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EXECUTIVE SUMMARY  

 

Natural disasters affect regions with different intensity and produce damages that vary in 

space.  Topographical features of the region; location of properties that may be exposed 

to the peril; level of exposure; impact of different mitigation measures; are all variables 

with considerable spatial variability.  A new method for evaluation of disaster impacts 

has been presented in this report that takes into consideration spatial variability of 

variables involved and associated uncertainty.  Flood management has been used to 

illustrate the utility of proposed approach.   

  

Floodplain management is a spatial problem. Representation of flood damage mitigation 

alternatives and objectives in space provides a better insight into the management 

problem and its characteristics.  Protection of a region from floods can be achieved 

through various structural and non-structural measures. Comparison of different measures 

and evaluation of their impacts is based on the multiple criteria.  If they are described 

spatially, decision-making problem can be conceptualized as spatial multi criteria 

decision-making (MCDM).  Tkach and Simonovic (1997) introduced spatial Compromise 

Programming (SPC) technique to account for spatial variability in flood management.  

 

Some of the criteria and preferences of the stakeholders involved with flood management 

are subject to uncertainty that may originate in the data, knowledge of the domain or our 

ability to adequately describe the decision problem. The main characteristic of flood 

management is the existence of objective and subjective uncertainty.  Fuzzy set theory 

has been successfully used to address both, objective and subjective uncertainty.  Bender 

and Simonovic (2000) incorporated vagueness and imprecision as sources of uncertainty 

into multi criteria decision-making in water resources.   

 

In this report a new technique named Spatial Fuzzy Compromise Programming (SFCP) 

has been developed to enhance our ability to address the issues related to uncertainties in 

spatial environment. A general fuzzy compromise programming technique, when made 
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spatially distributed, proved to be a powerful and flexible addition to the list of 

techniques available for decision making where multiple criteria are used to judge 

multiple alternatives. All uncertain variables (subjective and objective) are modeled by 

way of fuzzy sets. In the present study, fuzzy measures have been introduced to spatial 

multi criteria decision-making in the GIS environment in order to account for 

uncertainties.  

 

Through a case study of the Red River floodplain near the City of St. Adolphe in 

Manitoba, Canada, it has been illustrated that the new technique provides measurable 

improvement in flood management.  Final results in the form of maps that shown spatial 

distribution of the impacts of mitigation measures on the region can be of great value to 

insurance industry.  

  

Keywords: Water resources, flood management, disaster mitigation, spatial compromise 

programming, multi-criteria decision making, spatial fuzzy multi objective analysis. 
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INTRODUCTION  

 

“The nature of floods and their impact depend on both natural and human-made 

conditions in the floodplain. Economic development and the installation of flood 

protection measures have political, economic, and social dimensions as well as 

engineering aspects. Hydrologic and hydraulic analysis of floods provides a sound 

technical basis for management decision making that must weigh numerous other 

factors” (Hoggan, 1997). Recent flood management is emphasizing a more integrated 

approach including measures such as source control (watershed/landscape structure 

management), insurance, forecasting, warning and land use planning (Simonovic, 2002; 

Kundzewicz, 2002).  

 

Selecting the best strategy from a number of potential alternatives in water resources 

planning and management is a complicated decision making process (Bose and Bose, 

1995). Compromise programming (Zeleny, 1973), a multi criteria decision making 

(MCDM) technique, is a powerful tool in assisting floodplain management in general. 

Conventionally, most of the planning is done without considering spatial heterogeneity 

and uncertainty involved with such complex processes.  

 

Applications of MCDM techniques to water resources have come a long way since the 

work of Maass et al. (1962) and Cohon and Marks (1973), where the decision problems 

were formulated as linear programming vector optimization problems.  There also exist 

methodologies based on multiattribute utility theory based on the work of Raiffa (1968), 

where explicit trade-offs between attributes are utilized.  Other popular techniques used 

for discrete alternative selection include the Surrogate Worth Trade Off (Haimes 1998), 

ELECTRE (Roy 1971), Analytical Hierarchy Process (Saaty 1980), and Compromise 

Programming (CP).  PROTRADE method (Goicoechea et al. 1982) included for the first 

time the uncertainties into the MCDM. Traditionally, the uncertainty arising from 

vagueness and imprecision  is addressed in MCDM mostly through sensitivity analysis. 

However, only subjective uncertainty can be evaluated by sensitivity analysis, which can 

be inadequate at expressing both the probabilistic and imprecise forms of uncertainty. 
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Typical flood management problem requires selection and implementation of the best 

solution from the set of potential alternatives. Flood management problems, in general, 

may include conflicting quantitative and qualitative criteria and multiple decision-

makers. MCDM techniques help in evaluation and ranking of alternatives based on the 

criteria values associated with each of the alternatives, and preferences of the various 

decision makers. However, the flood management alternatives exhibit spatial variability. 

Geographic Information System (GIS) is a useful tool to assist in water resources 

planning with spatially distributed variables (flood management in this particular study). 

“Specific planning and management tasks for which GIS may be of assistance include 

comparative analysis, monitoring of dynamic processes, evaluation of current conditions, 

detection of changes, forecast of future developments, problem assessment, planning of 

action (e.g., mitigation), identification of regions that meet multiple criteria (e.g., site 

selection), identification and allocation of resources, analysis of policy options and the 

determination of cumulative effects based on spatial location” (Kaden, 1993). Many GIS 

applications in water resources decision making include work of different research 

groups (McKinney and Maidment, 1993; Carver, 1991; Pereira and Duckstein, 1993; 

Banai, 1993; Tim, 1997; and Wolfe, 1997). GIS technology facilitates the decision 

making process based on its analytical capabilities with spatial information. In addition to 

this, many of the GIS systems are equipped with a graphical user interface, which 

increases the decision maker’s comprehension of the spatial information that is involved 

in the problem being addressed. Based on these two potential additions to the decision 

making process, a GIS is often included as a major component in the development of 

Decision Support Systems (DSS) (Simonovic, 1993, 1998; Walsh, 1993; Fürst el. al., 

1993; Leipnik et. al., 1993; Watkins et. al., 1996; and Fedra, 1997). 

 

Conventional MCDM techniques do not consider the spatial variability of the criteria 

values, which are used to evaluate potential alternatives. The criteria values, which they 

use, represent average or total impacts incurred across the entire region being considered. 

Thus in identifying the best solution from a set of potential flood mitigation alternatives 

using conventional MCDM techniques, only the region as a whole is considered. By 
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doing so the localized, and potentially negative, impacts resulting from implementation 

of the various flood protection alternatives are ignored, consequently, the alternative 

identified as the best for an entire region by a conventional MCDM may not be the best 

for all locations within that region. Tkach and Simonovic (1997) addressed this spatial 

variability in the criteria values associated with the various alternatives by combining the 

CP with the GIS technology and called it Spatial Compromise Programming (SCP). SCP 

can be efficiently used to generate, evaluate, and rank a set of potential flood protection 

alternatives. Through the application of the CP technique the best alternative can be 

determined for the entire region. However, with the SCP, rather than determining a single 

value per alternative, a distance metric is calculated for each impacted location for each 

alternative. The best alternative for each location within the region is determined using 

SCP. Though SCP is capable of accounting for the spatial variability factor, it is unable to 

address various uncertainties associated with complex system of multiple alternatives, 

multiple criteria and multiple decision makers. Uncertainties in model assumptions, data, 

or parameter values, also contribute to the complexity in decision making process.     

 

MCDM has been moving from optimization methods to more interactive decision tools 

(Bender and Simonovic, 2000). Some of the areas of current and future development in 

the field have been identified by Dyer et. al. (1992). One of them being “Sensitivity 

analysis and the incorporation of vague or imprecise judgments of preferences and/or 

probabilities in multi-attribute situations and decisions under uncertainty in which states 

are multidimensional.” Traditional techniques for evaluating discrete alternatives such as 

ELECTRE (Benayoun et. al., 1966), AHP (Saaty, 1980), Compromise Programming 

(Zeleny, 1973; Zeleny, 1982), and other do not normally consider uncertainties involved 

in procuring criteria values. Sensitivity analysis can be used to express decision maker 

uncertainty (such as uncertain preferences and ignorance), but this form of sensitivity 

analysis can be inadequate at expressing decision complexity. There have been efforts to 

extend traditional techniques, such as PROTRADE (Goicoechea et. al., 1982), which 

could be described as stochastic compromise programming technique. The problem, 

though, is that not all uncertainties fit the probabilistic classification. The theory of fuzzy 

sets, which is a theory of possibility, is not dissimilar to probability theory. In fact, they 
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can be considered complementary. Fuzzy membership functions have a similar 

appearance to probability distribution functions. However, there are some inherent 

differences. A probability distribution function provides the probability of specific values 

occurring. A fuzzy membership function acknowledges that we may not be completely 

sure what values are being talked about. Statistical precision can be independent of our 

classification of an event. In many cases, there may not be enough data to make 

probabilistic predictions with confidence. The dependence of stochastic applications on 

distribution functions can be restricting and misleading because of the intensity of data 

requirements. The difference between fuzzy and probabilistic functions is not always so 

clear. A fuzzy membership function may be used in place of a probability density 

function, but the same data requirements are still relevant. In general, fuzzy sets provide 

an intuitive, and flexible framework for interactively exploring a problem that is either ill 

defined or has limited available data.  

 

Fuzzy decision making techniques have addressed some uncertainties, such as the 

vagueness and conflict of preferences common in group decision making (Blin, 1974; 

Siskos, 1982; Seo and Sakawa, 1985; Felix, 1994; and others), and at least one effort has 

been made to combine decision problems with both stochastic and fuzzy components 

(Munda et. al., 1995). Application, however, demands some level of intuitiveness for the 

decision makers, and encourages interaction or experimentation such as that found in 

Nishizaki and Seo (1994). Authors such as Leung (1982) and many others have explored 

fuzzy decision making environments. Fuzzy decision making process is not always 

intuitive to all people involved in practical decisions because the decision space may be 

some abstract measure of fuzziness, instead of a tangible measure of alternative 

performance. The alternatives to be evaluated are rarely fuzzy. Their performance is 

fuzzy. In other words, a fuzzy decision making environment may not be as generically 

relevant as a fuzzy evaluation of a decision making problem. The Fuzzy Compromise 

Programming (FCP) technique developed by Bender and Simonovic (2000) transforms a 

distance metric to a fuzzy set by changing all inputs from crisp to fuzzy applying fuzzy 

extension principle. This approach can address various uncertainties that are associated 

with the natural hydrological processes occurring in flood management; data monitoring 
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systems; equipment accuracy; and lack of knowledge.  FCP approach ranks alternatives 

using fuzzy ranking measures designed to capture the effect of risk tolerance differences 

among decision makers.  

 

In flood management time and space play important role, therefore, there are 

uncertainties involved in flood prediction; in evaluation of the inundated area; and in 

estimation of various physical, ecologic, economic and social impacts.  Considering the 

literature available on MCDM techniques, such as, CP, SCP, fuzzy compromise 

programming and GIS, it has been realized that there is a need to develop a methodology 

that combines the two important issues; (i) accounting for spatial variability in decision 

making, and (ii) accounting for uncertainties involved in decision making. A new 

technique combining these two objectives has been developed in this study, which will be 

called herein as Spatial Fuzzy Compromise Programming (SFCP).  Through a case study 

of the Red River Basin, Manitoba, Canada it has been successfully demonstrated that 

SFCP can, using a GIS environment, assist a decision maker in selecting the best flood 

protection alternative, taking into account the spatial variability (using SCP), for each 

location (5 x 5 m grid) in the entire study region as well as accounting for the 

uncertainties (using Fuzzy Compromise Programming) involved in the process.   

 

In the following sections, development of proposed Spatial Fuzzy Compromise 

Programming methodology has been explained. This section starts with the description 

and formulation of the flood management problem under uncertainty with spatially 

variable criteria.  Detailed presentation of the solution methodology follows with the 

emphasis on the use of fuzzy set theory. Section 3 presents a case study of the Red River 

Basin flood protection strategy with the description of existing flood protection system 

and the solution of deterministic and fuzzy problem formulations. Discussion of the 

results has been presented as well. Conclusions derived from this study are discussed in 

Section 4.  
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1. SPATIAL FUZZY MULTI OBJECTIVE ANALYSIS  

 

General formulation of a multi-objective multiple-participant decision problem is based 

on the following basic components: (a) A set of potential alternatives; (b) A set of 

objectives or criteria; (c) A number of decision makers; (d) A preference structure or 

weights; and (e) A set of performance evaluations of alternatives for each objective or 

criteria. 

 

A multi-objective problem is characterized by a p-dimensional vector of objective 

functions. In mathematical terms, this can be formulated as: 

 

1 2( ) [ ( ), ( ),......, ( )]pZ x Z x Z x Z x=            (1) 

subject to 

 

 x X∈                (2) 

 

where X is a feasible region defined as: 

 

{ : , ( ) 0, 0 , }n
i jX x x R g x x i j= ∈ ≤ ≥ ∀           (3) 

 

where  R = set of real numbers; gi(x) = set of constraints; and x = set of decision 

variables. 

 

Every feasible solution to the problem (Eq.(1)), i.e. all x X∈ , implies a value for each 

objective, i.e., Zk(x), k = 1, …p. The p-dimensional objective function maps the feasible 

region in decision space X into the feasible region in objective space Z(x), defined on the 

p-dimensional vector space. 

 

In general, one cannot optimize a vector of objective functions (Haimes and Hall, 1974). 

In order to find an optimal solution, it is required that information about preferences are 
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available. Without this information the objectives are incommensurable and therefore 

incomparable implying that optimum solution could not be achieved since all feasible 

solutions are not ordered (comparable). A complete ordering can be obtained in this case 

only by introducing value judgments into the decision making process. 

 

In the first step of the multi-objective analysis problem, a set of nondominated or 

‘noninferior’ solutions is sought within the feasible region instead of seeking a single 

optimal solution. The nondominated solutions are the conceptual equivalents in multi-

objective problems to a single optimal solution in a single-objective problem. For each of 

the solutions outside the nondominated set, there is a nondominated solution for which all 

objective functions are unchanged or improved and there is at least one, which is strictly 

improved. For a set of feasible solutions X, the set of nondominated solutions, denoted as 

S, is defined as follows: 

 

{ : }S x x X= ∈ , x X′∈ such that ( ) ( )q qZ x Z x′ >
 

for some {1,2,....., }q p∈  and ( )k kZ x Z′ ≥ for all k q≠ }           (4) 

 

Each nondominated solution x S∈  implies values for each of the p objectives Z(x). The 

collection of all the Z(x) for x S∈ yields the nondominated set Z(S). The nondominated 

solution is defined in the objective space, and it is a subset of the feasible region in the 

objective space, i.e. ( ) ( )Z S Z X⊆ . From the definition of S it is obvious that if one 

objective function improves by moving from one nondominated solution to another, then 

one or more of the other objective functions must decrease in value. 

 

Multi-objective programming problems can be continuous or discrete. Continuous 

formulation requires analytical description of the objective function vector. One example 

of the continuous formulation is a linear multi-objective problem where: 

 

1. All the objective functions are linear, that is, for i = 1, …i  

1 1 2 2( ) ...i i i in nf x c x c x c x= + + +               (5) 
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 where the 1ic , 2ic ….., inc  are given constants. 

 

2. All constraints are described by linear inequalities of the form 

1 1 2 2 ...j j jn n ja x a x a x b

≤
+ + + =

≥
              (6) 

  where the 1ja , 2ja …..,  and jb  are given constants 

 

A problem is called discrete if the feasible set X contains only finite number of points. 

For example, if the decision maker can only choose from a finite number of alternatives, 

then X is necessarily finite and the problem is discrete. Consider a problem where m 

alternatives are to be evaluated by n decision makers, who are using p objectives. The 

general conceptual decision matrix for this discrete multi-objective multi-participant 

problem is shown in Table 1. 

