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1 INTRODUCTION 

1.1 Objectives and Organization of the Report 

This report provides a detailed description of the Risk Assessment Support System 

(RASS) for use in municipal water supply.  The report explores the utility of the 

developed support system for evaluating the performance of a complex water supply 

system.  A regional water supply system for the city of London is used as the case study.  

The theoretical foundations and computational requirements for the implementation of 

the RASS are provided in the report. 

 

This chapter introduces fuzzy and probabilistic approaches that are used to handle 

different aspects of uncertainty.  Calculation of different risk measures, simulation, 

optimization and multi-objective analysis using both approaches are explained in details 

focusing on their application to water supply infrastructure systems. 

 

Chapter 2 provides a detailed description of RASS and its tool boxes.  Chapter 3 explores 

the utility of the quantitative risk assessment component (QNRA) of RASS for evaluating 

the performance of a complex water supply system.  In this chapter, the sensitivity of 

fuzzy risk measures to the different shapes of fuzzy membership functions is explored 

first.  The utility of the fuzzy simulation, optimization, and multi-objective analysis 

toolboxes is demonstrated afterwards.  Finally, the conclusions of the analysis performed 

in Chapter 3 are presented in Chapter 4. 
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1.2 Introduction 

The improvement in performance and service quality of engineering systems are widely 

recognized targets for meeting, both public needs and expectations.  Special attention is 

given to systems providing essential services that directly affect the health and wellbeing 

of the human population.  Organizational and management procedures are the core of the 

targeted performance improvement so, (Alegre, 2004).        

 

Most of the engineering systems that provide essential services, such as water supply, 

have been growing in size and complexity due to the rapid population growth.  As a 

result, those large and complex engineering systems will be exposed to wide range of 

possible future conditions.  Risks of systems failure are often unavoidable, (Ang and 

Tang, 1984).  Uncertainties associated with the quantification of potential failure 

conditions are imposing a great challenge to systems‘ design, planning and management.  

Therefore, the assurance of satisfactory and reliable system performance cannot be 

simply achieved.  Quantification of risk due to these uncertainties is a pivotal step in the 

engineering risk and reliability analysis.   

 

Uncertainty is measured using different system performance measures and figures of 

merit to evaluate its consequences for the safety of engineering systems.  Performance 

measures are the main components of many standardized performance assessment 

procedures (Alegre, 2004). 
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The probabilistic (stochastic) reliability analysis has been extensively used to deal with 

the problem of uncertainty in many engineering systems (Modarres et al., 1999).  In the 

probabilistic approach, the analysis involves describing systems’ resistance and load as 

belonging to respective possible probability distributions.  Probabilistic approach depends 

on non-deterministic models that incorporate a measure of randomness as a way to 

express uncertainty, (Klir and Yuan, 1995).  Therefore, system reliability may be 

realistically measured in terms of probability.  The principle objective of the probabilistic 

reliability analysis is to insure that the load does not exceed the resistance throughout a 

specified time horizon in terms of probability.  Prior knowledge of the probability density 

functions of both, resistance and load, and/or their joint probability distribution function 

is a prerequisite.  However, the characteristics of resistance and/or load cannot always be 

measured precisely or formulated using a proper probabilistic conceptualization, 

especially in the absence of necessary data.  Therefore, the probabilistic approach fails to 

address the problems of human error, subjectivity, and the lack of system performance 

history and records. 

   

The concept of fuzzy sets is a conceptual and mathematical framework within which 

imprecise and vague phenomena can be studied, (Zimmermann, 1996).   Fuzzy set theory 

and fuzzy logic are used to overcome ambiguity or lack of knowledge in human 

conception of real life phenomena as a source of uncertainty.  The basic definition of a 

fuzzy set is that it is characterized by a membership function mapping the elements of a 

domain, space, or universe of discourse G to the unit interval [0,1], (Pedrycz and 

Gomide, 1998) that is 
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A : G [0,1]›   ……….(1) 

 

where: 

A is the fuzzy set in universe of discourse G; and 

G is the domain, or the universe of discourse. 

 

The characteristics of resistance and/or load in engineering systems cannot always be 

measured precisely or treated as random variables.  Moreover, application of probabilistic 

reliability analysis is invariably related to the availability of data that can be used to 

determine probability distribution functions to be used, objectively or subjectively.   Data 

insufficiency is a well-known problem in almost all engineering problems and is dealt 

within the probabilistic approach by using the Bayesian approach or the subjective 

probability estimation.   

 

Bayesian method is one of the rigorous ways of dealing with uncertainty, especially when 

combined with multi-attribute utility theory to incorporate the variability in system 

performance and uncertainty in system parameters.  The difficulty in the development of 

the utility function and its ability to capture the priorities of all interest groups in 

decision-making process are the main drawbacks of this method, (Hashimoto et al, 1982).   

 

Subjective probability, on the other hand, is a description of state of information (or state 

of uncertainty) where the degree of information is interpreted as a degree of belief, 

related to the personal state of information, (Spizzichino, 2001).  To be valid, the 
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subjective probability approach (i) should reflect the belief of the assessor of the 

uncertainty, and (ii) should be consistent with the basic probability axioms.   

 

Decision-making processes involve multi-disciplinary teams from all fields and decision-

makers might not be able to match these requirements.  People’s judgment and believes 

are rarely expressed using mathematical tools.  They prefer to use what is known as 

heuristic, or simple mental strategies, to express uncertainty.  These heuristic strategies 

are usually successful tools for dealing with the uncertainty. However, they may 

introduce bias or inconsistencies with the mathematical probability principles, (Vick, 

2002).    

 

Fuzzy set theory was intentionally developed to try to capture people judgmental 

believes, or as mentioned before, the uncertainty that is caused by the lack of knowledge.  

Relative to the probability theory, it has some degree of freedom with respect to 

aggregation operators, types of fuzzy sets (membership functions), etc, which enables the 

adaptability to different contexts.  During the last twenty years, fuzzy set theory and 

fuzzy logic contributed successfully to the technological development in different 

application areas such as mathematics, algorithms, standard models, and real-world 

problems of different kinds, (Zimmermann, 1996).   

 

Probabilistic and fuzzy set approaches provide complementary conceptual and 

computational frameworks for representing and addressing the uncertainties in the real-

world engineering systems, (Pedrycz and Gomide, 1998).  The developed risk assessment 
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support system incorporates both approaches for engineering risk and reliability analysis.  

It also provides support for engineering systems simulation, optimization and multi-

objective analysis.  Therefore, the decision support system can be used for integrated risk 

management.    

 

1.3 RASS Purpose and Architecture 

The complexity of water supply systems due to a large number of interdependent 

physical constituents and subsystems, together with multi-level decision making process, 

present a great challenge to the efforts in disaster risk management.  The present work 

aims at the development of a decision support system for (a) qualitative framing of the 

disaster risk to water supply systems; (b) quantitative disaster risk assessment; and (c) 

integrated disaster risk management.  The main objective of RASS is to identify potential 

hazards, estimate the impacts of each hazard and propose possible improvements and 

management actions which will significantly reduce the risk.  The support system 

consists of two main components; (i) qualitative risk assessment component (QLRA), and 

(ii) quantitative risk assessment component (QNRA).  

 

1.3.1 Qualitative Risk Assessment Component (QLRA) 

The QLRA component examines and evaluates the user’s information on the risks 

associated with the water supply system under consideration.  It, also, assists the user in 

experimenting with the available management toolboxes within QNRA component (such 

as simulation, optimization, and multi-criteria analysis) to decide on the appropriate 

action scenarios.  The user is presented with ten questions for which a combination of 
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Yes/No and numerical answers is required to initiate the QNRA component and perform 

the quantitative risk analysis.  Appendix I contains a list of the ten questions together 

with comments and directions to guide the user of RASS.  

 

The QLRA consists of two main steps; (i) evaluation of risk knowledge, and (ii) 

development of action scenario.  The first step explores the user’s knowledge of risk, it 

cause and possible impact.  The result of this step is a list of causes and impacts together 

with estimations of contribution of each cause to overall risk hazard.  The second step 

uses the results of the previous step to investigate the effects of possible action scenarios 

on risk mitigation using the QNRA toolbox.  The result of this step is a list of suggested 

system improvements which can guide future management decisions, as shown in Figure 

1.        

 

1.3.2 Quantitative Risk Assessment Component (QNRA) 

The QNRA incorporates a set of tools for system performance evolution, simulation of 

system behavior and single and multi-objective optimization of system performance. 

