.994
95th Percnetile TMAX	0.995
5th Percentile TMAX	0.999
1st Percentile TMAX	0.996
99th Percentile TMIN	0.988
95th Percentile TMIN	0.999
5th Percentile TMIN	0.999
1st Percneitle TMIN	0.999

Ok

A b

🔆 KnnCAD Beta, Version 4.0.9.0					- 🗆 X
🐴 New 🍐 Open 🔚 Save 🔏 Save A	s 🖓 Help 🧊 About 🔞 Clos	e			
1. Problem Definition Change factors will be applied	2. Historical Data	🔦 3. Scenario Gene	ration @ 4. Simulation	🥩 5. Results	••
	to matoricar input mes.				
Scenario: CGCM3T47_A1B_2020s CGCM3T47_A2B_2020s	Change Factors			4 ▷	
CGCM3T47_A3B_2020s	Station: Blythe Embro Folden LondonA Stratford	Variable: Precipitation (mm) Max. Temperature (ºC) Min. Temperature (ºC)	Change Factors: Month Factor Jan 1.19 Feb 1.10 Mar 1.19 Apr 1.13 May 1.04 Jun 0.99 Jul 0.91 Aug 0.96 Sep 0.94		
			Oct 1.01 Nov 1.12 Dec 1.11		

KNN-CADV4 Applications

1. Integrated Reservoir Management Optimization

Eum (2009)

2. Flood and Drought Risk

Prodanovic and Simonovic (2006a, 2006b), Gaur (2013)

3. IWRM System Dynamics Simulation

Prodanovic (2007)