 

Table 1: Conceptual decision matrix for a discrete multi-objective multi-participant 
decision problem 

 
 

 O1 … Op 

A1 a11 … a1p 

… … … … 

Am am1 … amp 

DM1 w11 … wp1 

… … … … 

DMn wn … wpn 
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In Table 1, A denotes the alternative, O is the objective and DM is the decision maker. 

The preference of the decision maker k (k = 1 …..n) for the objective j  (j = 1….p) is 

expressed by wjk and aij is the performance evaluation of the alternative i (i = 1…..m) for 

each objective j . The objectives as well as the performance evaluations can either be 

quantitative or qualitative. 

 

The classical outcome of the decision matrix is the ranking of the alternatives. To obtain 

that, a number of steps are necessary like establishing the preference structure, the 

weights and also the performance evaluations. Among the multi-objective methods, some 

perform the ranking, some establish the preference structure, and some methods come up 

with the values inside the matrix. Some methods have the ability to incorporate 

qualitative data into the analysis while other methods are capable of including multiple 

decision makers in the decision making process. 

 

Flood management is a typical example of multiobjective problem, where the objectives 

could be to minimize the damage to human lives and property; to minimize the depth of 

floodwater in flood inundated region; to effectively assess the damages as fast as 

possible; and to minimize the time to reach help to the flood victims. Many flood 

protection alternatives, such as, controlling the flood through floodway gate operations or 

building a dike around any region are spatially varying features. Some of the criteria 

values, such as, floodwater depth and damages are also spatially variable.  There are 

numerous possibilities of uncertainties being involved in the matrix of alternatives and 

criteria values. These uncertainties may arise due to weights assigned to each of the 

criterion or in the criteria values itself.  So the general flood management can be 

addressed by multiobjective analysis. However, spatial variability calls for a modified 

approach. Tkach and Simonovic (1997) introduced the Spatial Compromise 

Programming (SCP) to account for the spatial variability in multiobjective problems. 

Uncertainties can be addressed using probability theory but in this case due to the various 

kinds of uncertainties a new paradigm is necessary. Bender and Simonovic (2000) 

explained how uncertainties can be addressed using their Fuzzy Compromise 
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Programming (FCP) method. An obvious need to link the SCP and FCP can be noted 

here so as to address the spatial variability and account for uncertainties.  

 

With above background a new approach, called herein as Spatial Fuzzy Compromise 

Programming (SFCP), is being proposed here in which Compromise Programming (CP), 

Spatial Compromise Programming (SCP), Fuzzy Compromise Programming (FCP) and 

Geographic Information System (GIS) are the main methodological building blocks. 

Basically, Spatial Fuzzy Multi Objective Analysis is a new MCDM technique, which can 

address spatial variability through the use of GIS environment and account for 

uncertainties through the use of fuzzy set theory. Our aim is to find the best flood 

protection alternative (based on multiple criteria) for each location (5 x 5 m grid) in the 

entire region of interest and present it in the GIS environment.   

 

2.1 Problem Formulation 

 

In this study a set of potential flood protection alternatives and a set of criteria/objectives 

have been considered. The main objective is to carry out MCDM to arrive at the best 

alternative for each location by accounting for uncertainties and spatial variability in the 

various elements of flood management process. The uncertainties are inherent in the 

representation of any natural process. They are also associated with input data; criteria 

values; equipment accuracy; and lack of knowledge. Spatial variability is one of the key 

features in any flood management/protection planning process due to the importance of 

special characteristics of the region on the physical and decision making processes of 

flood management. Spatial Compromise programming (SCP) (Tkach and Simonovic, 

1997), which is an extension of CP, has been chosen as the basic technique to apply 

MCDM to this particular problem. As with CP, in the application of SCP, the distance 

from an ideal point expressed through so-called distance metric is the basis on which 

alternatives are evaluated. However, with the new approach, rather than selecting a single 

alternative for the whole region of interest, a distance metric is calculated for each 

location in the region.   The region of interest encompasses all geographic locations, 
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which are impacted by the combined group of alternatives. In this approach the region is 

represented by a raster feature image of the study area. Therefore, an individual rater cell 

within the feature image represents each location within the region of interest for which a 

distance metric is calculated.  

 

Fuzzy compromise programming (FCP) as developed by (Bender and Simonovic, 2000) 

applied to a general form analogous to the original “crisp” version, allows a family of 

possible scenarios to be reviewed without the aid of sensitivity analysis – while 

maintaining indications of possibility and relevance. Group decision making can also be 

supported through collective opinions, including membership functions designed to 

reflect conflicting judgments. Integration of SCP with FCP can address the desired spatial 

variability with capability to address uncertainties in the flood management process.  The 

usefulness of general fuzzy approach to Compromise Programming comes from the 

incorporation of subjective uncertainty. However, it is not necessary to fuzzify all the 

inputs to compute fuzzified distance metric. Uncertainties associated with the simulation 

of natural hydrologic processes that are being represented and the uncertainties arising 

from the data used along with the accuracy of equipments used to collect the data can 

well be addressed through probabilistic approaches. Lack of knowledge that brings in 

some vagueness, can be address with the help of fuzzy theory. Therefore, some of the 

inputs in the basic multi objective problem matrix (Table 1) can be fuzzy, some can be 

probabilistic, while others can remain deterministic.  

 

Foundation of the proposed new methodology, however, is CP. As described by Zeleny 

(1973), CP is a MCDM technique, which can be used to identify the best compromise 

solution from a number of potential alternatives. The best alternative selected would be 

the one that is closest to the ‘ideal solution’ (Figure 1). The point that provides the 

extreme value for each of the criteria considered in the analysis would be the ‘ideal 

solution’.  

 



 14

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: An illustration of Compromise Programming 

 
 
 
The distance from the ideal solution for each alternative is measured by what is referred 

to as the distance metric. This value, which is calculated for each alternative, is a function 

of the criteria values themselves, the relative importance of the various criteria to the 

decision makers, and the importance of the maximum deviation from the ideal solution 

(Simonovic, 1989). All alternatives are ranked according to their respective distance 

metric values. The alternative with the smallest distance metric is typically selected as the 

‘best compromise solution’. Equation (7) is the formula used to compute the distance 

metric values (Lj) for a set of n criteria and m alternatives. 
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where: jL  is the distance metric; *
if  is the optimal value of the ith criteria; jif ,  is the 

value of the ith criteria for alternative j; wif ,  is the worst value of ith criteria; iw  are 

weights indicating decision maker preferences; p  is a parameter (1 ≤ p ≤ ∞);  i = 1, n 

criteria; and  j  = 1, m alternatives   

 

In Equation (7), each criterion is to be given a level of importance, or weight, provided 

by the decision makers.  The parameter p is used to represent the importance of the 

maximal deviation from the ideal point.  If  p = 1, all deviations are weighted equally; if 

p = 2, the deviations are weighted in proportion to their magnitude.  Typically, as p 

increases, so does the weighting of the deviations.  As Tecle et al. (1998) put it, “varying 

the parameter p from 1 to infinity, allows one to move from minimizing the sum of 

individual regrets (i.e., having a perfect compensation among the objectives) to 

minimizing the maximum regret (i.e., having no compensation among the objectives) in 

the decision making process. The choice of a particular value of this compensation 

parameter p depends on the type of problem and desired solution. In general, the greater 

the conflict between players, the smaller the possible compensation becomes.” 

 

Spatial Compromise Programming (SCP) (Tkach and Simonovic, 1997) was introduced 

to include the spatial variability in the criteria, which is often the case in water resources 

management. For example, in flood control, the impacts produced by flooding are not the 

same for all locations within the flood affected region. Implementation of a particular 

flood protection measure may reduce flood impacts at one location, while providing no 

protection at all for another. Using the principles of GIS, spatial considerations can be 

included into multi criteria decision making. The determination of the best spatial 

location for an alternative according to a predetermined set of criteria has been 

demonstrated in literature (Carver, 1991; Pereira and Duckstein, 1993).  Unlike, CP, 

rather than determining a single value per alternative, a distance metric is calculated for 

each impacted location, for each alternative. In this approach the region is represented by 

a raster feature image of the area of interest. Thus an individual raster cell within the 

feature image represents each location within the region of interest, for which a distance 
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metric is calculated. Criteria values associated with each of the alternatives are contained 

within sets of criteria images, which are georeferenced with the feature images of 

buildings, roads and agricultural fields. Figure 2 illustrates this process graphically.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation (7) will take the form of Equation (8) when the computations are carried out on 

a cell by cell basis.  

 
 

Figure 2: Cell by cell calculation of distance metric values 
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where: jL  is the distance metric; *
if  is the optimal value of the ith criteria; jif ,  is the 

value of the ith criteria for alternative j; wif ,  is the worst value of ith criteria; iw  are 

weights indicating decision maker preferences; p  is a parameter (1 ≤ p ≤ ∞);  i = 1, n  

criteria;  j  = 1, m alternatives; x = 1, a rows in the image; y = 1, b columns in the image; a 

is the number of rows in the image; and b is the number of columns in the image 

 
In Fuzzy Compromise Programming (FCP) approach (Bender and Simonovic, 2000), the 

transformation of a distance metric to a fuzzy set can be accomplished by changing all 

inputs from crisp to fuzzy and applying the fuzzy extension principle. However, it should 

be noted that some of the inputs could remain in deterministic form provided the level of 

confidence about their accuracy is satisfactorily high. In this way a combination of fuzzy 

and deterministic inputs can also be handled by FCP approach. Measurement of distance 

between an ideal solution and the perceived performance of an alternative can no longer 

be given as a single value, because many distances are at least somewhat valid. Choosing 

the shortest distance to the ideal solution is no longer a straight forward ordering of 

distance metrics, because of overlaps and varying degrees of possibilities. The resulting 

fuzzy distance metric (Equation 9) contains a great amount of additional information 

about the consequences of a decision and the effect of subjectivity. Non-fuzzy distance-

based techniques measure the distance from an ideal point, where the ideal alternative 

would result in a distance metric, L : X → {0}. In the Fuzzy Compromise Programming 

approach, the distance is fuzzy, such that it represents all of the possible valid 

evaluations, indicated by the degree of possibility or membership value. Alternatives, 

which tend to be closest to the ideal solution, may be selected. 
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where: jL
~

is the fuzzy distance metric; wif ,
~

 is the fuzzy worst value of ith criteria; jif ,
~

 

is the fuzzy value of the ith criteria for alternative j ; *~
if  is the fuzzy optimal value of the 

ith criteria; p~  is a fuzzified parameter (1 ≤ p ≤ ∞); iw~  are fuzzified weights indicating 

decision maker preferences;  i = 1, n criteria; and  j  = 1, m alternatives 

 

 

Literature is available on the techniques for encoding information in a fuzzy set in order 

to generate input fuzzy sets. Articles on demonstrating decision problems with qualitative 

or subjective criteria are many. Fuzzy sets are able to capture many qualities of relative 

differences in perceived value of criteria among alternatives. Placement of modal values, 

along with curvature and skew of membership functions can allow decision makers to 

retain what they consider degree of possibility for subjective criteria values. As a 

subjective value, criteria weights may be more accurately represented by fuzzy sets 

(Despic and Simonovic, 2000). Another subjective element is generation of these fuzzy 

sets. It may be difficult to get honest opinions about degree of fuzziness from a decision 

maker. It might actually be more straightforward to generate fuzzy sets for weights when 

multiple decision makers are involved. Then, at least, voting methods and other 

techniques are available for producing a composite, collective, opinion, regardless, more 

information can be provided about valid weights from fuzzy sets than from crisp weights.  

 

In Equation (8), p, is likely the most uncertain element of distance metric computation. 

There is no single acceptable value of p for every problem and also, it is not related to 

problem information in any way except by providing parametric control over 

interpretation of distance. Fuzzification of the distance metric exponent, p, can take many 

forms but in a practical way it might be defined by a triangular fuzzy set with a mode of 

2. Similarly, weights wi can be fuzzified to account for indecisiveness of their boundary 
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values, for example, a value of 0.5 could be defined as approximately 0.5. This means 

that fuzzy boundaries of weight values will take care of the uncertainties associated with 

crispness. Expressing possibility values with fuzzy inputs allows experience to play a 

significant role in the expression of input information. The shape of a fuzzy membership 

function expresses the experience or the interpretation of a decision maker.  

 

In the SCP technique the best alternative for each location is determined by comparing 

the values in the distance metric images for each individual raster cell between the 

alternatives. As stated above, in Compromise Programming the alternative with the 

smallest distance metric is typically selected as best. However, for convenience Equation 

(9) has been rewritten in such a way that the better the alternative, the larger the distance 

metric value (Tkach and Simonovic, 1997). Thus Equation (9) can acquire a modified 

form as shown in Equation (10). This equation will produce the same ranking of 

alternatives as the fuzzified distance metric formula shown in Equation (9). 

 
 

p
n

i

p

wii

jiwip
ij

ff

ff
wL

~/1

1

~

,
*

,,~
~~

~~
~~















−

−
= ∑

=
     (10) 

 
 

where: jL
~

is the fuzzy distance metric; wif ,
~

 is the fuzzy worst value of ith criteria; jif ,
~

 

is the fuzzy value of the ith criteria for alternative j ; *~
if  is the fuzzy optimal value of the 

ith criteria; p~  is a fuzzified parameter (1 ≤ p ≤ ∞); iw~  are fuzzified weights indicating 

decision maker preferences;  i = 1, n criteria; and  j  = 1, m alternatives 

 

Spatial Fuzzy Compromise Programming (SFCP) works on the same principle as that of 

CP and SCP. The additional information that goes as input for the computation of 

distance metric is in the form of fuzzified criteria images, fuzzified parameter p and 

fuzzified weights w. This fuzzification has been proposed to account for the vagueness or 

uncertainty in the entire process of decision making. The process of cell by cell 
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fuzzification of each input image can be carried out using appropriate membership 

function, such as, gaussian, triangular-shaped, sigmoidally-shaped or Z-shaped.  

 

Modification of Equation (10) with inclusion of fuzzy inputs and spatial consideration 

will give the distance metric formula for SFCP as shown in Equation (11). 
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where: yxjL ,,
~

is the fuzzy distance metric; yxwif ,,,
~

 is the fuzzy worst value of ith 

criteria; yxjif ,,,
~

 is the fuzzy value of the ith criteria for alternative j ; *
,,

~
yxif  is the fuzzy 

optimal value of the ith criteria; p~  is a fuzzified parameter (1 ≤ p ≤ ∞); iw~  are fuzzified 

weights indicating decision maker preferences;  i = 1, n criteria;  j  = 1, m alternatives; x = 

1, a rows in the image; y = 1, b columns in the image; a is the number of rows in the 

image; and b is the number of columns in the image. 

 

Using the values in the fuzzified distance metric images the best alternative is determined 

for each location. The fuzzified distance metric values for each location in the region of 

interest, as described by the feature image, are compared between the alternatives. The 

alternative having the largest fuzzified distance metric value for each raster cell is 

selected as the best. This cell be cell comparison between the alternatives is undertaken 

for each location in the region of interest. This process is illustrated in mathematical form 

by Equation (12). Based on this comparison, an image identifying the best alternative for 

each location is produced. Each cell within this image is shown with corresponding 

alternative which is best for that particular geographic location. By inspecting this image, 

decision makers are able to identify the alternative providing the greatest benefit for each 

location contained in the feature image.  
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where: yxiL ,,
~

 is the fuzzy distance metric; yxwif ,,,
~

 is the fuzzy worst value of the ith 

criteria; yxjif ,,,
~

 is the fuzzy value of the ith criteria for alternative j ; *
,,

~
yxif  is the fuzzy 

optimal value of the ith criteria; iw~  are fuzzified weights indicating decision maker 

preferences; p~  is a fuzzified parameter (1 ≤ p~≤ ∞);  i = 1, n criteria;  j = 1, m 

alternatives; x = 1, a rows in the image; y = 1, b columns in the image; a is the number of 

rows in the image; and b is the number of columns in the image 

 

2.2 Solution Methodology 

 

In this section, a step-by-step evaluation of the solution process has been described. In 

this study flood protection alternatives have been evaluated and ranked using the 

proposed new techniques of SFCP. Initial data requirements include: 

 

• Digital Elevation Model (DEM) of the region of interest; 

• Separate feature images of buildings, roads, agricultural fields and any other 

features, which might suffer damages in the region of interest;  

• Hydraulic data, including river reach cross section profile, expansion and 

contraction coefficients, Manning’s n; and 

• Flood event data set, which will be the basis of flood protection alternatives’ 

simulation process. 