Both, probabilistic and fuzzy approaches are incorporated in the QNRA as illustrated in 

Figure 1.  The QNRA consists of two toolboxes; (i) Probabilistic Toolbox, and (ii) Fuzzy 

Toolbox.  The probabilistic toolbox provides access to (a) Performance evaluation tool 

that calculates reliability, resiliency and vulnerability measures; (b) Simulation tool; and 

(c) Optimization tool.  The fuzzy toolbox contains: (a) Performance evaluation tool that 

calculates combined fuzzy reliability-vulnerability, fuzzy robustness and fuzzy resiliency 

measures; (b) Fuzzy Simulation tool; (c) Fuzzy Optimization tool; and (d) Fuzzy Multi-
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Objective Analysis tool.  A detailed description of RASS and its management toolboxes 

follows in Chapter 2.   

 

  

Figure 1. Interaction between the two main components of the risk assessment 

support system (RASS). 
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1.4 Basics of the Fuzzy Reliability Analysis 

Engineering system risk and reliability analysis uses load and resistance as the 

fundamental concepts to define the risk of system failure, (Simonovic, 1997).  Load and 

resistance are used in structural engineering to reflect the characteristic behavior of an 

engineering system under external loading conditions.  System load is defined as the 

variable that reflects different loading conditions that may be imposed over the useful life 

of the system, (Ang and Tang, 1984).  System resistance, on the other hand, is defined as 

the system characteristic variable which describes the capacity of the system to resist 

potential loading conditions.    

 

The fuzzy reliability analysis uses membership function concept (MF) to express 

uncertainty in both - load and resistance - variables.  The general representation of a 

membership function is: 

 

X X
X = {(x,µ (x)) : x R; µ (x) [0,1]}Œ Œ$ $
$   ……….(2) 

 

where: 

X$   is the fuzzy membership function; 

X
µ (x)$   is the membership value of an element x to X$ ; and 

R  is the set of real numbers. 
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Membership functions are usually defined by their c -cuts.  The c -cut is the ordinary set 

of all the elements belonging to the fuzzy set whose value of membership is g or higher 

(see Figure 2): 

 

X
X(g) = {x : µ (x) g; x R; g [0,1]}‡ Œ Œ$   ……….(3) 

 

where 

X(g)    is the ordinary set at the g-cut; and 

g   is the membership value. 

 

Another characteristic property of the fuzzy membership function is its support.  The 

support of the fuzzy membership function can be defined as the ordinary set (see Figure 

2): 

 

X
S(X) = X(0) = {x : µ (x) > 0}$

$ $   ……….( 4) 

 

where 

S(X)$ is the ordinary set at the g-cut=0. 

 

The fuzzy membership function support is the 0-cut set and includes all the elements with 

the membership value higher than 0, as shown in Figure 2. Construction of a membership 

function is based on the system design data and choice of the suitable shape.  There are 
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many shapes of membership functions.  However, the application context dictates the 

choice of the suitable shape.  Triangular and trapezoidal shapes are the simplest MF 

shapes that are widely used in the literature.   

 

 

 

 

 

 

 

 

 

Figure 2. Support and g-cut of the fuzzy membership function (after Ganoulis, 

1994). 
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measure, and (iii) resiliency measure.  The proposed fuzzy measures quantify the 

reliability, vulnerability, robustness and resiliency of multi-component engineering 

systems reflecting different systems’ configurations.  These measures provide a tool to 

assess system performance through the introduction of a wide variety of uncertain 

conditions.   

 

Fuzzy performance measures use membership functions to represent both uncertain load 

and resistance of various system components.  The load-resistance problems are usually 

formulated in terms of the safety margin or the factor of safety. Therefore, the load and 

resistance membership functions, for each system component, are aggregated into one 

membership function representing the component-state membership function, defined as 

follows 

 

S(m) X Y

and

X
S( )

Y

? /

?

$ $ $

$
$

$
s

  ……….(5) 

where: 

X$  is the fuzzy supply; 

Y$  is the fuzzy demand;  

S(m)$  is the component-state membership function of the margin of safety; and  

S( )$ s  is the component-state membership function of the factor of safety. 
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The calculation of fuzzy performance measures depends on the definition of 

unsatisfactory system performance.  For most engineering systems it is challenging to 

arrive at a precise definition of failure because of the uncertainties in determining system 

resistance, load, and the acceptable unsatisfactory performance threshold.   Therefore, a 

fuzzy membership is used to represent the acceptable level of system performance:  

 

1

1 2

2

1

1 2

2

0, if m m

M(m) = l(m), if m [m ,m ]

1, if m m

or

0, if し し

(し) = l(し), if し [し ,し ]

1, if し し

~Ê
Í

ŒË
Í ‡Ì

~Ê
Í

S ŒË
Í ‡Ì

$

$

  ……….(6) 

 

where: 

M$   is the fuzzy membership function of margin of safety; 

l(m)  and l(し)  are functional relationships representing the subjective view of the 

acceptable risk; 

1 2m ,m   are the lower and upper margin of safety bounds of the acceptable failure region 

respectively;  

S$  is the fuzzy membership function of factor of safety; and 

1 2し ,し  are the lower and upper safety factor bounds of the acceptable failure region,              

respectively. 
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Figure 3 is a graphical representation of the definition presented in Equation 6.  The 

lower and upper bounds of the acceptable failure region are given in Equation 6 as 1m  (or 

1し ) and 2m (or 2し ).  The value of the margin of safety (or factor of safety) below 1m  (or 

1し ) is definitely unacceptable.  Therefore, the membership function value is zero.  The 

value of the margin of safety (or factor of safety) above 2m  (or 2し ) is definitely 

acceptable and therefore belongs to the acceptable failure region. Consequently, the 

membership value is one.  The membership of the in-between values varies with the 

subjective assessment of a decision maker.   Different functional forms may be used for 

l(m) (or l(し) ) to reflect the subjectivity of different decision makers’ assessments.  The 

freedom given by this definition of failure, through the choice of the lower bound, upper 

bound, and the function l(m) (or l(し) ) facilitates the introduction of the ambiguity of 

risk acceptance exhibited by different decision-makers.  This approach, also, provides an 

easy and comprehensive tool for risk communication.  That has been acknowledged as 

the major problem in the application of probabilistic approach.     

 

High system reliability is reflected through the use of high values of margin of safety (or 

factor of safety), i.e. high values for both 1m and 2m  (or 1し  and 2し ).  The difference 

between 1m and 2m  (or 1し  and 2し ) inversely affects the system reliability, i.e. the higher 

the difference, the lower the reliability.   
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Figure 3. Fuzzy representation of an acceptable failure region.  
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where: 

 LR is the reliability measure of the acceptable level of performance. 
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Combined fuzzy reliability-vulnerability performance measure  

The compatibility between the system-state and the acceptable level of performance 

membership functions is the basis for the calculation of the combined fuzzy reliability-

vulnerability performance measure.  It is illustrated in Figure 4 and calculated as follows: 

 

Weighted overlap area
Compatibility Measure (CM) =

Weighted area of system - state function
 ……….(8) 

 

Therefore, the fuzzy combined reliability-vulnerability performance measure can be 

expressed as follows: 

 

} ’

} ’i21
Ki

maxi21
Ki

f
LR,.........LR,LRmax

LRCM,.........CM,CMmax
RE

Œ

Œ
·

?    ……….(9) 

 

where: 

fRE  is the combined fuzzy reliability-vulnerability measure; 

maxLR  is the reliability measure of the acceptable level of performance with which 

the system-state has the maximum compatibility value(CM); 

LRi is the reliability measure of the i-th acceptable level of performance; 

CMi is the compatibility measure for system-state with the i-th acceptable level 

of performance; and 

K is the total number of defined acceptable levels of performance. 
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Figure 4. Fuzzy combined reliability-vulnerability measure based on the 

compatibility measure. 
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2CM  is the compatibility measure after the change in conditions. 

 

 

Figure 5. Fuzzy robustness measure based on the compatibility measure with 

different acceptable levels of performance. 