 

Next step is to consider a set of potential flood protection alternatives that are feasible in 

the region of interest. Further, a set of relevant criteria/objectives needs to be decided 

upon. For example, in case of flood protection planning one of the criteria could be to 
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minimize the depth of floodwater. Minimum damage to property and people is another 

potential criterion.   

 

Having decided upon the criteria, a raster image is prepared for each of the criteria in 

which each raster cell contains the criteria values for all distinct geographic locations. 

This is accomplished using a combination of the flooded feature images, the water 

surface elevations as contained in the image, and the DEM of the region of interest. 

Raster cells in locations which were unaffected by floodwaters retain a value of zero. In 

this way an image containing the criteria values for all flooded locations in the study 

region can be produced for each alternative. 

 

According to SCP technique, separate images showing the best and the worst criteria 

values for each location in the study region, are also necessary.  Dollar value of damages 

to property and people can be estimated using appropriate relationships. Section 3 

describes the procedure for the Red River Bain case study.  

 

Criteria values associated with each of the alternatives are contained within sets of 

criteria images, which are georeferenced with the feature images. Therefore the total 

number of criteria images equals the product of the number of criteria and the number of 

alternatives. Each raster cell in a criteria image contains the criteria value for that 

geographic location associated with a particular alternative. If the criteria is spatially 

variable then each affected cell, or location, within the image has a different value. If the 

alternative impacts all locations within the region of interest equally, all impacted cells 

contain the same criteria value. Using GIS the spatial distribution of the criteria values 

are captured.  

 

The best and the worst criteria values are also required for computation of the distance 

metrics. Once again, rather than having just a single value for each criteria, the best and 

worst criteria values are determined for each location, or raster cell, in the feature image. 

This way each criterion has a best and worst value image. The criteria values contained in 

the images, to be used for computation of the distance metrics, may be the actual or 
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absolute minimum or absolute maximum. Choice of this is dependent on the criteria 

themselves and the opinion of the decision makers. If it is the actual extreme values that 

are desired, these may be determined by comparing the values of the individual criteria 

for each location, between the alternatives. The best and worst value for each location can 

be extracted and placed into separate images using GIS commands. By using actual 

values, if the criteria values are spatially variable so too will be the best and the worst 

criteria value images. If the absolute maximum and minimum criteria values are required, 

new images georeferenced to the feature image are produced, whose initial value is that 

of the best or worst criteria value.  

 

Based on the criteria images, and the decision maker’s preferences, a distance metric is 

produced for each alternative. Contained in the distance metric images are distance 

metric values for each impacted raster cell in the region of interest. As illustrated in 

Figure 3, the fuzzified distance metric values within the images are calculated by 

comparing impacts for each location on a cell by cell basis between all alternatives and 

applying the decision makers’ preferences, which are in fuzzy form as well. All necessary 

computations are performed using GIS commands. Locations, or raster cells, in the study 

area for which there is no criteria value, or in other words, no impacts, are assigned a 

distance metric value of zero. Fuzzified distance metrics are then defuzzified for ranking 

purpose. Spatially variable ranking of flood protection alternatives is carried out to come 

up with the final picture of preference of each alternative for each location in the region 

of interest.  
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Figure 3: SFCP procedure for ranking of flood protection alternatives. 
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3. IMPLEMENTATION OF SFCP TO FLOOD DECISION MAKING – RED 

RIVER CASE STUDY  

 

A floodplain analysis of the Red River Valley, has been selected to demonstrate the 

capabilities of the proposed Spatial Fuzzy Compromise Programming (SFCP) technique 

for Multi Objective Decision Analysis. This area is located in the south-central portion of 

the province of Manitoba, Canada. It consists of low- lying flat prairies predominantly 

used for agricultural purposes. The main population center in this area is the City of 

Winnipeg, which is located in the downstream portion of the valley, at the confluence of 

the Red River and Assiniboine River. Other communities of significant size further 

upstream in the Red River Valley include the towns of St. Adolphe, St. Agathe, Morris, 

and Emerson.  

 

The Red River Valley, which borders North Dakota and Minnesota in the US and flows 

north toward Lake Winnipeg in Manitoba, Canada, is very prone to flooding and has 

historically (1826, 1950, 1979, 1997) incurred extensive damages to both urban and 

agricultural areas from floodwaters. The major floods are typically seasonal in nature, 

and are the result of combined spring snowmelt and rainfall runoff along both the Red 

and Assiniboine Rivers (Krenz and Leitch, 1993). The largest recorded historic flooding 

event for this region occurred in 1826. More than 2,331 square kilometer of land were 

inundated in this flood. The 1950 flooding event, referred to as the “Winnipeg flood”, 

was one of the largest natural disasters in Canadian history (Rannie, 1980). Water levels 

in the Red River rose 9.2 m above datum within the City of Winnipeg (Bumsted, 1993). 

In this flood roughly 1,658 square kilometer of cropland were submerged, approximately 

10,500 homes were flooded, and 100,000 people had to be evacuated. Roughly 30 million 

dollars was paid out in flood damages (United States Geological Survey, 1952). However 

the true cost of the flood may have exceeded 100 million dollars. During this flood, 

communities located upstream of the City of Winnipeg were completely submerged. 

Also, significant portions of the City of Winnipeg were extensively flooded. The 1997 

flood was called the “flood of the century” due its severe nature (Figure 4).  
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Figure 4: Red River flooding in 1997  

              (Source: http://www.geo.mtu.edu/department/classes/ge404/mlbroder/) 
 
 
The Red River reached its peak in Winnipeg early May 4, 1997 causing the worst 

flooding the region has seen since 1852. The peak discharge near the City of Winnipeg 

reached 73,152 m3/sec. Flows in downtown Winnipeg were affected by the Red River 



 27

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: 1997 flooding in Red River (Source: Manitoba Centre for Remote Sensing 
website)  

 
 
Floodway and Assiniboine River flood control works. Some 2,000 square kilometer of 

Red River Valley were under water. The flood crest from the Red River emptied into 
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Lake Winnipeg May 8, 1997 ending the worst flooding in the Red River Valley ever on 

record. Figure 5 shows the entire area covered with 1997 flood in blue. 

 

For this particular study, community of St. Adolphe has been taken into consideration. A 

schematic diagram of the entire Red River Valley near and around the City of Winnipeg 

is shown in Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Flood control systems for the City of Winnipeg and surrounding area (Source: 
Tkach and Simonovic, 1997). 

 
 
 

3.1 Existing Flood Protection  

 

To alleviate the damages produced by flooding in the Red River Valley a number of 

structural and non-structural flood protection measures were implemented. Some of these 

measures (Figure 6) include (i) dikes along both the Red and Assiniboine Rivers; (ii) 
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flood pumping stations within the City of Winnipeg; (iii) Shellmouth Reservoir; (iv) 

Portage diversion; and (v) Red River Floodway. For the purpose of developing the 

methodology for proposed Spatial Fuzzy Compromise Programming (SFCP), flood 

protection measures for the community of St. Adolphe has been considered. Thus two of 

the five flood protection measures are thought to be appropriate for this study. 

3.1.1 Dikes 

 

The dikes were constructed strategically in order to provide protection to those areas with 

a high risk of incurring heavy damages. Along the Red River (outside of the City of 

Winnipeg), all larger communities (Emerson, Letellier, Dominion City, St. Jean Baptiste, 

Morris, Rosenort, Brunkild, and St. Adolphe) are surrounded by ring dikes composed of 

both earthen material and sheet pilling. All the dikes are being constructed such that they 

would be broad enough to permit the addition of smaller temporary dikes in the even of a 

larger flood. The protection level provided by the dikes is equal to the water elevation, 

which occurred during the 1950 flood (Rannie, 1980). 

3.1.2 Red River Floodway 

 

The Red River Floodway, Manitoba’s largest flood protection project, was completed in 

1968. The floodway is a 48.28 km long channel, with a flow capacity of 54,864 m3/sec, 

which diverts floodwaters around the east side of the City of Winnipeg and then 

reconnects with the Red River near the town of Lockport. The entrance to the floodway is 

on the south side of the City, near the community of St. Adolphe (Figure 6). The flow of 

water within the Red River is unaffected by the floodway until the discharge reaches 

27,432 m3/sec. At this flow the water surface reaches sufficient elevation to permit flow 

into the floodway. The flow of water into the floodway channel is controlled by a gate 

structure located downstream of the floodway entrance. The gates, which are normally 

flush with the bottom of the river, can be raised to produce a backwater effect, which 

forces water into the floodway channel. Water is prevented from passing around the 

control structure and floodway inlet, into the City, by dikes, which extend 43.45 km on 

either side of the river and floodway entrance. The higher the gates are raised, the greater 
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the backwater and thus the more water is forced into the floodway. By producing a 

backwater with the gates, the water levels at the upstream communities are increased. 

The operations policy of the floodway is designed such that under normal conditions the 

backwater does not alter the upstream water levels in comparison to their natural levels 

before construction of the floodway. However, in the case of a declared state of 

emergency, in order to save the downstream City of Winnipeg, flooding of the upstream 

communities is required (Manitoba Department of Natural Resources, 1984). 

 

3.2 Flood Protection Alternatives 

 

Three flood protection alternatives that are considered in this study are as follows: 

 

1. Build a dike around the community in the region of interest that needs to be 

protected. This dike has been simulated only at the right bank of the river to 

protect the community of St. Adolphe; 

 

2. Alteration of controlled floodway operation so as to let more floodwater flow 

through the floodway in order to protect the larger city downstream. This is 

achieved by raising the floodway gate height in such a way that the water surface 

elevation at the floodway entrance is increased by 1 meter above the normal level. 

This alternative will be referred to herein as Floodway 1; and 

 

3. Alteration of controlled floodway operation so as to let less floodwater flow 

through the floodway in order to protect a community upstream. This is achieved 

by lowering the floodway gate height in such a way that the water surface 

elevation at the floodway entrance is decreased by 1 meter below the normal 

level. This alternative will be referred to herein as Floodway 2. 
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3.3 Data Requirement 

3.3.1 GIS data 

 

The floodplain analysis of the Red River Valley is selected as a case study in order to 

demonstrate the benefits of the new SFCP technique for addressing the conflict between 

upstream and downstream communities. The study focus is a 2.015 x 1.720 km region 

encompassing the community of St. Adolphe along the Red River. As St. Adolphe is the 

closest community upstream from the floodway inlet and gate structure, it is the one 

which is most heavily influenced by the floodway operation. In normal operational 

process of the floodway, the backwater that it produces extends many kilometers 

upstream beyond St. Adolphe. As a result its operation is frequently responsible for 

heavy damages to the community and surrounding areas. For this reason, the largest 

conflict of the region is between St. Adolphe and City of Winnipeg. Figure 7 shows the 

DEM of the study region, which is part of the basic data set for implementation of the 

proposed SFCP. This 5-meter resolution DEM was acquired from LIDAR (LIght 

Detection And Ranging) remote sensing data. Appendix E gives more details on the 

actual data files used for this case study. 

 

 

Feature image data sets were acquired for the purpose of damage assessment due to 

flooding. In Figure 8, buildings in St. Adolphe are visible in yellow, roads can be seen as 

the straight lines around the buildings and also across the river and the agricultural fields 

are illustrated (polynomials) in shades of yellow. Red River is shown in purple. Please 

note that the legend on the right side denotes the elevation of the features in the region.  
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Figure 7: DEM of study region of St. Adolphe along the Red River. 
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Figure 8: Feature image comprising of buildings (clusters in yellow), roads (lines) and 
agricultural fields (yellow polynomials) in St. Adolphe region 

 
 

3.3.2 Hydraulic Data 

 

The next step is to acquire hydraulic data of the Red River in the region of interest, which 

is needed for HEC-RAS hydraulic simulations. Using HEC-RAS hydraulic model the 

simulation of all three alternatives is performed. The U.S. Army Corps of Engineer’s 

River Analysis System (HEC-RAS) is a software capable of one-dimensional water 
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surface profile calculations for steady gradually varied flow in natural or constructed 

channels (Hydrologic Engineering Center, 2001). It is an integrated system of software, 

designed for interactive use in a multi-tasking, multi-user network environment. The 

basic computational procedure is based on the solution of the one-dimensional energy 

equation. Energy losses are evaluated by friction (Manning’s equation) and 

contraction/expansion (coefficient multiplied by the change in velocity head). The 

momentum equation is utilized in situations where the water surface profile is rapidly 

varied.    

 

Water surface profiles are computed from one cross section to the next by solving the 

Energy equation with an interactive procedure called the standard step method. The 

Energy equation (13) is written as follows;  
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where: 21  ,YY   = depth of water at cross section; 21  , ZZ = elevation of the main channel 

inverts; 21,VV   =  average velocities (total discharge/total flow area); 21,αα  =  velocity 

weighting coefficients; eh  =  energy head loss; and g =  gravitational acceleration 

 

A diagram showing the terms of the energy equation is shown in Figure 9. 

The energy head loss (h) between two cross sections is comprised of friction losses and 

contraction or expansion losses. The equation for the energy head loss is as follows: 
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where: L = discharge weighted reach length; fS  = representative friction slope between 

two sections; and C  = expansion or contraction loss coefficient 
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Figure 9: Representation of terms in the Energy equation (Source: Hydrologic 
Engineering Center, 2001) 

 
 
 
 
The distance weighted reach length, L, is calculated as: 
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where:  robchlob LLL ,,  =  cross section reach lengths specified for flow in the left 

overbank, main channel, and right overbank, respectively; and  

robchlob QQQ ,,  =   arithmetic average of the flows between sections for the left overbank, 

main channel, and right overbank, respectively. 

 

The determination of total conveyance and the velocity coefficient for a cross section 

requires that flow be subdivided into units for which the velocity is uniformly distributed. 

The approach used in HEC-RAS is to subdivide flow in the overbank areas using the 

g

V

2

2
22α

Y2 

Z2 

Z1 

Y1 

g

V

2

2
11α

 

DATUM 

Channel bottom 

Water surface 

Energy grade line 

2 1

he 



 36

input cross section n-value break points (locations where n-values change) as the basis 

for subdivision (Figure 10). Conveyance is calculated within each subdivision from the 

following form of Manning’s equation: 

 
  

 2/1
fKSQ =          (16) 

 

 3/2486.1
AR

n
K =         (17) 

 
where: K = conveyance for subdivision; n = Manning’s roughness coefficient for 

subdivision; A = flow area for subdivision; and R = hydraulic radius for subdivision 

(area/wetted perimeter). 

 

The program sums up all the incremental conveyances in the overbanks to obtain a 

conveyance for the left overbank and the right overbank. The main channel conveyance is 

normally computed as a single conveyance element. The total conveyance for the cross 

section is obtained by summing the three subdivision conveyances (left, channel, and 

right). 

 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: HEC-RAS default conveyance subdivision method (Source: Hydrologic 
Engineering Center, 2001) 
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Simulation of flood flows with simulated flood protection alternatives is carried out using 

HEC-RAS dike/levees options. In HEC-RAS user can also define different floodway gate 

types.  

 

HEC-RAS data files for St. Adolphe region (river cross section profile; river flows and 

coefficients, such as, Manning’s n; contraction and expansion coefficients), which had 

been calibrated for 1997 Red River flood event, were obtained from Manitoba 

Department of Natural Resources. The modified water surface elevation in the study 

region has been calculated using HEC-RAS program and the three flood protection 

alternatives. Details of HEC-RAS simulation for the case study are given in Appendix B. 

The results of these simulations are listed in Table 2. 

 
 

Table 2: HEC-RAS simulations for three different alternatives. 

 
Alternative Total discharge at 

floodway entry 
point (m3/sec) 

Water surface 
elevation (m) 

 
Dike 3650 232.89 

Floodway 1 4730 233.83 

Floodway 2 2900 231.71 

 

 

3.4 Criteria to Evaluate Flood Protection Alternatives 

 

Two criteria that exhibit a spatial variability are selected for evaluating the alternatives: 

(a) water depth; and (b) flood damage. The computational procedures necessary to 

produce the raster criteria images involve the use of a GIS software and data on damage 

curves for buildings, agriculture and roads. 
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The first criterion used in the evaluation of the alternatives is the floodwater depth for the 

study region. An image is prepared in which each raster cell contained the water depth for 

all distinct geographic locations. This has been accomplished using a combination of the 

flooded feature images, the water surface elevations as contained in the image, and the 

DEM of the region of interest. For all flooded areas, as indicated by the flooded feature 

image, the ground surface elevations in the DEM are subtracted from the simulated water 

surface elevation. Raster cells in locations which were unaffected by floodwaters retained 

a value of zero. In this way an image containing the water depths for all flooded locations 

in the study region is produced for each alternative. 

 

According to SCP technique, separate images showing the best and the worst criteria 

values for each location the study region, are also required. For the floodwater depth 

criteria, the absolute minimum water depth has been considered the best criteria value. 

Actual maximum floodwater depths are used to represent the worst criteria values. The 

second criterion used in the evaluation of the alternatives is the dollar value of damage to 

flooded structure within the region of interest. For the very reason of simplicity in 

demonstrating the new proposed technique of SFCP, only three categories of damages 

have been considered in this study.  KGS Group (2000) recommendations, which are 

based on 1997 flood event, are implemented to arrive at the dollar value damages 

associated with each of the three categories, namely, damage to buildings, damage to 

roads and damage to agricultural fields. KGS Group (2000) data are used to arrive at the 

depth-damage relationship to evaluate building damages as given in Equation (18) 

 

53865947028334487376879 23 ++−= xxxy       (18)  

 

where: y is dollar value of damage to buildings; and x is floodwater depth. 

 

 

Damage to roads has been considered (KGS Group, 2000) as a relationship between 

dollar value of damage and total length of submerged roads as given in Equation (19). 
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 30000025.261889.18 2 ++= LLrd          (19) 

  

where: rd is dollar value of damage to roads; and L is total length of flooded roads. 

 

Agricultural damage assessment depends on time of the year and the type of crop in the 

region of interest. Though, spatial variability in crop type would be there in the study 

region, accurate account of such raster data image could not be found. Therefore, only 

one crop, namely, R.S. Wheat, is assumed to be in the agricultural fields at the time of 

flooding. Using a relationship described in Equation (20), which is recommended by 

KGS Group (2000), dollar value of agricultural damage is assessed. 

 

[ ]∑ −= priceAcpyieldad **)(*)1(          (20)  

 

where: ad is dollar value of agricultural damage;  yield is expected yield (fraction of 

optimum) as a function of seed date; CP is crop percentage of a typical distribution (cp 

=1 in this case); A is area of cropland (arces); and price is three year average price of 

crop ($/bushel) 

3.5 Solution of the Deterministic Problem Formulation 

  

Deterministic approach to the problem of MCDM using SCP is the first step towards 

development of fuzzy approach. The deterministic solution is necessary first so that a 

comparison between the deterministic and fuzzy formulations could be made. 

 

Using SCP, each of the three flood protection alternatives is evaluated for each location 

in the region of interest. Weights indicating the relative decision maker preferences 

towards the criteria and the importance of their maximum deviation from the ideal 

solution (accounted for by variable p in Equation (8)) are necessary input for SCP. In this 

case study, a single value of p=2 is used in the evaluation of all alternatives. Selection of 

this value is based on the results produced by Simonovic (1989), wherein, it is 
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determined that a selection of p=2 can be used as a reasonable approximation of the best 

compromise alternative from a set of potential solution.  

 

Another set of weights describes the decision maker’s preference towards the two 

criteria. These weights are symbolized as wi in Equation (8). In order to represent the 

potential different opinions of the various groups of interested decision makers in the 

case study, three different sets of weights are being selected and are shown in Table 3. 

 
 

Table 3: Weights wi indicating decision-maker preferences 

 
 

Decision-Maker’s Preferences (wi) 
 

Criteria 
 

Weight Set # 1 
 

Weight Set # 2 Weight Set # 3 

Flood water depth 0.5 0.1 0.9 

Damages 0.5 0.9 0.1 
 
 
The first weight set is selected to give equal level of importance to both of the criteria. 

The other two weight sets were chosen to represent the difference (to the order of 

extreme nature) in opinion and interests between various decision makers. A step by step 

procedure along with the actual file names used in this work is given in Appendix C. 

 

Based on the criteria images, and the decision maker’s preferences, a distance metric is 

produced for each alternative. Distance metric values for alternatives ‘Dike’, Floodway 

1’ and ‘Floodway 2’ for weight set # 1 are shown in Figures 11 to 13 respectively and 

Figure 14 shows the ranking of the three alternatives. The three alternatives’ distance 

metric images for weight set # 2 are given in Figures 15 to 17, and Figure 18 illustrates 

the ranking for the three alternatives for weight set # 2. Figures 19 to 21 are distance 

metrics for ‘Dike’, ‘Floodway 1’ and ‘Floodway 2’ for weight set # 3. Ranking of 

alternatives for weight set # 3 is given in Figure 22.    
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Figure 11: Distance metric image for alternative ‘Dike’ using SCP approach for weight 
set # 1 
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Figure 12: Distance metric image for alternative ‘Floodway 1’ using SCP approach for 
weight set # 1 
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Figure 13: Distance metric image for alternative ‘Floodway 2’ using SCP approach for 
weight set # 1 
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Figure 14: Spatially distributed ranking of three alternatives using SCP approach for 
weight set # 1.
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Figure 15: Distance metric image for alternative ‘Dike’ using SCP approach for weight 
set # 2 
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Figure 16: Distance metric image for alternative ‘Floodway 1’ using SCP approach for 
weight set # 2 
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Figure 17: Distance metric image for alternative ‘Floodway 2’ using SCP approach for 
weight set # 2 
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Figure 18: Spatially distributed ranking of three alternatives for weight set#2 using SCP 
approach.
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Figure 19: Distance metric image for alternative ‘Dike’ using SCP approach for weight 
set # 3 
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Figure 20: Distance metric image for alternative ‘Floodway 1’ using SCP approach for 
weight set # 3 
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Figure 21: Distance metric image for alternative ‘Floodway 2’ using SCP approach for 
weight set # 3. 
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Figure 22: Spatially distributed ranking of three alternatives for weight set # 3 using SCP 
approach. 
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3.6 Solution of the Fuzzy Formulation 

 

3.6.1 Fuzzy theory 

 

To account for the uncertainties involved in the process of multi criteria decision making 

using SCP for flood protection, fuzzy theory has been employed in this study. Basic 

principles of fuzzy theory are given in Appendix A.   By fuzzifying the criteria image 

inputs the vagueness or uncertainties associated with stakeholders preferences, parameter 

p, and criteria values can be addressed in an efficient and accurate manner. Fuzzification 

of criteria images is performed using MathWorks’ (www.mathworks.com) Fuzzy Logic 

Toolbox in MATLAB (MATLAB, 2000) environment. Selection of suitable membership 

function is based on the nature of the criteria values (Despic and Simonovic, 2000). In 

this particular case two membership functions are found to be appropriate and fitting, 

namely, Triangular membership function (T-MF), which is illustrated in Figure 23, and 

Z-shaped membership function (Z -MF) as shown in Figure 24.  

 

The principle behind triangular membership function is as follows: triangular curve is a 

function of a vector, x, and depends on three scalar parameters a, b, and c, as given by 
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The parameters a and b locate the “feet” of the triangle and the parameter c locates the 

peak as shown in Figure 23. Choice of triangular membership has been made due to its 

characteristic that this function expands a crisp value on both side of the crisp value to 

convert the crisp value into a range format. For example, a crisp value of ‘4’ can be 
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converted to a range of ‘3.5 to 4.5’ while keeping the value ‘4’ as peak value. This is 

fairly convenient way of fuzzifying any number.  

 

Among the other membership functions there are the Gaussian curve membership 

function (MF); the Bell-shaped MF; the ∏-shaped MF; the product of two Sigmoidally-

shaped MF; and the Trapezoidal-shaped MF. However, these MFs are not very much 

different from triangular membership function in terms of impacts produced by the 

application of these membership functions.  

 

The Z-shaped function is basically a spline-based function of x. The parameters a and b 

(a < b) locate the extremes of the sloped of the curves (Figure 24). Z-shaped membership 

function is defined by: 
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Z-MF takes any crisp value x and expands it according to the shape of membership 

function, which is defined by parameters a and b. The fuzzified value is always in the 

form of a decreasing function (maintaining the Z-shape) between one and zero.  For this 

particular application in this study, Z-shaped MF is appropriate because of its shape, 

which varies from highest value of MF (one) to lowest value of MF (zero). This shape is 

suitable to both the criteria considered in this study, namely, flood depth and damage 

because when flood depth is minimum (zero on x-axis) then the degree of membership is 

highest (one on y-axix) and vice-versa. Similarly, minimum damage provides highest 
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degree of membership, which suits to the particular objective of minimizing the damages 

in this research. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Defuzzification of the fuzzified distance metric is necessary to extract a crisp value that 

best represents a fuzzy set. In this study defuzzification has been carried out on a cell by 

cell basis to get the defuzzified value out of fuzzified distance metric values for the entire 

region of interest. Defuzzification is also a required step for carrying out the ranking of 

alternatives. Several defuzzification strategies are available in the literature; therefore, 

selection of suitable method should be made according to the argument type. The variable 

type can be one of the following: 

 

• Centroid of area method; 

• Bisector of area method; 

• Mean of maximum method; 

• Smallest of maximum method; and  

• Largest of maximum method. 

 

Figure 23: Triangular membership function Figure 24: Z-shaped membership  

                function 
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In this study, method of Overall Existence Ranking Index (OERI) (Chang and Lee, 

1994), which is based on ‘centroid of area method’, has been applied for defuzzification 

of fuzzified distance metrics. The choice of this method is based on a study done by 

Prodanovic and Simonovic (2001), which concluded that OERI method is advantageous 

over the other methods. MATLAB routine is written to carry out these computations. 

Equation (22) corresponds to their ranking index. 

 

 [ ]∫ −− +=
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1
1 )()()()()()( ααµαχαµαχαω djOERI jRjL   (22) 

 
where:  j  stands for alternative j ; α represents the degree of membership; )(1 αχ and 

)(2 αχ  are functions for subjective weightings; )(αω is a parameter to specify a 

weighting scheme for particular levels of membership; )(1 αµ −
jL  represents the inverse of 

the left part; and )(1 αµ −
jR  is the inverse of the right part of the membership function.   

 

With reference to the Equation (22), it should be noted that )(1 αχ and )(2 αχ indicate 

neutral, optimistic and pessimistic preferences of the decision maker, with the restriction 

that 1)()( 21 =+ αχαχ . Also, )(αω , which can specify different weighs for different 

degree of memberships. In this research it has been taken as one because all degrees of 

membership are weighed equally. 

 

Linear and non- linear functions for the subjective type weighting are possible, thus 

giving the user more control in the ranking.  For 1χ  values greater than 0.5, the left side 

of the membership function is weighted more than the right side, which in turn makes the 

decision maker more optimistic.  If the right side is weighted more, the decision maker is 

considered more of a pessimist.  This is because a pessimist prefers larger distance metric 

values, which means that he/she prefers a solution that is further away from the ideal 

solution.  In summary, the risk preferences are: if 5.01 <χ , the user is a pessimist (risk 

averse); if 5.01 =χ , the user is neutral; and if 5.01 >χ , the user is an optimist (risk 

taker). 
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Simply stated, Chang and Lee’s (1994) Overall Existence Ranking Index is a sum of the 

weighted areas between the membership axis and the left and right inverses of a fuzzy 

number (Prodanovic and Simonovic, 2002).   

  

Defuzzified distance metric images need to be ranked to arrive at the preferred flood 

protection alternative on a cell by cell basis. Using GIS software’s multi decision making 

module, ranking process has been completed by providing the defuzzified distance metric 

images of all the flood protection alternatives and each input images’ threshold value. 

Finally, the spatially distributed ranked alternatives are displayed in a separate image 

showing alternative preferences in different colors for each location.  

 

Proposed SFCP is implemented to all the three alternatives for three weight sets (Table 

2). According to Equation (12), fuzzified images of the best scenario, the worst scenario 

and the actual criteria are obtained using (i) Triangular membership function (T-MF), and 

(ii) Z-shaped membership function (Z-MF). MATLAB routines are developed to carry 

out the fuzzification of input criteria images as well as the fuzzified distance metrics 

calculation for each of the alternatives. Both triangular and Z-shaped membership 

functions are applied to same set of input criteria images for the purpose of comparison.  

The resulting images of the fuzzified distance metric are illustrated in the following sub-

sections. MATLAB procedure along with the routines developed is given in Appendix D.  

 

3.6.2 Triangular membership function 

 

The new developed technique of Spatial Fuzzy Compromise Programming (SFCP) using 

triangular membership function (T-MF) is implemented and distance metric images are 

obtained for all the three sets of weights (Table 2). Ranking of the alternatives has also 

been arrived at and shown in the figures that follow. Distance metric values for 

alternatives ‘Dike’, Floodway 1’ and ‘Floodway 2’ and weight set # 1 are shown in 

Figures 25 - 27 respectively and Figure 28 shows the ranking of the three alternatives. 
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The three alternatives’ distance metric images for weight set # 2 are given in Figures 29 - 

31, and Figure 32 illustrates the ranking for the three alternatives for weight set # 2. 

Figures 33 – 35 are distance metrics for ‘Dike’, ‘Floodway 1’ and ‘Floodway 2’ for 

weight set # 3. Ranking of alternatives for weight set # 3 is given in Figure 36.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25: Distance metric image for alternative ‘Dike’ using SFCP (T-MF) approach for 
weight set # 1. 
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Figure 26: Distance metric image for alternative ‘Floodway 1’ using SFCP (T-MF) 
approach for weight set # 1. 
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Figure 27: Distance metric image for alternative ‘Floodway 2’ using SFCP (T-MF) 
approach for weight set # 1. 
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Figure 28: Spatially distributed ranking of three alternatives for weight set # 1 using 
SFCP (T-MF) approach.
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Figure 29: Distance metric image for alternative ‘Dike’ using SFCP (T-MF) approach for 
weight set # 2. 
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Figure 30: Distance metric image for alternative ‘Floodway 1’ using SFCP (T-MF) 
approach for weight set # 2. 
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Figure 31: Distance metric image for alternative ‘Floodway 2’ using SFCP (T-MF) 
approach for weight set # 2. 
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Figure 32: Spatially distributed ranking of three alternatives for weight set # 2 using 
SFCP (T-MF) approach. 
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Figure 33: Distance metric image for alternative ‘Dike’ using SFCP (T-MF) approach for 
weight set # 3. 
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Figure 34: Distance metric image for alternative ‘Floodway 1’ using SFCP (T-MF) 
approach for weight set # 3. 



 68

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35: Distance metric image for alternative ‘Floodway 2’ using SFCP (T-MF) 
approach for weight set # 3. 
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Figure 36: Spatially distributed ranking of three alternatives for weight set # 3 using 
SFCP (T-MF) approach. 
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3.6.3 Z-shaped membership function 

 

From the implementation of new proposed MCDM technique of Spatial Fuzzy 

Compromise Programming (SFCP) using Z-shaped membership function (Z-MF), the 

distance metric images shown in Figures 37 to 48 for all the three sets of weights are 

obtained for all the three sets of weights (Table 2). Ranking of the alternatives has also 

been arrived at and shown in the figures that follow. Distance metric values for 

alternatives ‘Dike’, Floodway 1’ and ‘Floodway 2’ and weight set # 1 are shown in 

Figures 37 - 39 respectively and Figure 40 shows the ranking of the three alternatives. 