 

Fuzzy resiliency performance measure 

The time required to recover from the failure state can be represented as a fuzzy set.  The 

reasons for failure may differ; therefore, the system recovery time will vary with the type 

of failure.   A series of fuzzy membership functions can be developed to allow for various 

types of failure.   The maximum recovery time is used to represent the system-failure 

recovery time (Kaufmann and Gupta, 1985):    

 

1 2 J 1 2 J1 1 1 2 2 2
j J j J

T(g) = max[t (g), t (g),......., t (g)], max[t (g), t (g),......., t (g)]
Œ Œ

Ã Ô
Ä Õ
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$  ……….(11) 
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where: 

c is the membership value or c-level; 

T(g)$ is the system fuzzy maximum recovery time at c -level; 

J1t (g) is the lower bound of the j-th recovery time atc -level; 

J2t (g) is the upper bound of the j-th recovery time atc -level; and 

 J is total number of failure events.    

 

The system-failure membership function is used to calculate the fuzzy resiliency 

performance measure, as follows   

 

2

1

2

t

-1

t

t

f t

t

t T(t) dt
RS =

T(t) dt

Ç ×
È Ù
È Ù
È Ù
È Ù
È ÙÉ Ú

Ð

Ð

$

$

  ……….(12) 

 

where; 

fRS is the fuzzy resiliency measure; 

T(t)$ is the membership function of system maximum recovery time; 

1t is the lower bound of the support of the system recovery time ; and 

2t is the upper bound of the support of the system recovery time. 
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1.4.2 Multi-Component Systems 

Engineering systems are made up of a variety of interconnected subsystems. Each 

subsystem has multiple components where the configuration of interconnections affects 

the overall system performance.  Multi-component systems have several system-state 

membership functions representing the system-state of each component.  Aggregation of 

these membership functions results in a system-state membership function for the whole-

system.          

 

Aggregation of System-State Membership Functions 

The main configurations of multi-component systems are; (i) serial, (ii) parallel, and (iii) 

combined.  For each component, a fuzzy membership function, representing the 

component’s state, can be determined based on the component’s load and resistance.  The 

overall system-state is then determined using the system configuration. 

 

Let us assume that a serial system is composed of I components, as shown in Figure 6a. 

The i-th component has a state membership function iS (m)$ , defined on the universe of 

discourse M.  The weakest component, in terms of system-state, controls the whole 

system-state.  Therefore, the system-state can be calculated as follows:  

 

* +1 2 I
I

S(m) = min S ,S ,.........,S$ $ $ $    ……….(13) 

 

where: 
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S(m)$ is the system-state; and 

* +1 2 IS ,S ,.........,S$ $ $  are component system-states.  

 

An example of a parallel system configuration composed of J components is shown in 

Figure 6b.  The j-th component has a state membership function jS (m)$ , defined on the 

universe of discourse M.  All states of the components contribute to the system-state.   A 

system failure occurs if all the components fail.  Hence, the system-state can be 

calculated as follows:    

 

J

j

1

S(m) = S (m)Â$ $    ……….(14) 

 

where: 

jS (m)$ is the m-th component system-state; and 

J is the total number of parallel components.  

 

Combined systems are systems with parallel and serial subsystems.  The system-state in 

this case can be arrived at by calculating subsystems-states according to Equations 11  

and 12.   
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Figure 6. A serial (a) and a parallel (b) system configurations 

 

Aggregation of recovery time membership functions 

The aggregation of recovery time membership functions (required for calculation of 

fuzzy resiliency) is achieved in a different way from the aggregation of system-state 

membership functions.  System-state membership function determines the performance 

(or state) of the system that can be satisfactory or unsatisfactory.   Therefore, aggregation 

is based on the contribution of each component to the system state.  Recovery time 

function, on the other hand, is the characteristic of  the system in failure state.   

 

For a serial system configuration of I components, the i-th component has a maximum 

recovery time membership function iT (t)$ , defined on the universe of discourse T.  The 

component having the longest recovery time controls the system recovery time.  

Therefore, the system recovery time can be calculated as follows:    

 

cT(t) = T (t)$ $       ……….(15) 

1 2 I

1 

2 

J 

(a) (b) 
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given 

 

* +

* +

c 1 2 I
I

c 1 2 I
I

S(T ) = max S(T ),S(T ),.........,S(T )

and

T (1) = max T (1),T (1),.........,T (1)

$ $ $ $

$ $ $ $

  ……….(16) 

 

where: 

T(t)$ is the system recovery time; 

 cT (t)$ is the controlling recovery time; 

cS(T )$ is the support of the controlling recovery time fuzzy  membership functions; 

* +1 2 IS(T ),S(T ),.........,S(T )$ $ $  are the support sets of N components; 

cT (1)$ is the controlling recovery time set at the c-cut level=1; and 

* +1 2 IT (1),T (1),.........,T (1)$ $ $  are the recovery time sets at credibility level=1 of the I 

components. 

 

In a parallel system of J components, the j-th component has a maximum recovery time 

membership function jT (t)$ , defined on the universe of discourse T.    The total failure 

event equals the failure of every component in the system.  As a result, the membership 

function of system recovery time can be calculated as follows:    
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* +1 2 J
J

T(t) = max T ,T ,.........,T$ $ $ $    ……….(17) 

where: 

T(t)$ is the system recovery time; and 

* +1 2 JT ,T ,.........,T$ $ $  are component recovery times. 

 

The combined system recovery time membership function can be determined by 

calculating subsystems recovery time membership functions according to either Equation 

15 or 17.   

 

1.4.3 Fuzzy Simulation 

Engineering risk and reliability analysis is a general methodology for quantification of 

uncertainty and evaluation of its consequences for the safety of engineering systems 

(Ganoulis, 1994).  Simulation and optimization techniques are the core of the risk 

assessment and management process.  They provide vital tools for system performance 

analysis which guide decision-making process (Haimes, 2004).  Computer simulation 

model is a formal attempt to construct a computer model of a complex real engineering 

system to make adequate predictions of its behavior under different initial and boundary 

conditions, (Pedrycz and Gomide, 1998).    Deterministic and stochastic simulation 

models are commonly used to simulate performance of the engineering systems.  Fuzzy 

simulation can be an appropriate approach to include various inherent uncertainties of 

engineering systems into the simulation process. Several commonly used classes of fuzzy 



 25

simulation models are; (i) fuzzy-relational equations, (ii) fuzzy neural networks, and (iii) 

fuzzy regression models.  

 

The fuzzy simulation toolbox of the developed QNRA uses the fuzzy regression to 

simulate the dependency of system output on its inputs.  Fuzzy regression models are 

simple tools capable of capturing system uncertainties using fuzzy system parameters.  

The dependency of an output variable on input variables (Klir and Yuan, 1995) is 

expressed as follows: 

 

i i

1

F = C
?
Â $$

n

i

z  ……….(18) 

     where: 

F$  is the system fuzzy output variable,  

iC$  are fuzzy coefficients; and 

iz  are the system real-valued input variables. 

 

For example, for given m-set of crisp data observations of system input and output, i.e. 

(a1,b1), (a2,b2),…. (am,bm),  the fuzzy regression toolbox calculates the fuzzy parameters 

of the assumed model that represent the best fit of these observations. 

   

Using a symmetric triangular fuzzy membership function to represent the fuzzy 

coefficients in the form (Klir and Yuan, 1995), 
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i

i i i i

i i

c - c
1- , if c v c c v

C (c) = v

0, elsewhere

Ê
/ ~ ~ -Í

Ë
Í
Ì

$   ……….(19) 

 

where: 

 ic  is the value at which the parameter iC (c)$  membership value=1; and 

 iv  is half of the support of iC (c)$ . 

   

The output variable is also a symmetric triangular fuzzy membership number in the 

following form (Klir and Yuan, 1995), 

 

T

T

f - Z c
1- , if z 0

v Z

F(f) = 1, if z 0, f 0

0, if z 0, f 0

Ê
Í ”
Í
Í

? ”Ë
Í
Í

? ?Í
Ì

$   ……….(20) 

for all fŒR 

 

where: 
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 T denotes the transposition operation. 
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Therefore, the problem is converted into finding the c and s vectors such that  F(f)$  fits 

the observations as good as possible.  The two criteria of goodness of fit are: (i) for each  

given input observation zj, the output observation, fj, should belong to the corresponding 

fuzzy number jF$  with a grade greater or equal than given h value, as shown in Figure 7, 

where h ] _1,0Œ ; i.e. j jF (f ) h‡$  for each j mŒ ; and  (ii) The total non-specificity of the 

fuzzy parameters must be minimized.  Non-specificity of parameter Ci is expressed by 

the value vi.    