The three alternatives’ distance metric images for weight set # 2 are given in Figures 41 - 

43, and Figure 44 illustrates the ranking for the three alternatives for weight set # 2. 

Figures 45 – 47 are distance metrics for ‘Dike’, ‘Floodway 1’ and ‘Floodway 2’ for 

weight set # 3. Ranking of alternatives for weight set # 3 is given in Figure 48.    
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Figure 37: Distance metric image for alternative ‘Dike’ using SFCP (Z-MF) approach for 
weight set # 1. 
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Figure 38: Distance metric image for alternative ‘Floodway 1’ using SFCP (Z-MF) 
approach for weight set # 1.



 73

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 39: Distance metric image for alternative ‘Floodway 2’ using SFCP (Z-MF) 
approach for weight set # 1.
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Figure 40: Spatially distributed ranking of three alternatives for weight set #1 using SFCP 
(Z-MF) approach.
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Figure 41: Distance metric image for alternative ‘Dike’ using SFCP (Z-MF) approach for 
weight set # 2. 
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Figure 42: Distance metric image for alternative ‘Floodway 1’ using SFCP (Z-MF) 
approach for weight set # 2.
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Figure 43: Distance metric image for alternative ‘Floodway 2’ using SFCP (Z-MF) 
approach for weight set # 2.
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Figure 44: Spatially distributed ranking of three alternatives for weight set # 2 using 
SFCP (Z-MF) approach.
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Figure 45: Distance metric image for alternative ‘Dike’ using SFCP (Z-MF) approach for 
weight set # 3. 
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Figure 46: Distance metric image for alternative ‘Floodway 1’ using SFCP (Z-MF) 
approach for weight set # 3.
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Figure 47: Distance metric image for alternative ‘Floodway 2’ using SFCP (Z-MF) 
approach for weight set # 3.
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Figure 48: Spatially distributed ranking of three alternatives for weight set # 3 using   
SFCP (Z-MF) approach. 
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3.7  Discussion of Results 

 

Using the results illustrated in Section 3.2 for (i) Spatial Compromise Programming 

(SCP) approach, (ii) Spatial Fuzzy Compromise Programming (SFCP) approach using 

triangular membership function (T-MF), and (iii) SFCP approach using Z-shaped 

membership function (Z-MF), the following comparisons are possible: 

 

(a) Comparison of SCP, SFCP using T-MF, and SFCP using Z-MF for the same set of 

weights; 

(b) Comparison of SFCP using T-MF for three different weight sets (Table 2); and 

(c) Comparison of SFCP using Z-MF for three different weight sets (Table 2).  

 

3.7.1 Comparison of SCP, SFCP using T-MF, and SFCP using Z-MF for the same set 

of weights 

 

Looking at all the three approaches, namely SCP, SFCP using T-MF, and SFCP using Z-

MF, for weight set # 1 (equal weights assigned to both criteria), it is observed in Figures 

10 to 13, Figures 24 to 27 and Figures 36 to 39  that the maximum value of distance 

metric in case of SCP analysis is much lower than SFCP analysis using T-MF and Z-MF. 

This observation can lead to an inference that SFCP analysis is better than SCP analysis 

as according to Equation (12) larger the distance metric value higher the degree of 

membership.  Alternative ‘Dike’ distance metric images (Figures 10, 24 and 36) indicate 

a drastic difference between SFCP approach using Z-MF and the other two approaches. 

In SFCP using Z-MF distance metric image (Figure 36), a clear demarcation is shown 

between absolutely unprotected region (very dark) and rest of the region without any 

variation in degree of protection by the alternative ‘Dike’. Figures 11, 25 and 37 suggest 

that using SCP approach some of the buildings are not protected, whereas, SFCP 

approach using T-MF shows the same cluster of buildings being protected. SFCP 

approach using Z-MF distance metric captures the spatial variability of protection very 

well by clearly indicating the area adjacent to the Red River (floodplain) as unprotected 
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area, while, the rest of the region can be seen visibly divided into various degrees of 

protection. Similarly, for alternative ‘Floodway 2’, the distance metric images (Figures 

12, 26 and 38) suggest that some of the buildings that are shown as unprotected in SCP 

analysis are actually shown as fairly well protected in SFCP analysis using T-MF while  

picture shown by SFCP analysis using Z-MF is entirely different. The difference between 

the ranges of distance metric values also should be noted.  

 

Looking at the final ranking of alternatives, SCP approach (Figure 13) suggests that 

alternative ‘Dike’ (shown in green) provides the highest protection for most of the region 

except for the left bank of the Red River where alternative ‘Floodway 2’ (shown in 

yellow) is found to be providing better protection and some scattered spots where 

alternative ‘Floodway 1’ (shown in blue) offers better protection. SFCP approach using 

T-MF (Figure 27) illustrates that alternative ‘Floodway 1’ provides the highest protection 

for most of the study region and alternative ‘Floodway 2’ offers protection to some 

buildings, roads and the floodplains on both sides of the river. SFCP approach using Z-

MF indicates that alternative ‘Floodway 2’ is the best compromise for most of the region 

and alternative ‘Floodway 1’ is recommended for some scattered locations. Point to note, 

here, is that alternative ‘Dike’ dominates the SCP analysis, alternative ‘Floodway 1’ 

provides better protection to most of the region in SFCP analysis using T-MF and 

‘Floodway 2’ dominates the entire region using SFCP analyses using Z-MF. Separate 

comparison of all the alternatives using three different approaches gives an impression 

that selection of one approach over the other is not possible at this point where 

comparison of alternatives has been done based on equal weight assignment to both the 

criteria.  

 

Weight set # 2 (Table 2) assigns different weights to two different criteria considered in 

this study. Figures 14 – 17 illustrate SCP approach for weight set # 2, Figures 28 – 31 

show SFCP approach using T-MF and Figures 40 – 43 present SFCP approach using Z-

MF. Comparing the results for different approaches it can be noticed that individual 

images of distance metric of alternative ‘Dike’ for SCP and SFCP using T-MF are not 

very different. However, SFCP using Z-MF provides quite a different picture in terms of 
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varying degree of protection offered by alternative ‘Dike’. Alternative ‘Floodway 1’ 

distance metric images can be seen in Figures 15, 29 and 41. SCP approach in Figure 15 

illustrates that ‘Floodway 1’ does not provide a high level of protection for most of the 

buildings in the region, while it is found to be effective for roads and very effective for 

rest of the study region. SFCP using T-MF in Figure 29 shows a varying degree of 

effectiveness for ‘Floodway 1’ in the region with most of the area being well protected 

with this alternative with lesser protection of the buildings and medium protection of the 

roads. SFCP using Z-MF in Figure 41 demonstrates that ‘Floodway 1’ does not provide 

any protection for the floodplain. Suitability of this alternative varies significantly in the 

rest of the study region. Finally, a look at Figures 16, 30 and 42 explains the degree of 

suitability of alternative ‘Floodway 2’ using SCP, SFCP using T-MF and SFCP using Z-

MF. All the three approaches portray a different picture of suitability for this alternative.  

 

Finally, Figures 17, 31 and 43 present the ranking of alternatives using the three 

approaches. SCP and SFCP using Z-MF seem in agreement in most of the study region 

except for some scattered spots that are shown as suitable for alternative ‘Floodway 2’ in 

Figure 17 (SCP). SFCP using T-MF (Figure 31), however, illustrates a completely 

different picture of suitability of the three alternatives. In this case, alternative ‘Floodway 

1’ is found to be suitable in most of the region and ‘Floodway 2’ is found to be suitable in 

the floodplains on both sides of the river plus some buildings and roads. Alternative 

‘Floodway 2’ is mostly found suitable only in floodplain on the left side of the river using 

SCP and SFCP using Z-MF analyses. 

 

Lastly, weight set # 3 (Table 2), which also assigns different weights to both criteria, 

produced distance metric images shown in Figures 18 – 20 (SCP approach), Figures 32 – 

34 (SFCP using T-MF) and Figures 44 – 46 (SFCP using Z-MF). Figures 18 is different 

from Figures 34 and 44 in every way.  Figure 44 illustrates unsuitability of ‘Dike’ for the 

protection of floodplain on the left bank of Red River and suitability for the rest of the 

region. This is due to the fact that the dike has been simulated only on the right bank of 

the river to protect the community of St. Adolphe. Similarly, alternative ‘Floodway 1’ is 

found to be suitable in almost same region (with little variation in degree of suitability) 
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using SCP (Figure 19) and SFCP using T-MF (Figure 33) approaches. SFCP using Z-MF 

approach presents a different scenario in terms of categorizing the region according to 

suitability for alternative ‘Floodway 1’ (Figure 45). Alternative ‘Floodway 2’ distance 

metric images (Figures 20, 34 and 46) are not very different from each other for all the 

three approaches except for SFCP using Z-MF in which different scattered points are 

shown as less suitable for this alternative.  

 

Ranking of the three alternatives using three approaches are illustrated in Figures 21, 35 

and 47. As demonstrated by these figures, it can be noted that all the three approaches 

portray a different scenario in terms of choice of alternatives for flood protection in the 

study region. SCP analysis shows alternative ‘Floodway 2’ as most protective, alternative 

‘Floodway 1’ is next and alternative ‘Dike’ is shown to protect only some scattered 

portions. SFCP using T-MF analysis chooses alternative ‘Dike’ for most of the region 

and ‘Floodway 2’ for left river bank floodplain with some portions suitable for alternative 

‘Floodway 1’. SFCP using Z-MF shows a completely different scenario by choosing 

alternative ‘Dike’ and ‘Floodway 2’ as suitable alternatives. 

 

3.7.2 Comparison of SFCP using T-MF for three different weight sets 

 

Comparison of the results obtained for three different weight sets (Table 2) with SFCP 

using T-MF approach can be done through the distance metric images (Figures 24 – 26) 

obtained by assigning equal weights to both the criteria (flood depth and damage) and 

their ranking image shown in Figure 27. As it is clear from Figure 27 alternative 

‘Floodway 2’ has been chosen to be suitable for the floodplains and some of the roads 

and buildings. For the rest of the region alternative ‘Floodway 1’ is found to be suitable. 

Weight set # 2 in which less importance has been given to criterion ‘flood depth’ 

produced distance metric images given in Figures 28 – 30. As expected, these distance 

metric images are quite different than those for the weight set # 1. Due to higher 

importance to given to damage, certain buildings and roads have come up prominent in 

case of ‘Floodway 1’ and ‘Floodway 2’ alternatives. Alternative ‘Dike’ protects the 
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whole of community of St. Adolphe therefore, most of the region falls under the high 

degree of membership. Ranking of the alternatives using weight set # 2 (Figure 31) 

illustrates that alternative ‘Floodway 2’ is suitable for protection of some buildings and 

floodplains (little less compared to weight set # 1 ranking). Weight set # 3, in which less 

importance has been given to damage and more importance to flood depth, buildings and 

roads have not come out as prominent features (Figures 32 – 34). Floodplain on  the left 

riverbank in case of alternative ‘Dike’ and floodplain on both riverbanks in case of 

alternative ‘Floodway 1’ are more prominently shown. Ranking of alternatives for this 

weight set also portrays a different scenario with ‘Floodway 2’ being more effective for 

the left bank floodplain and ‘Floodway 1’ for some portions while ‘Dike’ protects most 

of the area including the right bank floodplain.   

 

3.7.3 Comparison of SFCP using Z-MF for three different weight sets 

 

SFCP using Z-MF approach distance metric results for alternative ‘Dike’ are shown in 

Figures 36, 40 and 44. Obviously, assigning of weights should play an important role in 

arriving at the preferred suitability of a particular alternative in the entire region. 

However, with less weight to  ‘flood depth’ and more weight to ‘damage’ vs. more 

weight to ‘flood depth’ and less weight to ‘damage’ the difference between the distance 

metric images is not much. Similarly, alternative ‘Floodway 1’ distance metric images 

(Figures 37, 41 and 45) demonstrate a very little preference to regions according to 

importance assigned to each of the two criteria. Ranking of the three alternatives in case 

of each of the three weight sets (Figures 39, 43 and 47) illustrates the choice of ‘Dike’ 

and ‘Floodway 2’ for most of the region for weight set # 2 and weight set # 3. However, 

with equal weight assigned to both the criteria, SFCP using Z-MF shows a different 

choice of alternatives. ‘Floodway 2’ is found to be suitable in most of the area in this 

case, ‘Floodway 1’ and ‘Dike’ are found to be flood protective in scattered portions.   

 

If only the ranked alternatives’ produced by both SFCP using T-MF and SFCP using Z-

MF were to be compared, it is apparent that SFCP using T-MF makes more sense 
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because there is difference between ranking of alternatives using SFCP (T-MF) for 

weight set # 2 (Figure 31) and weight set # 3 (Figure 33). On the other hand the ranking 

of alternatives using SFCP (Z-MF) for weight set # 2 (Figure 43) and weight set # 3 

(Figure 47) does not show a significant effect of differently assigned weights.            
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4. CONCLUSIONS 

 

Existing multi objective analysis techniques have certain limitations in terms of their 

ability to address certain issues related to problems, which are spatial in nature and are 

susceptible to uncertainties and vagueness associated with natural processes that are 

being represented. Uncertainties could also arise from the data monitoring equipment 

and/or from lack of knowledge. For instance, uncertainties are involved in criteria values 

and parameter values associated with flood management process when various flood 

protection alternatives are to be judged and chosen for implementation. Often there is a 

possibility that different flood protection alternatives provide best protection for different 

locations in the region of interest. Therefore, to incorporate spatial variability factor and 

capability to address uncertainties, an integration of Spatial Compromise Programming 

(SCP), which facilitates spatial variability and Fuzzy Compromise Programming (FCP), 

which provides means to account for uncertainties has successfully been attempted in this 

work. The proposed multi objective analysis technique, named as Spatial Fuzzy 

Compromise Programming (SFCP) has been discussed in detail and applied to a case 

study of flood management for Red River Basin near community of St. Adolphe. Like 

SCP and FCP, SFCP is based on the concept of Compromise Programming (CP) method 

with inclusion of fuzzy theory for addressing the uncertainties and GIS for spatial factor. 

 

In the present work various flood protection alternatives are being evaluated and ranked 

spatially in the region of interest for flood management purpose. With implementation of 

SFCP, it has been illustrated that decision making can be improved considerably in terms 

of accuracy and efficiency by accounting for spatial variability and uncertainty factors 

together. Fuzzification of the criteria values, parameter value and the weights assigned to 

each of the criteria value is being achieved using triangular membership function (T-MF) 

and Z-shaped membership function (Z-MF) to account for uncertainties associated with 

criteria values, weights and the parameters. Use of GIS technology has made it possible 

to produce maps (images) of damaged property (buildings, roads and agriculture) and 

flood depth for evaluation of various potential flood protection alternatives. Appropriate 
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fuzzy membership function (to account for vagueness associated with criteria values) can 

be chosen based on the nature of the problem. Not necessarily all the inputs to the 

distance metric equation need to be fuzzified. Some inputs can be crisp depending on the 

reliability of their values.  Different membership functions can be assigned to criteria 

values; their weights; and parameters by the decision maker thus increasing the 

flexibility. From decision and representation point of view as well SFCP performs better 

compared to other methods because the choices are clearly laid out in front of the 

decision maker. It is possible to assess various alternatives based on many other 

objectives as well. Applicability of this method does not restrict the user to only flood 

protection measures assessment. It can be used in any other complex decision making 

process which needs to be carried out spatially and has some vagueness involved within 

that needs to be addressed.          
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APPENDIX A – Basic Fuzzy Mathematics 

 

 

Definition 1. (Classical set) 

 

Classical, or a crisp set, is one which assigns grades of membership of either 0 or 1 to 

objects within their universe of discourse.  To say it in another way, objects either belong 

to or do not belong to a certain class; or object either posses a certain property, or they do 

not; there is no middle ground.  The type of a function that describes this is called a 

characteristic function. 