 

Therefore, the problem of regression parameter selection can be formulated as simple 

linear programming optimization problem: 

 

n

i

i 1

T T

j j j

i

min imize v

subject to (1 h)v z f z c 0, j m

v 0,i n

?

/ / / ‡ Œ

‡ Œ

Â

  ……….(21) 

 

Chapter 2 explains in details the procedure of fuzzy simulation using the fuzzy simulation 

toolbox of the QNRA.  Chapter 3 provides an example of numerical application to clarify 

this procedure. 
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Figure 7. Typical example of fuzzy regression model: F = Cz$$  (after Terano et al, 

1991) 

 

1.4.4 Fuzzy Optimization 

Optimization is a mathematical process through which the optimum (maximum or 

minimum) value of a given objective function is achieved that satisfies a set of 

constraints (Onwubiko, 2000).  In 1970 Bellman and Zadeh suggested an optimization 

model for decision making in a fuzzy environment when the objective function and the 

constraints are characterized by their fuzzy membership functions.  Based on the analogy 

to a non-fuzzy decision making, they suggested the use of the intersection of the fuzzy 

objective function and fuzzy constraints to obtain the optimum fuzzy decision (elaborated 
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by Zimmermann, 1996).  Figure 8 depicts the fuzzy optimization process, which can be 

formulated as follows: 

 

Figure 8. A fuzzy decision by optimization. 

 

D(d) = O(o) C(c)®$ $$ ……….(22) 

where 

D(d)$  is the fuzzy membership function of the decision, 

O(o)$  is the fuzzy membership function of the objective function, 

C(c)$  is the fuzzy membership function of the constraint(s); and 

®       is the fuzzy intersection operator. 

  

Replacing the fuzzy intersection operator by the minimum operator for N constraints, the 

previous equation can be rewritten in the following form: 
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1 2 j
j N

D(d) = {O,C (c),C (c),...,C (c)}min
Œ

$ $ $ $$ ……….(23) 

 

where 

jC (c)$  is the fuzzy membership function of the j-th constraint; and 

N   is the total number of constraints. 

 

Zimmermann (1996) states that minimum operator is not the appropriate operator to be 

used in modeling the aggregation of fuzzy membership functions representing managerial 

decisions , i.e. as in optimization.  The fuzzy optimization toolbox of the QNRA uses the 

fuzzy linear programming to model the optimization problem in a fuzzy environment. 

 

The classical linear programming problem defines the decision probelm by a set of 

constraints and objective function.  This problem can be formulated as follows: 

  

Tmaximize f(x) = c x

subject to Ax b

x 0

~

‡

……..(24) 

where 

Tc  is the coefficient vector; 

x is the decision variable vector; 

A is the constraints’ coefficient matrix; and 

b is the constraint limiting value vector. 
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Vagueness can be introduced to the classical Linear Programming (LP) problem in 

different ways.  For example, the objective function can be used to represent goals 

(objectives) that can not be defined by a crisp value.  All the coefficients in Equation 24 

can, also, be represented by a fuzzy set to express vague perception.  Fuzzy 

representation of Equation 24 allows marginal valuation of the constraints which can not 

be achieved using the classical LP problem, where any violation of constraints discards 

the solution.  In addition, different degrees of violation can be introduced thought the use 

of the fuzzy formulation of the LP problem.  It has to be noted that there is not a unique 

fuzzy LP model that fits all optimization problems.  A variety of models exist depending 

on the context of the problem and the accompanying assumptions.  The maximization 

problem, expressed by Equation 24 can be converted into the fuzzy format, where the 

decision maker can not precisely define both, the objective function and the constraints, 

as follows (Zimmermann, 1996): 

 

  

Tmaximize c x z

subject to Ax b

x 0

‡

~

‡

$

$ ……..(25) 

 

 where  ‡
~

 and  ~
~

 are the fuzzy forms of  ‡  and  ~ , respectively.  The desired level z is 

introduced in the Equation 25 to express decision-makers’ uncertainty in the optimization 

problem.  The previous equation can be re-written as follows, (Zimmermann, 1996): 

 



 32

find x such that Bx b

x 0

~

‡

$
……..(26) 

 

where  
c

B
A

/Ã Ô
? Ä Õ
Å Ö

 and 
z

d
b

/Ã Ô
? Ä Õ
Å Ö

 

 

The model represented by Equation 26 includes m +1 rows, where m is the number of the 

constraints and 1 refers to the addition of the objective function.  Each row of Equation 

26 is a fuzzy set represented by a fuzzy membership function i (x)o , that represents the 

degree to which x fulfils the fuzzy inequality i iB x d~$   (Zimmermann, 1996).  Using the 

triangular shape of the membership function to represent i (x)o  as follows: 

 

i i

i i
i i i i i

i

i i i

1 if B x d

B x d
(x) 1 if d B x d p

p

0 if B x d p

Ê ~
Í

/Í
o ? / > ~ -Ë

Í
Í @ -Ì

……..(27) 

where pi is the subjective tolerance which is used to express admissible violations of the 

objective function and the constraints. 

 

The resultant of the optimization problem in Equation 26 is an optimal fuzzy set.  The 

decision makers sometimes prefer the use of crisp optimal solution rather than optimal 

fuzzy set.  Therefore, the maximum of the Equation 26 gives the required crisp optimal 

solution (Zimmermann, 1996) 
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iD
j (m 1)x 0 x 0

(x) = { (x)}max max min
Œ -‡ ‡

o o$ ……..(28) 

 

1.4.5 Fuzzy Multi-Objective Analysis 

Water resources planning, designing and management problems are characterized by 

multiple and conflicting objectives (Haimes, 1998).  Therefore, an optimal solution for a 

real problem under multiple objectives can not be attained.  Solutions to those problems 

are often reached through the analysis of trade-offs between multiple objectives (Akter 

and Simonovic, 2002). 

 

Decisions in water resources problems have to be made under conflicting objectives, 

uncertain, imprecise and incomplete knowledge.  To face those problems, the vagueness 

and incompleteness of the available information has to be represented properly (Perny 

and Roubens, 1998). The use of the fuzzy set theory in multi-objective analysis provides 

a way for capturing and incorporating vagueness uncertainty into decision making.      

 

A classical multi-objective problem consists of a vector Z(x)  of n-objective functions to 

be optimized (maximized or minimized) as follows: 

  1 2 nZ(x) [Z (x), Z (x), Z (x)]? 4 ……..(29) 

 

  where: 

x XŒ  and; 

x  is the solution space. 
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Different x values result in different values for each objective function of the vector 

Z(x) .  Optimization of the vector of objective functions can not be achieved. The 

decision maker preferences are required to obtain an optimal solution. Akter and 

Simonovic (2002) state that without the decision maker preferences the objectives are 

“incommensurable and incomparable”.  

 

 A variety of multi-objective analysis techniques exists that are used to identify the trade-

off solutions of a multi-objective problem.  The compromise programming technique is 

one of multi-objective techniques commonly used in water resources management, 

(Akter and Simonovic, 2002).  Therefore, the fuzzy version of this technique is used in 

the RASS.  The compromise programming uses a distance metric, i.e. a measure of 

distance from the ideal solution, to identify the compromise subset (Prodanovic and 

Simonovic, 2003).  Figure 9 shows an example of a two-objective problem. The distance 

metric Li exists for each alternative Ai that determines its closeness to the ideal solution.  

The distance metric is calculated as follows, (Prodanovic and Simonovic, 2003): 

 

1

p p*j
p z z

i z *
z 1 z z

f f
L w

f f /
?

Ç ×Ê ÛÃ Ô/Í ÍÈ Ù? Ë ÜÄ Õ
/È ÙÅ ÖÍ ÍÌ ÝÉ Ú

Â ……..(30) 

 

Where: 

z represents objectives 1,2,3…..j; 

i represents alternatives 1,2,…..n; 
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iL  is the distance metric of alternative i; 

z
w is the subjective weight of objective z; 

 p is a parameter p=(1,2,¢); 

*

zf  and zf /  are the best and worst value of objective z; and 

zf  is the actual value of objective z. 

 

 

Figure 9 Compromise programming method for a two-objective problem, (after 

Akter and Somonovic, 2002)       

 

Prodanovic and Simonovic (2003) state that “The parameter p corresponds to the weight 

(importance) given to the maximal deviation from the ideal solution”.  This parameter 

assumes positive values ranging from 1 to ¢.  As mentioned earlier, the decision-maker 

preferences are important in order to obtain the best compromised solution.  They are 

introduced as the weights 
z

w  in Equation 30.  Subjective nature of water resources 
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problems requires proper tool for addressing subjective uncertainties.  Fuzzy set theory is 

a better tool for addressing subjective uncertainties than the set theory.  This is generally 

true, especially when dealing with criteria weights, deviation parameter and positive and 

negative ideals.   

 

Fuzzy Compromise Programming is introduced by transforming all the crisp (single) 

inputs of Equation 30 into fuzzy inputs using the extension principle.  Therefore, the 

distance between the ideal solution and any alternative can not assume crisp value as 

several other distances have relative belonging (membership) (Bender and Simonovic, 

2000).  Therefore, fuzzy sets ranking methods have to be used to select the smallest fuzzy 

distance metric.  Several fuzzy sets ranking methods exist in the literature.  Prodanovic 

and Simonovic (2002) conducted a comparison of those methods and suggested the 

method of Chang and Lee (1994).  This report adopts the suggested method to be used in 

the fuzzy multi-objective analysis in the QNRA fuzzy toolbox.  

 

Change and Lee use an Overall Existence Ranking Index (OERI) Prodanovic and 

Simonovic (2003): 

 

1

1 1

1 jL 2 jR

0

OERI( j) w( ) ( ) ( ) d/ /Ç ×? c e o c - e o c cÉ ÚÐ ……..(31) 

 

Where: 

j  is a subscript for the j-th alternative,  
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1e  and 2e  are the subjective type weighting indicating neutral, optimistic or pessimistic 

preferences of the decision maker, given that 1 2 1e - e ? ; 

w( )c  is the parameter used to specify weights corresponding to certain degrees of 

membership c  (if any); and  

1

jL ( )/o c  and 1

jR ( )/o c  are the inverse of the left and right parts of the membership function, 

respectively.  

  

OERI is defined as “a sum of the weighted areas between the membership axis and the 

left and right inverses of a fuzzy number.”   (Prodanovic and Simonovic, 2003). 

 

1.5 Probabilistic Approach 

Probabilistic analysis examines the reliability of the engineering system from different 

perspective of potential improvements by taking into consideration risk and uncertainty 

(Haimes, 1998).  Several system performance measures can be used to quantify the 

associated risks and consequently identify potential areas for system performance 

improvement. 

 

1.5.1 Probabilistic Performance Measures 

Probabilistic reliability measure 

Reliability index is used to provide a description of the system performance in case of 

failure.  It depends on the number of failures during the life time of the system (Smith, 

2005):  

 



 38

NT ND

t,d

t 1 d 1

1 1
Z

NT ND ? ?

c ? ÂÂ ……..(32) 

 

where, 

Zt,d is the failure or non-failure state that takes 0 or 1 value, respectively, 

NT is the number of time periods; and 

ND is the number of dimensions of failure, (i.e.3= quantity, quality, and pressure). 

 

Failure or non-failure states are defined as the indicators of system state outside or inside 

the bounds of a given criteria, respectively.  It has to be noted that there can be maximum 

and minimum criteria values.  The system dimension, ND, refers to each step within the 

system where failure can occur. For example, the treatment process can fail in several 

locations (such as in Chlorination, filtration,…etc) that might result in an overall system 

failure. 

The NT value (number of time periods) refers to the length of the overall data record.  It 

is required that each dimension have a data record of identical length in order to facilitate 

calculations. 

 

Probabilistic resiliency measure 

The resiliency is a measure of how quickly a system recovers from a failure state. 

Failures can last for a single time step or can last for several consecutive time steps. 

Failures that last for several consecutive time steps are considered to be part of the same 

failure event. A new failure event is identified by a failure state following a non-failure 

state.  Resiliency is calculated as follows, (Smith, 2005) 
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1
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i ?
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Ä Õ
Å Ö

……….(33) 

 

where 

MD is the maximum duration of effective failure events; and 

NF  is the number of failure events. 

 

An effective failure is the failure that affects the system output.  The maximum duration 

of an effective failure is the length of the longest recorded failure event. That is, the 

longer the failure event the longer it takes to recover, therefore, the system is less 

resilient.  The number of failure events is the count of the number of time steps within 

which the system is in the failure state.  Failure events that occur in separate system 

locations are counted as distinct failures.   

 

Probabilistic vulnerability measure 

Vulnerability measures the consequences of the failure event.  It is calculated as follows, 

(Smith, 2005) 

 

* +
ND

k,d
k d 1

1 PMinimum
?

p ? /ß ……….(34) 

 

where, 
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Pk,d is a standardized measure of the failure consequences (i.e. a complete failure 

(maximum consequences)=1 and no failure=0); and 

K     is the failure event; and 

 

The standardized measure of failure takes the highest value, 1, in case of complete failure 

to indicate that the bad consequences are as great as possible.  It takes the lowest value in 

case of non-failure state where there are no bad consequences.  In between values are 

calculated based on the ratio between the system output and given criteria.  For example, 

if the system discharges 3 m
3
/sec and the failure criterion is set to be less than 5 m

3
/sec, 

then the standardized measure takes the value of 0.67.   

 

Measurements (system output) are examined across each dimension for each time step. 

The composite measure for each failure event is then the product of the Pk,d values for 

each dimension. The overall vulnerability, p  , is the smallest of the calculated k-product. 

 

1.5.2 Probabilistic Simulation 

The probabilistic simulation toolbox of the QNRA adopts the Markov model, as a 

probabilistic (stochastic) model that incorporates uncertainty due to randomness. This 

model provides the basis for Monte Carlo simulation used to create new data sets using 

the historical mean, standard deviation, and correlation, in addition to the type of 

distribution that the original data fit.  The QNRA simulation toolbox accommodates 

different distribution types; (i) normal, (ii) lognormal, (iii) Gamma, and (iv) Gumbel 

distribution.  
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It is important to initially characterize the historical data based on distribution type prior to 

the synthesis of a new series of similar distribution characteristics.  The data is fitted to a 

given cumulative distribution function. Its parameters, such as mean, standard deviation, 

and correlation are estimated using method of moments or least square estimator 

technique.  Once the historical data are characterized, new data sets of varying record 

lengths are synthesized using stochastic Markov chain Monte Carlo method: 

 

2

i i 1 QQ Q r(Q Q) tS 1 r/? - / - / ……….(35) 

 

where 

iQ  is the new data point, 

Q  is the mean of the historical data set, 

i 1Q /  is the previous data point, 

r is the correlation of the historical data set, 

t is a normal random deviation; and 

QS  is the standard deviation of the historical data set. 

 

It is also possible to simulate data sets that vary seasonally and have seasonally distinct 

means, standard deviation, and correlation by using the appropriate seasonal statistical 

parameters.  Markov chain simulation uses normally distributed random variables.  

Therefore, it is possible that negative values are generated. Whenever a negative value is 

generated, it is corrected and assumed to be zero.    
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1.5.3 Probabilistic Multi-Objective Analysis 

The objective of the probabilistic multi-criteria analysis is to minimize the distance to an 

ideal solution (which is always not feasible). The ideal for each probability measure will 

be the point that provides maximum value of reliability, resiliency, and vulnerability. The 

distance from the ideal point is calculated (Smith, 2005) as follows: 

 

ss s
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s s s 3 31 1 2 2
s 1 2 3* ** * ** * **
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….(36) 

Where, 

1z , 2z  and 3z   are reliability, resiliency, and vulnerability, respectively; 

*

iz  is the optimal solution for i criterion; 

**

iz is the worst solution for i criterion; and 

1d , 2d , and 3d are the weights and reflect the decision makers preferences  for each risk 

measure; and 

s is the exponent that weights the deviation from the ideal solution. 

 

The minimum distance from an ideal point is measured by Ls metric.  The best and the 

worst solution for each field are determined as the maximum and minimum value of the 

reliability, resiliency, and vulnerability measures.  Typical values for s are 1, 2, 3, and 

infinity.  The QNRA Probabilistic toolbox requires specification of s value to solve 

Equation 36 and identify the best compromise set of solutions.   
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2 RASS DESCRIPTION 

2.1 Introduction 

The Treasury Board of Canada Secretariat (2001) emphasizes the that “ the challenge for 

the public service of Canada is to approach risk management in a more integrated and 

systematic way that includes greater emphasis on consultation and communication with 

stakeholders and the public at large”.  This emphasis on “organization-wide” risk 

management supports the call for new risk assessment and management.        