 

Definition 2. (Fuzzy set) 

 

A fuzzy set is one which assigns grades of membership between 0 and 1 to objects within 

its universe of discourse.  If X is a universal set whose elements are {x}, then, a fuzzy set 

A is defined by, its membership function, 

 

 ]1,0[X:A →µ ,        (A1) 

which assigns to every x a degree of membership Aµ  in the interval [0,1] . 

 

A fuzzy set can be represented by a continuous membership function )x(Aµ , or by a set 

of discrete points.  The latter is denoted by ordered pairs, 

 

 { } Xx,))x(,x(A A ∈=      µ .       (A2) 

 

It is worth noting that a fuzzy set, whose degree of membership is only 0 and 1, reduces 

to a crisp set. 
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Figure A1. Illustration of a crisp and a fuzzy set 

 

 

Definition 3. (Support of a fuzzy set) 

 

Support of a fuzzy set A (written as supp(A)) is a (crisp) set of points in X for which Aµ  

is positive.  An alternate way of saying this would be that the support of a fuzzy set A is 

the valid universe of discourse of A (i.e., all valid x’s).  Mathematically stated, 

 

 { }0)x( | Xx)A(supp A >∈= µ .      (A3) 

 

Synonyms of support are degree of fuzziness or a fuzzy spread. 
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Figure A2. Support of a fuzzy set 

 

Definition 4. (Normal fuzzy set) 

 

A fuzzy set A is normal if its maximal degree of membership is unity (i.e., there must 

exist at least one x for which 1)x(A =µ ).  Of course, non-normal fuzzy sets have 

maximum degree of membership less than one. 

 

Definition 5. (Convex fuzzy set) 

 

A fuzzy set A is convex if and only if it satisfies the following property: 

 

 ))x(),x(min()x)1(x( 2A1A21A µµλλµ ≥−+     (A4) 

 

where λ is in the interval [0,1] , and 21 xx < .  An example of a convex, as well as a non-

convex fuzzy set is illustrated in Figure A3. 
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Figure A3. Convex and non-convex fuzzy sets 

 

Remark: All fuzzy sets encountered in this report are both normal and convex. 

 

Definition 6. (Intersection and union of fuzzy sets) 

 

Intersection of fuzzy set A with fuzzy set B is: 

 

 ))x(),x(min()x( BABA µµµ =∩       (A5) 

 

Union if two fuzzy sets is similarly defined: 

 

 ))x(),x(max()x( BABA µµµ =∪       (A6) 

 

Note that intersection of two fuzzy sets is the largest fuzzy sets contained within A and B, 

and union is the smallest.  See Figure A4 for clarification. 



 A-5

Universe of Discourse

D
eg

re
e 

of
 M

em
be

rs
hi

p

Universe of Discourse

D
eg

re
e 

of
 M

em
be

rs
hi

p

Union of two fuzzy sets

Intersection of two fuzzy sets

 
Figure A4. Union and intersection of two fuzzy sets 

 

Definition 7. (Supremum and infimum of fuzzy sets) 

 

Supremum, denoted by sup, is the largest possible value within given set, while infimum, 

denoted by inf, is the smallest value in a given set. 

 
Definition 8. (λ-cut of a fuzzy set) 

 

λ-cut of a fuzzy set is defined as crisp set αA  (or a crisp interval) for a particular degree 

of membership, α.  Mathematically stated, 

 

 ]b,a[A ααα =         (A7) 

where α, as before, can take on values between [0,1] . 
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Figure A5. Illustration of an α -cut 

 
 

Definition 9. (Fuzzy numbers) 

 

A fuzzy number is a fuzzy set which is both normal and convex.  In addition, the 

membership function of a fuzzy number must be piecewise continuous.   

 

Most common types of fuzzy numbers are triangular and trapezoidal.  Other types of 

fuzzy numbers are possible, such as bell-shaped or gaussian fuzzy numbers, as well as a 

variety of one sided fuzzy numbers.  These will not be covered here.  The interested 

reader is referred to a book by Klir and Yuan (1995) for more information on other types 

of fuzzy numbers.  Triangular fuzzy numbers are defined by three parameters, while 

trapezoidal require four parameters.  
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Figure A6. Triangular and trapezoidal fuzzy numbers 

 

Fuzzy Arithmetic 
 

A popular way to carry out fuzzy arithmetic operations is by way of interval arithmetic.  

This is possible because any α -cut of a fuzzy number is always an interval (see definition 

8).  Therefore, any fuzzy number may be represented as a series of intervals (one interval 

for every α-cut).  In the Matlab code that was produced, 101 α -cuts (or intervals) were 

made, which means that α -cuts were made for α = 0, 0.01, 0.02, 0.03, … , 0.98, 0.99, 

1.0.  Now, this means that there exist 101 intervals on which we are to perform interval 

arithmetic operations. 

 

The basics of interval arithmetic are given next.  For any two intervals, [a, b]  and [d, e], 

the arithmetic operations are performed in the following way: 
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Addition: [a, b] + [d, e] = [a+d, b+e];               (A8) 

Subtraction: [a, b] - [d, e] = [a-e, b-d];               (A9) 

Multiplication: [a, b] · [d, e] = [min(ad, ae, bd, be), max(ad, ae, bd, be)];          (A10) 

Power:  e] [d,b] ,a[  = [min(ad, ae, bd, be), max(ad, ae, bd, be)];            (A11) 

Division: [a,b] / [d, e] = [min(a/d, a/e, b/d, b/e), max(a/d, a/e, b/d, b/e)],      (A12)  

   provided that 0 ∉ [d, e]. 

 

Since any fuzzy number can be represented by a series of crisp intervals, we can then 

apply interval arithmetic operations (such as addition, subtraction, multiplication, 

division, power) and obtain an alternate way of performing fuzzy arithmetic.  This is 

what most texts (and Matlab) consider as fuzzy arithmetic.  In addition, this technique is 

more computationally efficient than brute force/dynamic search combination, but its 

downfall is that it cannot handle multi-modal fuzzy sets (i.e. multi-modal fuzzy sets 

cannot be expressed as intervals).  An excellent text on fuzzy arithmetic is one by 

Kaufman and Gupta (1985); also, Klir and Yuan (1995) in their book cover the basics of 

fuzzy arithmetic rather well. 

 

Note: Bender and Simonovic (1996) developed a different method of performing fuzzy 

arithmetic.  Their method is based on brute force complimented with dynamic searches, 

which are used to lower computation time.  An advantage of their method is that it’s able 

to perform fuzzy arithmetic on all types of fuzzy sets, not just fuzzy numbers.  However, 

even with dynamic searches, the method is extremely computationally intense.   

 

Therefore, it can be concluded that if fuzzy arithmetic is required for non-convex (or 

multi-modal) fuzzy sets, brute force/dynamic search method should be used.  If on the 

other hand, fuzzy arithmetic is required to be performed on fuzzy numbers, then 

application of interval arithmetic is sufficient.
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APPENDIX B – Hydraulic Modeling using HEC-RAS  

 

 

US Army Corps of Engineers’ River System Analysis software has following steps to 

follow in order to carry out steady flow analysis simulation.  

 

1. Draw the schematic of the river system. Figure B1 shows the schematic diagram 

of Red River floodway (called Morris Floodway). 

 

2. Enter cross section data, which includes River Station (RS) number, its elevation, 

downstream reach lengths, Manning’s n values, Contraction and Expansion 

coefficients. Figure B2 is an illustration of a cross section for this study. 

 

3. Enter steady flow data. Flow data are entered from upstream to downstream for 

each reach. Once a flow value is entered at the upstream end of a reach, it is 

assumed that the flow remains constant until another flow value is encountered 

within the reach. In this study 1997 Red River flood flow data has been used.  

 

4. Running the simulation gives several output options, such as, cross section plots, 

rating curves, detailed tabular output at a specific cross section, and limited 

tabular output at many cross sections, can be seen. Figure B5 is an illustration of 

cross section output. 

 

5. For the purpose of simulating the three flood alternatives, namely, Dike, 

Floodway 1, and Floodway 2, modifications in input data files were made in the 

following way; 

 

• Dike: Option ‘Levees’ allows the user to establish a left and/or right levee 

station and elevation on any cross section. When levees are established, no 

water can go to the left of the left levee station or to the right of the right levee 
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station until either of the levee elevation is exceeded. Using this option one 

levee has been established at the right bank of Red River, where St. Adolphe 

is situated. Simulation is run and water surface elevation in the rest of the area 

has been obtained for the alternative of ‘Dike’. Figure B3 illustrates a cross 

section data window and Figure B4 shows how a levee data has been entered 

at St. Adolphe for simulation. 

 

• Floodway 1: Value of total discharge at the existing Red River floodway is 

altered in such a way that the water surface elevation went up by one meter 

from its original (1997 Red River flood) level.   

 

• Floodway 2: Value of total discharge at the existing Red River floodway 

entrance has been altered in such a way that the water surface elevation 

dropped by one meter from its original (1997 Red River flood) level.  
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Figure B1: Red River schematic around the floodway river stations. 
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Figure B2: Cross section plot at river station number 6 at St. Adolphe. 
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Figure B3: Cross section data window in HEC-RAS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B4: Data entry for levee at St. Adolphe 
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Figure B5: Cross section output at river station 6. 
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APPENDIX C - Description of GIS Procedure 
 

 
Computation of Flood Water Depth 
 

Determine the spatial extents of the floodwater resulting from implementation of the 

various flood protection alternatives. GIS and Image Processing software (Idrisi32, 2001) 

was used to carry out computation of floodwater depth using GIS data described in the 

main report. Basic data files needed for floodwater depth in the region of interest are: 

 

• DEM of the area of interest. 

• Feature images of buildings, roads and agriculture. 

• Water surface elevation value for each alternative obtained from HEC-RAS 

simulations. 

 

GIS modules mentioned in capitals in the steps below were used for each particular step.  

 

1. Assign water surface elevations to the river reach in the feature image using 

‘ASSIGN’. 

2. Subtract the ground surface elevation as contained in the DEM from the water 

surface elevation, which will determine the depth of submergence using 

‘OVERLAY’.  

3. Create a Boolean mask of locations having a ground elevation less than the water 

surface elevation using ‘RECLASS’. 

4. Find all contiguous groups in the mask using ‘GROUP’. 

5. Select the flooded group based on the location of the main stem of the Red River 

using ‘EXTRACT’. 

6. Create a values file containing the flooded group identifier using ‘ASSIGN’. 

7. Create an image of just the flooded group using ‘ASSIGN’. 

8. Overlay the flooded group under the feature image using ‘OVERLAY’. 

9. Convert the flood Boolean mask to byte binary file type using ‘CONVERT’. 

10. Create Boolean image of the Red River and its tributaries using ‘RECLASS’. 
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11. Subtract river Boolean from flood Boolean mask using ‘OVERLAY’. 

12. Eliminate any negative numbers from rounding in the flooded area mask using 

RECLASS’. 

13. Multiply flooded area mask with depth of submergence to get the “flood water 

depth” criteria using ‘OVERLAY’.  

14. Replace the cell values in above created image with the value of minimum 

floodwater depth in above image to get ‘best floodwater depth’ image using 

‘RECLASS’. 

15. Replace the cell values in image created in Step # 13 with the value of maximum 

floodwater depth in above image to get ‘worst floodwater depth’ image using 

‘RECLASS’. 

 

Computation of Damages  
 

Determining the percent damages to buildings produced through the implemented 

alternative. GIS and Image Processing software (Idrisi32, 2001) is used to carry out 

computation of damages using GIS data described in the main report. Basic data files 

needed for floodwater depth in the region of interest are: 

• DEM of the area of interest. 

• Feature images of buildings, roads and agriculture. 

• Water surface elevation value for each alternative obtained from HEC-RAS 

simulations. 

GIS modules mentioned in capitals in the steps below were used for each particular step.  

 

1. Create Boolean mask of industrial buildings/roads/agricultural fields using 

‘RECLASS’. 

2. Multiply flooded area mask with building/roads/agricultural fields mask. This 

identifies the potentially submerged buildings/roads/agricultural fields, or 

building/roads/agricultural fields having a ground elevation less than the water 

surface elevation using ‘OVERLAY’. 
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3. Multiply the potentially submerged building/roads/agricultural fields by the DEM. 

This produces the image, which contains the ground elevations of the potentially 

submerged building/roads/agricultural fields using ‘OVERLAY’. 

4. Subtract the building/roads/agricultural fields elevations from the floodwater 

surface elevation. This identifies the depth of flooding in each of the potentially 

submerged building/roads/agricultural fields using ‘OVERLAY’. 

5. Determine the number of potentially submerged building/roads/agricultural fields. 

Each potentially submerged building is given a unique identifier in the image 

created in above step using ‘GROUP’. 

6. Extract the flooded depths of the potentially submerged 

building/roads/agricultural fields and place them in a values file with the 

corresponding building/roads/agricultural fields identifier using ‘EXTRACT’. 

7. Apply damage relationships for each category of buildings, roads and agricultural 

fields using ‘IMAGE CALCULATOR’. 

8. Assign the % damages to each of the submerged buildings. Each cell 

corresponding to the location of the building contains the % damage of the whole 

building using ‘ASSIGN’. 

9. Identify the total number/length of flooded buildings/agricultural fields/roads. The 

image will show each flooded building/agricultural field/road with a unique 

identifier using ‘GROUP’. 

10. Find out the number of cells composing each building/agricultural field/road. The 

locations/cells of the damaged buildings contain the number of cell, which 

compose each of the flooded building/agricultural field/road using ‘AREA’. 

11. By dividing the damages to the whole building/agricultural field/road by the 

building/agricultural field/road area an image will be produced in which each cell 

contains the $ value of damage for each individual building cell using 

‘OVERLAY’.  

12. Add three images of building damage, agricultural damage and road damage 

using ‘OVERLAY’. 

13. Replace the cell values in damage image created in Step # 12, with the value of 

minimum damage value to get ‘optimal damage’ image using ‘RECLASS’. 
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14. Replace the cell values in damage image created in Step # 12, with the value of 

maximum damage value to get ‘optimal damage’ image using ‘RECLASS’. 

 

Compromise Programming  
 

Actual, best and worst images of both the criteria ‘floodwater depth’ and ‘damage’ have 

been obtained in the procedures described above. Three weight sets are given in Table 2. 

Substituting the value of ‘p=2’ and weights given in weight set # 1, three distance metric 

images were computed by applying Equation (2) for all the three alternatives separately 

using ‘IMAGE CALCULATOR’. Similar distance metric images were obtained using 

weight set # 2 and weight set # 3.  

 

Ranking of Alternatives 
 

The distance metric images of all the three alternatives for weight set # 1 were ranked 

using ‘MDCHOICE’. This produced an image of spatially ranked alternatives on a cell by 

cell basis. Similarly two more spatially ranked alternatives’ images were obtained for 

weight set # 2 and weight set # 3.   
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APPENDIX D – MATLAB Procedure  

 

 

Fuzzification of criteria images and subsequent computations for Spatial Fuzzy 

Compromise Programming using fuzzy arithmetic were carried out using MATLAB. 