 

It is difficult to precisely define Decision Support Systems (DSS), as they do not refer to 

specific area of specialty.  However, DSS(s) can be defined as interactive computer 

programs that help decision makers to make use of data and the advanced computer 

technology to effectively manage large and complex engineering systems, (Ejeta and 

Mays, 2004).  Therefore, it can be concluded that the main goal of all Decision Support 

Systems (DSS) is the improvement of the decision making process in terms of “problem 

identification and problem solving at all decision making levels” (Simonovic, 1996).  

Using new theoretical approach, capable of capturing qualitative knowledge, such as 

fuzzy set theory, together with other quantitative approaches provides the basis for new 

generation of intelligent DSS(s).  Simonovic (1996) refers to the intelligent decision 

support concept as the suitable link between engineering expertise and decision- and 

policy-makers. 
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2.2 RASS Components 

RASS consists of two main components; (i) quantitative risk assessment component 

(QNRA), and (ii) qualitative risk assessment component (QLRA).  The QNRA 

incorporates a set of components for the assessment of system performance, simulation of 

system behavior and optimization of system performance.  As shown in Figure 10, the 

QNRA component of RASS consists of two toolboxes; (i) probabilistic toolbox, and (ii) 

fuzzy toolbox.  The probabilistic toolbox provides access to (a) performance evaluation 

tool that calculates reliability, resiliency and vulnerability measures; (b) simulation tool; 

and (c) multi-objective analysis tool.  The fuzzy toolbox contains: (a) performance 

evaluation tool that calculates combined fuzzy reliability-vulnerability, fuzzy robustness 

and fuzzy resiliency measures; (b) fuzzy simulation tool; (c) fuzzy optimization tool; and 

(d) fuzzy multi-objective analysis tool.     

 

RASS Interface 

Haimes (1998) defines the risk assessment process as “a set of logical, systematic, and 

well-defined activities that provide the decision maker with a sound identification, 

measurement, quantification, and evaluation of the risk associated with certain natural 

phenomena or man-made activities”.  The previous definition emphasizes the importance 

of “sound identification” of the risk, as the first step of the risk assessment process.  

Therefore, RASS starts with an introductory screen providing two options for starting the 

risk assessment process, as shown in Figure 11.  If the user is starting a new risk 

assessment process he/she is guided to start the QLRA and identify different risks 
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associated with the system under consideration. This step assists the user to quantify 

different qualitative elements of risk (which uses vague and ambiguous linguistic terms).        

 

 

Figure 10 Quantitative risk assessment component (QNRA) of RASS. 
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Figure 11. RASS introductory screen. 

 

2.2.1 Qualitative Risk Assessment (QLRA) 

Qualitative assessment starts with the exploration of user’s risk knowledge, risk causes 

and potential impacts.  The result of this analysis is a list of causes and impacts together 

with estimations of contribution of each cause to risk hazards.  The user is introduced to 

10 questions.  A combination of Yes/No answers and numerical inputs is requested for 

each question.  Detailed presentation of all questions is provided in Appendix I.  Both, 

answers and numerical inputs, are used to clearly identify different risks and provide 

input for quantitative risk analysis using QNRA.  As shown in Figure 12 the questions 

introduced to the user are clarified with a guiding comment to help the user.  The 
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numerical inputs are requested after each “Yes” answer given by the user.  If the user 

answers “No” the QLRA moves to the next question.   

 

 

Figure 12. A typical QLRA screen. 

 

The calculation of fuzzy performance measures depends on the definition of 

unsatisfactory system performance.  Answering all the questions provided in the QLRA 

provides a means for evaluation of the fuzzy membership function(s) representing the 

acceptable level of system performance. 

 

Generally, the evaluation of fuzzy membership function requires subjective judgment of 

an expert decision maker.   Despic and Simonovic (1997) provides a review of different 

methods used to estimate fuzzy membership functions.  This study uses the piecewise 
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linear method to construct the acceptable level of performance using the information 

supplied by the user to the QLRA.  This method is chosen because the filter function F 

with two parameters can be applied directly to evaluate membership function of the 

acceptable level(s) of performance.  This function is mathematically expressed as 

follows: 
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$  ……….(37)   

 

where: 

b   is the crossover point, b = inf{x: x Œ  F( )c$ , c=0.5}, and 

w  is the width of fuzziness (the smallest distance between zero membership and unity 

membership). 

 

The values of w and b are determined based on the values supplied by the user to the 

QLRA.  High significance values of risk concerns imply fewer acceptances to system 

failure, as shown in Figure 13.  For example, if the average significance value of risk 

concerns (the total significance scores over their number) is 0.9, crossover point, b, will 

be 0.9 (in margin of safety units) or 1.9 (in safety factor units).  Crisp value (0) for 

margin of safety and (1) for safety factor are considered the basic values above which 

average significance value is added to estimate crossover point, b.  The width, w, is 
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considered to reflect the number of risk concerns.  Fewer risk concerns reflects higher 

confidence in the system and consequently smaller w value.  The user can identify 

different acceptable levels of performance by supplying different significance values in 

each run of the QLRA. 

 

 

Figure 13. Filter function (after despic and Simonovic, 1997). 

 

If the user used the QLRA before starting the fuzzy toolbox, the user can skip this step as 

the acceptable levels of performance have already been identified by the data of the 

QLRA. 

 

2.2.2 Quantitative Risk Assessment (QNRA) 

The QNRA incorporates a set of toolboxes for system performance evaluation, simulation 

of system behavior and single and multi-objective optimization of system performance. 

Both, probabilistic and fuzzy approaches are incorporated in the QNRA.  QNRA starts 
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with an introductory screen providing the user with two optional toolboxes as shown in 

Figure 14.   

 

The Fuzzy Toolbox 

Choosing the fuzzy toolbox button provides access to fuzzy tools.  Figure 15 shows the 

opening screen of the fuzzy toolbox. The screen is arranged into two main parts, the first 

part (left side of the screen) is concerned with the data input.  The numbers adjacent to 

the buttons refer to the sequence of data entry.    

 

 

Figure 14 QNRA opening screen. 

 

First, the user has to identify the system under consideration, then the type of the 

capacity-requirement relation to be used in the analysis.  Second, the acceptable levels of 

performance have to be specified by pressing the second button.  Completing these two 
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main input steps is mandatory to enable the tool to use different analysis tools, i.e. 

calculation of risk measures, simulation or optimization.  It has to be noted that the 

selection of a certain capacity-requirement relation will require expressing all acceptable 

levels of performance in the same manner, i.e. in terms of margin of safety or safety 

factor. 

 

 

Figure 15. Fuzzy toolbox screen. 

 

Selection of the “System Description” button will prompt the user to specify the name of 

the parameter(s) list file, as shown in Figure 16.  The parameter list file contains a list of 

all the parameters used in the analysis of the system (i.e. as an example for water supply 

system this list can include discharge, pressure and different water quality parameter).  

The toolbox will check the number of input data against the number of parameters and 

prompt the user if there is any inconsistency between the two files.   
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It has to be noted that all the data files used by the RASS are in the comma separated file 

format (.CSV format).  This format is selected because files in this format can be created 

easily with the help of any text editor.  Appendices II and III contains detailed steps of 

different toolboxes and samples of all the data files required by the QNRA.   

 

 

 

Figure 16 Water quality parameter list selection. 

 

The user, then, has to specify the type of membership function to be used in the analysis. 

Fuzzy reliability analysis requires membership functions to describe the uncertainty in 
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both, resistance (supply capacity) and load (water requirement), for each system 

component.  Construction of the membership function is based on the system design data 

and choice of a suitable function shape.  There are many possible shapes of membership 

functions.  However, the QNRA considers only the choice between the triangular and the 

trapezoidal shapes.  These are the simplest and most commonly used membership 

function shapes.  The RASS prompts the user for one of these two shapes.  Selected 

shape of the membership function requires the following input files to be consistent with 

that choice.  For example, choosing the trapezoidal shape requires four values in the input 

file, while the triangular shape requires only three points, as shown in Figure 17. 

 

 

Figure 17. Typical triangular and trapezoidal membership functions. 

 

The QNRA, then, prompts the user for the location of the supply capacity input file.  This 

file contains supply capacity data for all system components.  Figure 18 shows a part of 
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the resistance (supply capacity) Excel input file for a trapezoidal membership function.  