Triangular membership function and Z-shaped membership functions were used for 

fuzzification. Following MATLAB codes were developed for the same. Code 1 

‘script_dm’ is the main script that takes the inputs of fuzzified images from Code 2 

‘dike’, Code 3 ‘floodway_1’ and Code 4 ‘floodway_2’ and defuzzifies them. Therefore, 

the outputs from Code 1 are defuzzified image display and image data files in ASCII 

format for each of the three alternatives. These output image files are then taken to GIS 

software for ranking. Code 2 ‘dike’, Code 3 ‘floodway_1’ and Code 4 ‘floodway_2’ 

transform the criteria value images for three alternatives respectively into fuzzified form 

by applying desired membership function. The inputs to these codes are images derived 

from GIS procedure for floodwater depth (best, worst and actual scenario) and damages 

(best, worst and actual scenario). The computations for fuzzified distance metric are 

carried out using fuzzy arithmetic resulting in a fuzzified image of distance metric for 

alternative ‘Dike’, ‘Floodway 1’ and Floodway 2’ respectively. Code 5 ‘fuzzyImage’ is a 

function recalled by Codes 2, 3 and 4 to fuzzify any image using triangular membership 

function. Parameter ‘a’ specifies the center value of triangular function and parameters 

‘p1’ and ‘p2’ are the deviation extents towards the left and right side of triangular 

function respectively. Code 6 ‘fuzzyImageArith’ is a function recalled by Codes 2, 3 and 

4 to carry out the fuzzy arithmetic computations (add, subtract, multiply, divide and 

power) between two fuzzy numbers for triangular membership function. Code 7 

‘fuzzyIntArith’ carries out the computations of fuzzy arithmetic between two fuzzy 

numbers using fuzzy interval arithmetic. Code 8 ‘trifn’ applies the triangular membership 

function to fuzzify an image and is recalled by Code 5. Code 9 

‘fuzzyImageFuzzyNumber’ takes an image A and a fuzzy number B and wither raises the 

image to the power of the fuzzy number or multiplies the image by the fuzzy number. 

This function is recalled by Codes 2, 3 and 4. Code 10 ‘difuzImage’ is a function that 

defuzzifies an image A giving ‘x1’ importance to decision maker’s preference. This 
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function is being recalled by Code 1. Code 11 ‘fuzzifyImageZ-MF’ is a function that 

fuzzifies an image using Z-shaped membership function taking ‘a’ as pixel value in the 

image and ‘p1’ and ‘p2’ as extreme slope values required in Z membership function. 

Code 12 ‘fuzzyArithZ-MF’ function carries out fuzzy arithmetic computation for the case 

of Z membership function. This function is recalled by Codes 2, 3 and 4 in the case of Z 

membership function computations. Code 13 ‘fuzzyImagePowerZ-MF’ is a function 

recalled by Codes 2, 3 and 4 to carry out fuzzy image and fuzzy number operations 

(multiply and power) for the case of Z membership function. 

 
-------------------------------- 
Code 1 – script_dm 
-------------------------------- 
 
%   Script to execute the fuzzification of criteria iamges and parameters to compute  
%   fuzzified distance metrics for all the three alternatives and then defuzzify and  
%   plot each of the distance metrics. Also saves ascii  raster data file of each alternative  
%   distance metric for importing them to IDRISI for ranking purpose. 
%   Developed by Nirupama in April, 2002 
 
global m; global n; global n_point; global alpha; 
 
%   Alternative Dike 
 
fuzzydike_total_Z-MF_w1; 
fuzzy_dike_Z-MF_w1 = fuz_dike; 
dike_Z-MF_w1_trifn = defuzZ-MF(fuzzy_dike_Z-MF_w1,0.5); 
save dike_w1.dat dike_Z-MF_w1 –ascii %  save defuzzified image in ASCII format 
 
figure  %   Display the defuzzified image 
imagesc(dike_Z-MF_w1); 
title ('Dike Z-MF for weight set # 1') 
colorbar 
 
%   Alternative Floodway 1 
 
fuzzyfloodway1_total_Z-MF_w1; 
fuzzy_floodway1_Z-MF_w1 = fuz_floodway1; 
floodway1_Z-MF_w1 = defuzZ-MF(fuzzy_A2_Z-MF_w1,0.5); 
save floodway1_w1.dat floodway1_Z-MF_w1 –ascii %  save defuzzified image in 

ASCII %  data file 
 
figure  %   Display the defuzzified image 
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imagesc(floodway1_Z-MF_w1); 
title ('floodway1 Z-MF for weight set # 1') 
colorbar 
 
%   Alternative Floodway 2 
 
fuzzyfloodway2_total_Z-MF_w1; 
fuzzy_floodway2_Z-MF_w1 = fuz_floodway2; 
floodway2_Z-MF_w1 = defuzZ-MF(fuzzy_A3_Z-MF_w1,0.5); 
save floodway2_w1.dat floodway2_Z-MF_w1 –ascii %  save defuzzified image in 

ASCII %  data file 
 
figure  %   Display the defuzzified image 
imagesc(floodway2_Z-MF_w1); 
title ('floodway2 Z-MF for weight set # 1') 
colorbar   
 
 
 
-------------------------------- 
Code 2 – dike 
-------------------------------- 
 
%   Compute fuzzified images for alternative ‘Dike’ 
%   Created by Nirupama in April, 2002 
 
 
% read crieriion 'flood depth' actual scenario image 
 
load dike_flood_new.txt     
d1 = dike_flood_new; 
d1 = fuzzifyImageZ-MF(d1,0.005,1);  
 
% read criteria 'flood depth' worst scenario image 
 
load dike_flood_worst_new.txt  
d2 = dike_flood_worst_new; 
d2 = fuzzifyImageZ-MF(d2,1,1); 
 
% read criteria 'flood depth' the best scenario image 
 
load dike_flood_optimal_new.txt 
d3 = dike_flood_optimal_new; 
d3 = fuzzifyImageZ-MF(d3,0.005,1); 
 
%   Read criteria 'damage' the actual scenario image 
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load dike_total_damage.txt 
d4 = dike_total_damage; 
d4 = fuzzifyImageZ-MF(d4,10000,10000); 
 
%   Read criteria 'damage' the worst scenario image 
 
load dike_total_damage_worst.txt 
d5 = dike_total_damage_worst; 
d5 = fuzzifyImageZ-MF(d5,10000,10000); 
 
%   Read criteria 'damage' the best scenario image 
 
load dike_total_damage_optimal.txt 
d6 = dike_total_damage_optimal; 
d6 = fuzzifyImageZ-MF(d6,10000,10000); 
 
%   Assign fuzzified weight set # 1 to criteria  
 
w1 = sigmf(alpha, [.01 .5 .5 1]);    %w1 = 0.5 
w2 = sigmf(alpha, [.01 .5 .5 1]);    %w2 = 0.5 
 
%   Assign fuzzified weight set # 2 to criteria 
 
w1 = trifn(.05,.1,.15);    
w2 = trifn(.85,.9,.95);  
 
%   Assign fuzzified weight set # 3 to criteria 
 
w1 = trifn(.85,.9,.95);  
w2 = trifn(.05,.1,.15);    
 
%   Fuzzifiy parameter 'p' and '1/p' 
 
p = trifn(1,2,2); 
one = trifn(0.95,1,1.05); 
one_over_p = fuzzyIntArith(one,p, 'divide'); 
 
%   Compute fuzzified distance metric using fuzzy arithmetic 
     
dn1_1 = abs(fuzzyArithZ-MF(d2,d1, 'subtract')); 
dn1_2 = abs(fuzzyArithZ-MF(d3,d2, 'subtract')); 
dn1 = fuzzyArithZ-MF(dn1_1,dn1_2, 'divide'); 
 
dn2_1 = abs(fuzzyArithZ-MF(d5,d4, 'subtract')); 
dn2_2 = abs(fuzzyArithZ-MF(d6,d5, 'subtract')); 
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dn2 = fuzzyArithZ-MF(dn2_1,dn2_2, 'divide'); 
 
%   For weight set # 1 (when 'sigmf' is applied  
%   to fuzzifiy the weights 
 
% temp1 = fuzzyArithPowerZ-MF(w1,p(i), 'power'); 
% temp12 = fuzzyArithPowerZ-MF(w2,p(i), 'power'); 
 
%   For weight set # 2 and 3 (when 'trifn' is applied  
%   to fuzzifiy the weights 
 
temp1 = fuzzyIntArith(w1,p, 'power'); 
temp12 = fuzzyIntArith(w2,p, 'power'); 
 
%   Final computations for distance metric 
 
temp2 = fuzzyArithPowerZ-MF(dn1,one_over_p, 'power'); 
temp3 = fuzzyArithPowerZ-MF(dn2,one_over_p, 'power'); 
 
temp4 = fuzzyArithPowerZ-MF(temp2, temp1, 'multiply'); 
temp5 = fuzzyArithPowerZ-MF(temp3, temp12, 'multiply'); 
 
fuz_dike = fuzzyArithZ-MF(temp4, temp5, 'add'); %  output fuzzy image 
 
 
-------------------------------- 
Code 3 – floodway_1 
-------------------------------- 
 
%   Compute fuzzified images for alternative ‘Floodway 1’ 
%   Created by Nirupama in April, 2002 
 
 
% read crieriion 'flood depth' the actual scenario image 
 
load floodway1_flood_new.txt     
d1 = floodway1_flood_new; 
d1 = fuzzifyImageZ-MF(d1,0.005,1);  
 
% read criteria 'flood depth' the worst scenario image 
 
load floodway1_flood_worst_new.txt  
d2 = floodway1_flood_worst_new; 
d2 = fuzzifyImageZ-MF(d2,1,1); 
 
% read criteria 'flood depth' the best scenario image 
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load floodway1_flood_optimal_new.txt 
d3 = floodway1_flood_optimal_new; 
d3 = fuzzifyImageZ-MF(d3,0.005,1); 
 
%   Read criteria 'damage' the actual scenario image 
 
load floodway1_total_damage.txt 
d4 = floodway1_total_damage; 
d4 = fuzzifyImageZ-MF(d4,10000,10000); 
 
%   Read criteria 'damage' the worst scenario image 
 
load floodway1_total_damage_worst.txt 
d5 = floodway1_total_damage_worst; 
d5 = fuzzifyImageZ-MF(d5,10000,10000); 
 
%   Read criteria 'damage' the best scenario image 
 
load floodway1_total_damage_optimal.txt 
d6 = floodway1_total_damage_optimal; 
d6 = fuzzifyImageZ-MF(d6,10000,10000); 
 
%   Assign fuzzified weight set # 1 to criteria  
 
w1 = sigmf(alpha, [.01 .5 .5 1]);    %w1 = 0.5 
w2 = sigmf(alpha, [.01 .5 .5 1]);    %w2 = 0.5 
 
%   Assign fuzzified weight set # 2 to criteria 
 
w1 = trifn(.05,.1,.15);    
w2 = trifn(.85,.9,.95);  
 
%   Assign fuzzified weight set # 3 to criteria 
 
w1 = trifn(.85,.9,.95);  
w2 = trifn(.05,.1,.15);    
 
%   Fuzzifiy parameter 'p' and '1/p' 
 
p = trifn(1,2,2); 
one = trifn(0.95,1,1.05); 
one_over_p = fuzzyIntArith (one,p, 'divide'); 
 
%   Compute fuzzified distance metric using fuzzy arithmetic 
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dn1_1 = abs(fuzzyArithZ-MF(d2,d1, 'subtract')); 
dn1_2 = abs(fuzzyArithZ-MF(d3,d2, 'subtract')); 
dn1 = fuzzyArithZ-MF(dn1_1,dn1_2, 'divide'); 
 
dn2_1 = abs(fuzzyArithZ-MF(d5,d4, 'subtract')); 
dn2_2 = abs(fuzzyArithZ-MF(d6,d5, 'subtract')); 
dn2 = fuzzyArithZ-MF(dn2_1,dn2_2, 'divide'); 
 
%   For weight set # 1 ('sigmf' is applied  
%   to fuzzifiy the weights) 
 
% temp1 = fuzzyArithPowerZ-MF(w1,p(i), 'power'); 
% temp12 = fuzzyArithPowerZ-MF(w2,p(i), 'power'); 
 
%   For weight set # 2 and 3 ('trifn' is applied  
%   to fuzzifiy the weights) 
 
temp1 = fuzzyIntArith(w1,p, 'power'); 
temp12 = fuzzyIntArith(w2,p, 'power'); 
 
%   Final computations for distance metric 
 
temp2 = fuzzyArithPowerZ-MF(dn1,one_over_p, 'power'); 
temp3 = fuzzyArithPowerZ-MF(dn2,one_over_p, 'power'); 
 
temp4 = fuzzyArithPowerZ-MF(temp2, temp1, 'multiply'); 
temp5 = fuzzyArithPowerZ-MF(temp3, temp12, 'multiply'); 
 
fuz_floodway1 = fuzzyArithZ-MF(temp4, temp5, 'add'); %  output fuzzified image 
 
 
-------------------------------- 
Code 4 – floodway_2 
-------------------------------- 
 
%   Compute fuzzified distance metric for alternative ‘Floodway 2’ 
%   Created by Nirupama in April, 2002 
 
 
% read crieriion 'flood depth' the actual scenario image 
 
load floodway2_flood_new.txt     
d1 = floodway2_flood_new; 
d1 = fuzzifyImageZ-MF(d1,0.005,1);  
 
% read criteria 'flood depth' the worst scenario image 
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load floodway2_flood_worst_new.txt  
d2 = floodway2_flood_worst_new; 
d2 = fuzzifyImageZ-MF(d2,1,1); 
 
% read criteria 'flood depth' the best scenario image 
 
load floodway2_flood_optimal_new.txt 
d3 = floodway2_flood_optimal_new; 
d3 = fuzzifyImageZ-MF(d3,0.005,1); 
 
%   Read criteria 'damage' the actual scenario image 
 
load floodway2_total_damage.txt 
d4 = floodway2_total_damage; 
d4 = fuzzifyImageZ-MF(d4,10000,10000); 
 
%   Read criteria 'damage' the worst scenario image 
 
load floodway2_total_damage_worst.txt 
d5 = floodway2_total_damage_worst; 
d5 = fuzzifyImageZ-MF(d5,10000,10000); 
 
%   Read criteria 'damage' the best scenario image 
 
load floodway2_total_damage_optimal.txt 
d6 = floodway2_total_damage_optimal; 
d6 = fuzzifyImageZ-MF(d6,10000,10000); 
 
%   Assign fuzzified weight set # 1 to criteria  
 
w1 = sigmf(alpha, [.01 .5 .5 1]);    %w1 = 0.5 
w2 = sigmf(alpha, [.01 .5 .5 1]);    %w2 = 0.5 
 
%   Assign fuzzified weight set # 2 to criteria 
 
w1 = trifn(.05,.1,.15);    
w2 = trifn(.85,.9,.95);  
 
%   Assign fuzzified weight set # 3 to criteria 
 
w1 = trifn(.85,.9,.95);  
w2 = trifn(.05,.1,.15);    
 
%   Fuzzifiy parameter 'p' and '1/p' 
 



 D-9 

p = trifn(1,2,2); 
one = trifn(0.95,1,1.05); 
one_over_p = fuzzyIntArith(one,p, 'divide'); 
 
%   Compute fuzzified distance metric 
     
dn1_1 = abs(fuzzyArithZ-MF(d2,d1, 'subtract')); 
dn1_2 = abs(fuzzyArithZ-MF(d3,d2, 'subtract')); 
dn1 = fuzzyArithZ-MF(dn1_1,dn1_2, 'divide'); 
 
dn2_1 = abs(fuzzyArithZ-MF(d5,d4, 'subtract')); 
dn2_2 = abs(fuzzyArithZ-MF(d6,d5, 'subtract')); 
dn2 = fuzzyArithZ-MF(dn2_1,dn2_2, 'divide'); 
 
%   For weight set # 1 (when 'sigmf' is applied  
%   to fuzzifiy the weights 
 
% temp1 = fuzzyArithPowerZ-MF(w1,p(i), 'power'); 
% temp12 = fuzzyArithPowerZ-MF(w2,p(i), 'power'); 
 
%   For weight set # 2 and 3 (when 'trimf' is applied  
%   to fuzzifiy the weights 
 
temp1 = fuzzyIntArith(w1,p, 'power'); 
temp12 = fuzzyIntArith(w2,p, 'power'); 
 