Heading row is included in Figure 18 only for illustrative purposes.  The listing of system 

components supply capacity data starts from the first row.  The sequence of columns 

(fields) for each component is:    

 

o Component Name: in this field the user inputs the name of a system component;  

o Component Type: this field is for the use with the probabilistic toolbox.  In the 

probabilistic toolbox, the water supply system is divided into three main 

subsystems; (i) source, (ii) treatment; or (iii) distribution.  Different components 

are fitted into those three subsystems.  The fuzzy toolbox uses different system 

components without any classification.   

o Component Number: order number of the system components. 

o Component Redundancy Group: redundancy group number.  Redundant 

components are the components which have a stand by component(s) to account 

for the failure of working components.  Redundant group numbers are set by the 

user without any specific considerations.   

o Component Parallel Group: parallel group number.  Parallel components are the 

components which work simultaneously.  Parallel group numbers are set by the 

user without any specific considerations. 

o Component Recovery Time: The time required to recover from the failure state 

can be represented as a fuzzy set, as in Equation 11.  A recovery time 

membership function is specified by three or four values according to the 

selected membership function shape.   
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Figure 18 Typical example of the (resistance) capacity input data file in Excel. 
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o Component Discharge: discharge capacity of each component in the water supply 

system membership function values (three or four points according to the 

selected type, as shown in Figure 17). 

o Component Pressure: Pressure capacity of each component in the water supply 

system membership function values (three or four points according to the 

selected type, as shown in Figure 17). 

o Component Water Quality: water quality capacity of each component in the 

water supply system membership function values (three or four points according 

to the selected type, as shown in Figure 17). The number of water quality 

parameters in this file should correspond to the number of water quality 

parameters used in the list file selected in the first step. 

 

The use of QNRA continues with the specification of a water requirements input file.  

This file contains all the fields as the supply capacity input file, except the component 

type, number, redundancy group, parallel group and recovery time.  Both files must have 

the same number of components; otherwise the RASS will alert the user of this mistake. 

 

The final step in system description is the required solution accuracy (alpha in Equation 

3).  Specifying a small value for alpha results in high solution accuracy and longer 

processing time.  Required value is a positive number between 0 and 1, Equation 3.    

 

The system description is completed with this step. The user is left to select one of the 

two available relations (margin of safety or safety factor) between the supply capacity 

and the water requirement by checking one of the check boxes on the screen.  Both 
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relations are equally useful.  The choice between either one is the sole preference of the 

decision maker.    

 

Acceptable level of performance 

The calculation of fuzzy risk measures depends on the specification of the acceptable 

level of performance by the decision maker.  Therefore, the following step in the use of 

fuzzy toolbox requires identification of the acceptable levels of performance for 

discharge, pressure and each water quality parameter.  The QNRA prompts the user for 

manual input of those data or the use of an already prepared file.  An example of the file 

content is shown in Figure 19, and is also in CSV format.   

 

The first column, column B in Figure 19, specifies the belonging of the level of 

performance to one of the three domains used in RASS: discharge, pressure, or water 

quality.  The second column, column C, is a title (name) given by the user to the level of 

performance.  Column E specifies the number order of the specified levels.  It has to be 

noted that the numbering, given in column E, is independent for discharge, pressure and 

each water quality parameter.  The total number of levels for discharge, pressure, and 

water quality parameters is given in column G.  The last two columns, columns I and J, 

are the required input values of the two points to numerically identify the level.  As 

shown in Figure 20, each level of performance requires two points for complete 

identification.  It has to be noted that the connection from point 1 to point 2 can assume 

different forms. A linear relation is assumed in the QNRA.   
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Figure 19 An example of the acceptable level of performance file. 

 

 

Figure 20. Fuzzy membership function of the acceptable level of performance. 

 

If the user chooses to manually enter the levels file, the QNRA will start a Level Editor to 

assist the user in the preparation of input data.  Figure 21 shows the Level Editor where 

the user enters the level title and two numeric values for each level.  It has to be noted 

that the numeric values supplied are expressed in terms of margin of safety or safety 
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factor (according to the choice made previously).  As shown in Figure 21, the user has 

only to specify the title of the acceptable level of performance together with the two 

identification points.  Once the user has finished entering the data for all acceptable levels 

of performance belonging to a certain domain, the interface automatically changes the 

domain title and prompts the user to start entering its levels of performance.    

 

The values of the acceptable levels of performance membership functions are expressed 

in terms of safety factor or margin of safety, as in Equation 5.  For example, if the first 

point value is set to be 0.5 (expressed in terms of factor of safety), this indicates that the 

complete failure region is identified when the resistance (supply capacity) is less than 

half of the load (water requirement).  These input values are specified by the user based 

on his/her preferences which reflect personal perception of risk.  At the end of this step 

the QNRA has all the data required by the fuzzy tools to calculate the fuzzy performance 

measures.  

                       

Figure 21 Acceptable level of performance editor. 
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Fuzzy performance measures toolbox 

The three fuzzy performance measures suggested by El-Baroudy and Simonovic (2004) 

are used to quantitatively evaluate the performance of the system.  These measures are: 

(i) combined reliability-vulnerability measure, (ii) robustness measure, and (iii) resiliency 

measure.  Figure 22 presents the flowchart of the calculation process for water supply 

system domains, i.e. discharge, pressure and water quality parameters.  Equations 9, 10 

and 12 are used to perform the calculation of these measures.  Two fuzzy performance 

measures, reliability-vulnerability and robustness, are calculated for each domain.  

Therefore, the overall system fuzzy reliability-vulnerability measure is calculated to be 

the average of the fuzzy reliability-vulnerability index for each domain as follows: 

 

Â
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// ?
1i

N
ifSf

RE
N
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RE ……….(38) 

 

Where: 

Sf
RE /  is the system overall combined fuzzy reliability-vulnerability measure; 

N is the total number of domains, i.e. discharge, pressure, all water quality  

parameters; and 

if
RE /  the combined fuzzy reliability-vulnerability measure of the i-th domain. 
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The same applies to the fuzzy robustness index: 
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Where: 

Sf
RO /  is the system overall fuzzy robustness measure; 

N is the total number of domains, i.e. discharge, pressure, all water quality  

parameters; and 

if
RO /  the fuzzy robustness measure of the i-th domain. 

 

As shown in Figure 22, the calculation of the fuzzy risk performance measures starts by 

collecting system and level(s) input data.  Load and resistance fuzzy membership 

functions are created and the corresponding alpha cuts are calculated for each function.  

 

For each system component, load and resistance membership functions are combined in a 

single membership function in terms of load-resistance relationship specified by the user 

(i.e. margin of safety or safety factor).  Membership functions of redundant and parallel 

components are augmented to produce single membership function for each 

redundant/parallel group.  All membership functions are augmented with membership 

functions of other serial components to produce a single membership function for the 

whole system (i.e. system-state fuzzy membership function).   
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Figure 22 Flowchart of the fuzzy risk measures calculation for each domain. 
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Figure 22 (continued). Flowchart of the fuzzy risk measures calculation for each 

domain. 

 

Then, the overlap areas of the system-state membership function with different 

acceptable levels of performance are determined.  Equations 9, 10, 12 are used to 

calculate the three fuzzy performance measures.  These calculations are repeated for each 

system parameter (i.e. discharge, pressure, and water quality parameters).       
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Fuzzy simulation toolbox 

The QNRA fuzzy toolbox uses the fuzzy regression to simulate the dependency of the 

different system outputs to its inputs.  For example, the system discharge at certain time 

step t, depends on the system discharge of the previous time step, t-1, as follows 

 

t Q t-1Q = C .Q$ $  ……….(40) 

 

where: 

tQ$  is the system fuzzy discharge at time step t,  

QC$  is the discharge fuzzy simulation coefficient; and 

t 1Q /  is the crisp discharge at time step, t-1. 

 

Assuming that a set of crisp data observations of system discharge at different 

consecutive time steps, i.e. (Qt1-1, Qt1), (Qt2-1, Qt2),(Qt3-1, Qt3),….is given.  The fuzzy 

regression involves the calculation of the fuzzy parameter of the assumed model that 

represents the best fit of these observations.  Using a symmetric triangular fuzzy 

membership function to represent the fuzzy coefficient: 
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where: 

 qc  is the value at which the parameter QC (c)$  membership value=1; and 

 qs  is half of the support of QC (c)$ . 