%   Final computations for distance metric 
 
temp2 = fuzzyArithPowerZ-MF(dn1,one_over_p, 'power'); 
temp3 = fuzzyArithPowerZ-MF(dn2,one_over_p, 'power'); 
 
temp4 = fuzzyArithPowerZ-MF(temp2, temp1, 'multiply'); 
temp5 = fuzzyArithPowerZ-MF(temp3, temp12, 'multiply'); 
 
fuz_floodway2 = fuzzyArithZ-MF(temp4, temp5, 'add'); % output fuzzified image 
 
 
-------------------------------- 
Code 5 – fuzzyImage 
-------------------------------- 
 
 
function A=fuzzifyImage(a,p1,p2) 
 
%   fuzzyifyImage fuzzifies an Image (Matrix) 
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global m; global n; global n_point; 
[n,m]=size(a); 
n_point = n*m; 
% takes the matrix, and converts it into a vector, col by col 
 
b=reshape(a, 1, n_point); 
bmin = min(b(find(b))); 
bmax = max(b(find(b))); 
 
global alpha; 
alpha=(linspace(0,1, 11))'; 
 
% to store all fuzzified results into a big matrix 
num_row=length(alpha); 
num_col=length(b)*2; 
 
resultM=zeros(num_row, num_col); 
 
for i=1:length(b), 
   if b(i) == 0, 
      B=trifn(0,0.001,0.002); 
   else 
      B=trifn(b(i)-p1,b(i),b(i)+p2); 
   end 
   resultM(:,i+(i-1):(i+i))=B; 
    
end 
 
A=resultM; 
 
 
-------------------------------- 
Code 6 – fuzzyImageArith 
-------------------------------- 
 
 
function C=fuzzyImageArith(A,B,operator) 
 
%   FUZZYIMAGEARITH Fuzzy Arithmetic performed on  
%   images that are fuzzified 
 
[nA,mA]=size(A); 
[nB,mB]=size(B); 
 
% C is the resultant image 
C_ResTemp=zeros(nA,mA); 
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global alpha; 
 
if (nA~=nB) | (mA~=mB), 
   disp('Sizes of input parameters do not match'); 
   break; 
end 
 
% to perform fuzzy addition 
% mA/2 is the amount to fuzzy numbers present 
for i=1:(mA/2),  
   xAL=A(:,i+(i-1)); 
   xAR=A(:,i+i); 
    
   xBL=B(:,i+(i-1)); 
   xBR=B(:,i+i); 
    
   if strcmp(operator, 'add'), 
      xCL=xAL+xBL; 
      xCR=xAR+xBR; 
      C_temp=[xCL xCR]; 
      C_ResTemp(:,i+(i-1):(i+i))=C_temp; 
   elseif strcmp(operator, 'subtract'), 
      xCL=xAL-xBR; 
      xCR=xAR-xBL; 
      C_temp=[xCL xCR];    
      C_ResTemp(:,i+(i-1):(i+i))=C_temp; 
   elseif strcmp(operator, 'multiply'), 
      tmp=[xAL.*xBL xAL.*xBR xAR.*xBL xAR.*xBR];  
      tmp=tmp'; %because max operator finds max of column of a matrix 
      xCL=min(tmp)'; 
      xCR=max(tmp)'; 
      C_temp=[xCL xCR]; 
      C_ResTemp(:,i+(i-1):(i+i))=C_temp; 
   elseif strcmp(operator, 'divide'), 
      tmp=[xAL./xBL xAL./xBR xAR./xBL xAR./xBR]; 
      tmp=tmp'; %because max operator finds max of column of a matrix 
      xCL=min(tmp)'; 
      xCR=max(tmp)'; 
       
      % this is the index of the non-finite (i.e. inf or - inf) entries 
      indexL=find(~finite(xCL));  
      indexR=find(~finite(xCR)); 
       
      % if the fuzzy number B contains zero in its interval, 
      % the program will terminate becasue the resulting fuzzy 
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      % number will not be valid 
      if (~isempty(indexL)) | (~isempty(indexL)), 
         disp('**************************************************');  
         disp('*The fuzzy number B contains zero in its interval*'); 
         disp('**************************************************');  
         break; 
      else 
         C_temp=[xCL xCR]; 
         C_ResTemp(:,i+(i-1):(i+i))=C_temp; 
      end 
       
       
   elseif strcmp(operator, 'power'), 
      tmp=[xAL.^xBL xAL.^xBR xAR.^xBL xAR.^xBR]; 
      tmp=tmp'; %because max operator finds max of column of a matrix 
      xCL=min(tmp)'; 
      xCR=max(tmp)'; 
      C_temp=[xCL xCR]; 
      C_ResTemp(:,i+(i-1):(i+i))=C_temp; 
   end 
    
end 
 
C=C_ResTemp; 
 
 
-------------------------------- 
Code 7 – fuzzyIntArith 
-------------------------------- 
 
 
function C=fuzzyIntArith(A,B,operator) 
 
%   FUZZYINTARITH Fuzzy Arithmetic calculated by interval arithmetic 
 
[nA,mA]=size(A); 
[nB,mB]=size(B); 
 
global alpha; 
 
if (nA~=nB) | (mA~=mB), 
   disp('Sizes of input parameters do not match'); 
   break; 
end 
 
% first column of A is xLeft, second is xRight 
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xAL=A(:,1); 
xAR=A(:,2); 
 
xBL=B(:,1); 
xBR=B(:,2); 
 
% the following statements perform interval arithmetic 
if strcmp(operator, 'add'), 
   xCL=xAL+xBL; 
   xCR=xAR+xBR; 
   C=[xCL xCR]; 
    
elseif strcmp(operator, 'subtract'), 
   xCL=xAL-xBR; 
   xCR=xAR-xBL; 
   C=[xCL xCR]; 
    
elseif strcmp(operator, 'multiply'), 
   tmp=[xAL.*xBL xAL.*xBR xAR.*xBL xAR.*xBR];  
   tmp=tmp'; %because max operator finds max of column of a matrix 
   xCL=min(tmp)'; 
   xCR=max(tmp)'; 
   C=[xCL xCR]; 
    
elseif strcmp(operator, 'divide'), 
   tmp=[xAL./xBL xAL./xBR xAR./xBL xAR./xBR]; 
   tmp=tmp'; %because max operator finds max of column of a matrix 
   xCL=min(tmp)'; 
   xCR=max(tmp)'; 
       
   % this is the index of the non-finite (i.e. inf or - inf) entries 
   indexL=find(~finite(xCL));  
   indexR=find(~finite(xCR)); 
    
   % if the fuzzy number B contains zero in its interval, 
   % the program will terminate becasue the resulting fuzzy 
   % number will not be valid 
   if (~isempty(indexL)) | (~isempty(indexL)), 
      disp('****************************** ********************');  
      disp('*The fuzzy number B contains zero in its interval*'); 
      disp('**************************************************');  
      break; 
   else 
      C=[xCL xCR]; 
   end 
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elseif strcmp(operator, 'power'), 
   tmp=[xAL.^xBL xAL.^xBR xAR.^xBL xAR.^xBR]; 
   tmp=tmp'; %because max operator finds max of column of a matrix 
   xCL=min(tmp)'; 
   xCR=max(tmp)'; 
   C=[xCL xCR]; 
end 
 
 
-------------------------------- 
Code 8 – trifn 
-------------------------------- 
 
 
function A=trifn(a,b,c) 
 
%   TRIFN Triangular Fuzzy Number 
 
if (b-a)<0, 
   disp('Not valid input - b must be >= a'); 
   break; 
elseif (c-b)<0, 
   disp('Not valid input - c must be >= b'); 
   break; 
end 
 
global alpha; % It gets this from FCP.m 
% alpha is the column vector from 0 to 1, with small increments 
 
xAL=alpha.*(b-a)+a; 
xAR=-1.*alpha.*(c-b)+c; 
 
A=[xAL xAR];  
 
 
-------------------------------- 
Code 9 – fuzzyImageFuzzyNumber 
 
 
function C=fuzzyImageFuzzyNumber(A,B,operator) 
 
%   FUZZYIMAGEFUZZYNUMBER takes an image (A) and a fuzzy number (B),  
%   and either raises the image 
%   to the power of the fuzzy number or multiplies the image  
%   by the fuzzy number 
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[nA,mA]=size(A); %the image 
[nB,mB]=size(B); %the fuzzy number 
 
% C is the resultant image, same size as A 
C_ResTemp=zeros(nA,mA); 
 
global alpha; 
 
% to perform fuzzy addition 
% mA/2 is the amount to fuzzy numbers present 
for i=1:(mA/2),  
   xAL=A(:,i+(i-1)); 
   xAR=A(:,i+i); 
    
   xBL=B(:,1); 
   xBR=B(:,2); 
    
   if strcmp(operator, 'power'), 
       tmp=[xAL.^xBL xAL.^xBR xAR.^xBL xAR.^xBR]; 
       tmp=tmp'; %because max operator finds max of column of a matrix 
       xCL=min(tmp)'; 
       xCR=max(tmp)'; 
       C_temp=[xCL xCR]; 
       C_ResTemp(:,i+(i-1):(i+i))=C_temp; 
   elseif strcmp(operator, 'multiply'), 
       tmp=[xAL.*xBL xAL.*xBR xAR.*xBL xAR.*xBR];  
       tmp=tmp'; %because max operator finds max of column of a matrix 
       xCL=min(tmp)'; 
       xCR=max(tmp)'; 
       C_temp=[xCL xCR]; 
       C_ResTemp(:,i+(i-1):(i+i))=C_temp; 
   end 
end 
 
C=C_ResTemp; 
 
 
-------------------------------- 
Code 10 – defuzImage  
-------------------------------- 
 
 
function C=defuzImage(A,x1) 
 
%   DEFUZIMAGE deffuzifies a fuzzy image using  
%   Chang and Lee's (1994) OERI method 
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[nA,mA]=size(A); 
 
% C is the resultant (crisp) image 
C_Temp=zeros(1,mA/2);  
 
global alpha; 
 
global m; global n; 
 
% to perform fuzzy addition 
% mA/2 is the amount to fuzzy numbers present 
for i=1:(mA/2),  
   xAL=A(:,i+(i-1)); 
   xAR=A(:,i+i); 
   C_Temp(i)=(trapz(alpha,xAL))*(x1)+(trapz(alpha,xAR))*(1-x1); 
end 
 
C=reshape(C_Temp,n,m); 
    
    
-------------------------------- 
Code 11 – fuzzifyImageZ-MF 
-------------------------------- 
 
 
function A=fuzzifyImageZ-MF(a,p1,p2) 
 
%fuzzyifyImage fuzzifies an Image (Matrix) 
 
global m; global n; global n_point; global alpha; 
 
[n,m]=size(a); 
n_point = 11; 
 
% takes the matrix, and converts it into a vector, col by col 
 
b=reshape(a, 1, n*m); 
bmin = min(b(find(b))); 
bmax = max(b(find(b))); 
 
alpha=(linspace(0,1,n_point))'; 
 
% to store all fuzzified results into a big matrix 
 
num_row=length(alpha); 
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num_col=length(b); 
 
resultM=zeros(num_row, num_col); 
 
for i=1:length(b), 
   if b(i) == 0, 
      B=Z-MF(alpha, [0 0.001]); 
   else 
      B=Z-MF(alpha, [b(i)-p1,b(i)+p2]); 
   end 
   resultM(:,i)=B; 
    
end 
 
A=resultM; 
 
 
-------------------------------- 
Code 12 – fuzzyArithZ-MF  
-------------------------------- 
 
 
function C=fuzzyArithZ-MF(A,B,operator) 
 
%FUZZYINTARITH Fuzzy Arithmetic calculated by interval arithmetic 
 
[nA,mA]=size(A); 
[nB,mB]=size(B); 
 
global alpha; 
 
if (nA~=nB) | (mA~=mB), 
   disp('Sizes of input parameters do not match'); 
   break; 
end 
 
% the following statements perform interval arithmetic 
if strcmp(operator, 'add'), 
   C=A+B; 
    
elseif strcmp(operator, 'subtract'), 
   C=A-B; 
    
elseif strcmp(operator, 'multiply'), 
   C=[A.*B];  
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elseif strcmp(operator, 'divide'), 
   if B == 0, 
       B = 0.001; 
   end 
    C=[A./B]; 
    
elseif strcmp(operator, 'power'), 
   C=[A.^B]; 
end 
 
-------------------------------- 
Code 13 – fuzzyImagePowerZ-MF 
-------------------------------- 
 
 
function C=fuzzyImagePowerZ-MF(A,B,operator) 
 
%   FUZZYIMAGEFUZZYNUMBER takes an image (A) and a  
%   fuzzy number (B), and either raises the image 
%   to the power of the fuzzy number or multiplies  
%   the image by the fuzzy number 
 
[nA,mA]=size(A); %the image 
[nB,mB]=size(B); %the fuzzy number 
 
% C is the resultant image, same size as A 
C_ResTemp=zeros(nA,mA); 
 
% to perform fuzzy addition 
% mA/2 is the amount to fuzzy numbers present 
for i=1:(mA),  
   xA=A(:,i); 
   xB=B(:,1); 
    
   if strcmp(operator, 'power'), 
       tmp=[xA.^xB]; 
        
       C_ResTemp(:,i)=tmp; 
   elseif strcmp(operator, 'multiply'), 
       tmp=[xA.*xB]; 
        
       C_ResTemp(:,i)=tmp; 
   end 
end 
 
C=C_ResTemp;
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APPENDIX E – Data Requirement 

 

SFCP analysis is carried out integrating the components of hydraulic modeling, GIS, and 

fuzzy set theory. Therefore, there are different types of datasets required to implement the 

SFCP methodology. Actual file names are enclosed in inverted commas. 

 

Hydraulic Data 
 

1. HEC-RAS project “alternatives.prj”; 

2. HEC-RAS plan “alternatives.p06”; 

3. HEC-RAS geometry data file “alternatives.g03”; and  

4. HEC-RAS flow data file “alternative.fo2” 

 

GIS Data 
 

1. DEM of the region of interest, which is obtained from the DEM of a larger area 

through a GIS (Idrisi32, 2001) module called ‘WINDOW’ (“dem dolphe win”);  

2. Feature images of buildings (“buildings”); 

3. Feature image of roads (“roads”); and 

4. Feature image of agricultural fields (“agriculture”) 

 

Fuzzy Theory Application Data 
 

GIS images, which are required for the computation of distance metric for the three 

alternatives are obtained through data processing in GIS environment (Idrisi32, 2001).  

Point to note here is that same data images are used for deterministic computation of 

distance metric as well. 

 

1. Images of flood depth (one of the two criteria considered in this study) for 

alternative ‘Dike’ are obtained as follows: “depth_actual” – the actual scenario; 

“depth_best” – the best scenario; and “depth_worst” – the worst scenario. 
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2. Images of total damages (another criterion considered in this study) for alternative 

‘Dike’ are obtained as follows: “dike_total_damage” – the actual scenario; 

“dike_total_damage_ optimal” – the best scenario; and 

“dike_total_damage_worst” – the worst scenario. 

 

3. Images of flood depth for alternative ‘Floodway  1’ for the actual, the best and the 

worst scenario respectively, are obtained as follows: “moreflow_flood_new”, 

“moreflow_flood_optimal_new”  and “moreflow_flood_worst_new”. 

 

4. Images of total damages for alternative ‘Floodway  1’ for the actual, the best and 

the worst scenario respectively, are obtained as follows: 

“moreflow_total_damage”, “moreflow_total_damage_optimal”  and 

“moreflow_total_damage_worst”. 

 

5. Images of flood depth for alternative ‘Floodway  2’ for the actual, the best and the 

worst scenario respectively, are obtained as follows: “ReducedFlowFloodDepth”, 

“ReducedFlowFloodDepthOptimal”  and “ReducedFlowFloodDepthWorst”. 

 

6. Images of total damages for alternative ‘Floodway  1’ for the actual, the best and 

the worst scenario respectively, are obtained as follows: 

“reducedflow_total_damage”, “reducedflow_total_damage_optimal”  and 

“reducedflow_total_damage_worst”. 

 

 
 
 
 