   

It has to be noted that the output discharge at time step t will be a symmetric triangular 

fuzzy membership number in the following form 
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Therefore, the problem is converted into finding the cq and sq vectors such that  tQ (q)$  fits 

the observations as well as possible.  The two criteria of goodness of fit are: 

(i) For each given input observed discharge Qt1-1, the output observed discharge, Qt1, 

should belong to the corresponding fuzzy number tQ$  with a grade greater or equal than 

given h value, where h ] _1,0Œ ; i.e. t tQ (Q ) h‡$  for each t and.  The value of both h and 

the total number of simulation years is supplied by the user as shown in Figure 23. 

(ii) The total non-specificity of the fuzzy parameters is minimized.  Non-specificity of 

parameter cq is expressed by the value sq.    
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Therefore, the problem is formulated as a linear programming problem: 

 

q

q t 1 t t 1 q

q

min imize s

subject to (1 h)s Q Q Q c 0

s 0

/ // / / ‡

‡

  ……….(43) 

 

The QNRA fuzzy simulation toolbox solves this linear programming problem using the 

input observations and simulates discharge.  The simulated fuzzy output discharge is 

given in the form of a text file for each time step (i.e. three values for each time step since 

the resultant membership function is a symmetric triangular fuzzy membership function).  

The same process is performed for each domain, i.e. pressure and water quality 

parameters, where the user has to supply the tool with output membership grade h and 

simulation period for each domain. 

 

 

Figure 23 Fuzzy simulation toolbox. 
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Fuzzy optimization toolbox 

The fuzzy combined reliability-vulnerability and robustness indices are directly 

proportional to the compatibility measure, as in Equations 9 and 10.  That is, the bigger 

the overlap area between the system-state membership function and the acceptable level 

of performance the higher the value of both measures.  Therefore, the QNRA fuzzy 

optimization toolbox uses this direct relation to perform fuzzy optimization.  Maximizing 

summation of independent components’ state membership functions increases the overlap 

area, i.e. the compatibility with the corresponding acceptable level of performance.   If it 

is required to maximize the fuzzy resiliency index, the fuzzy optimization toolbox 

minimizes the summation of the recovery-time membership functions, as shown in Figure 

24.  The minimization problem is transformed into a maximization problem by 

multiplying the objective function by (-1).   

 

 

Figure 24 Fuzzy optimization toolbox. 
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This means that the QNRA optimization toolbox solves only maximization problems in 

the following form:     
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max imize X X X

subject to [A][X] [b]
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where: 

mX  is the m-th decision variable, 

[A]  is the constraints coefficients matrix, 

[X]  is the decision variable matrix, 

[b]  is the left hand side constraint limit vector; and 

~$  is the fuzzy form of the “smaller than”. 

 

If it is required to maximize water supply system discharge reliability.  The QNRA user 

has to specify system components that are to be maximized.  It is also required to specify 

different constraints on components discharge capacities.  The fuzzy optimization 

toolbox uses this information to maximize the summation of the discharge. 

 

Figure 25 shows a typical example of the input file that is to be used by the optimization 

toolbox.  The toolbox uses crisp decision variables and objective function.  Fuzziness is 

introduced to the optimization problem using the fuzzy inequality~
~

. This provides 

flexibility to the decision maker to express the constraints in less restrict approach.  As it 
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can be seen from Equation 44, all components are assumed to be of equivalent weight, 

i.e. the coefficients in the objective function are all set to be unity.  The solution of this 

fuzzy linear programming problem gives the optimal crisp values of the decision 

variables.  

 

 

Figure 25. Fuzzy optimization input file. 

 

Fuzzy multi-objective toolbox 

The fuzzy multi-objective analysis toolbox uses two CSV format input data files(without 

headings), as shown in Figure 26.  The first input file is the ideal and weights file.  In this 

file, positive (best), negative (worst) ideal values together with weights, for each 

criterion, are defined as fuzzy membership functions, as shown in Figure 27.  The second 

input file is another CSV format file with different alternatives to be analyzed by the 

toolbox, as shown in Figure 28. 

 

Then, the user has to specify the type of the fuzzy membership function to be used by the 

toolbox to start ranking alternatives.  The toolbox produces a summery report file 

containing the ranking of the alternatives for each decision-maker preferences (i.e. 9 
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values starting from 0.1-0.9, x1 and x2 values in Equation 31).  Appendix II includes 

detailed steps to use the toolbox together with examples of the output text file.  

 

 

Figure 26.  Fuzzy multi-objective toolbox. 

 

 

Figure 27. Fuzzy multi-objective analysis first input data file (ideal values and 

weights).  
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Figure 28. Fuzzy multi-objective analysis second input data file (alternatives). 

 

2.2.3 Probabilistic Toolbox 

The probabilistic toolbox requires system description using input files in CSV format.  In 

the probabilistic approach the system is broken down into three main components, i.e. 

source, treatment and distribution, following the main categories of a typical water supply 

system.  Figure 29 shows the introductory screen of the probabilistic toolbox.       

 

System identification button, as shown in Figure 29, prompts the user to specify the 

location of the input files.  The user is required to specify number of input fields (i.e. 

variables) in every input file which corresponds to the number of data columns.  As the 

system is broken down into three main components, the user is required to specify the 

number of the input columns in all three components’ files.   
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Figure 29 Probabilistic toolbox. 

 

As shown in Figure 29, the second step is to identify the failure criterion for each input 

field.  The failure criterion is the threshold beyond which system is considered in failure 

mode.  It has to be noted that this threshold may vary from one component to another and 

each component can have two different thresholds (i.e. maximum and minimum values).  

The user can enter a maximum, minimum or both, maximum and minimum, for each 

system component.   

 

If the time periods across each input field are not the same and not continuous then the 

program will abort the run.  If there is an entire date missing from one of the files such 

that the duration of the data’s time period is not equal to the number of time increments, 

then the program will display an error message: correction of input data file is required.  

Therefore, it is very important to perform the continuity check using the corresponding 
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button on the main screen.  If the time periods are complete but there are gaps in the data, 

the program will infill any missing data.  

 

Probabilistic risk indices 

The tool is now ready to use any of the analysis toolboxes, i.e. probabilistic risk indices 

calculation, simulation or optimization.  Figure 30 shows the flowchart for the calculation 

of the probabilistic risk indices.  The toolbox requires the user to name of the summary 

report.  Appendix III includes an example of a summary report file, where the calculated 

risk indices are provided together with other detailed information about the 

corresponding system and the data provided by the user. 

 

Probabilistic simulation toolbox 

The probabilistic simulation is designed to generate a synthetic data set using a Monte 

Carlo style discrete Markov model based on Equation 36.  The tool synthesizes new data 

records using the probabilistic distribution of the original data set.  In order to do this, the 

program requires the user input indicating the historical mean, standard deviation, and 

correlation, in addition to the type of probabilistic distribution that fits the original data, 

as shown in Figure 31.  It may also require additional parameters, such as skew in case of 

Gamma distribution.   
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 Data Input 

•Source: Inflow Data 

•Treatment: Treatment Parameters  
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Figure 30 Risk measures calculation flowchart (after Smith, 2005). 
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New data records are generated for the given number of simulation years.  Statistical 

parameters for the synthetic data set are also calculated for comparison purposes.  Those 

parameters are calculated annually and then averaged over all years.  The tool is equipped 

to run with Normal, Lognormal, Gamma, and Gumbel distributions, as shown in Figure 

31.  Furthermore, the tool can generate new data set taking into consideration seasonal 

variations within the historical data for the source and distribution components.  For the 

water supply inflow, the tool can consider the seasonal variation in statistical parameters 

(i.e. winter, spring, summer, and fall have different inflow mean, standard deviation, and 

correlation).  It is assumed that the water treatment parameters (i.e. treatment guidelines) 

are constant throughout the year, regardless the change in the water quality. 

 

 

Figure 31 Probabilistic simulation toolbox. 
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The program runs using normally distributed random numbers for the Markov 

simulations.  Thus, it is possible that negative values are generated.  Whenever this 

occurs, negative inflows assumed to be zero.   

 

Probabilistic multi-objective analysis toolbox 

The multi-objective analysis toolbox uses linear compromise programming to optimize 

(minimize) the distance to the ideal solution (i.e. the best calculated reliability, resiliency 

and vulnerability indices) (Smith, 2005).  The overall minimum distance (Ls metrics) is 

calculated using Equation 36.  The optimization is conducted using the compromise 

programming.  It maximizes the overall system reliability and resiliency, and minimizes 

the system vulnerability. 

 

The user starts by loading input data files for each system component, i.e. source, 

treatment, and distribution.  Those files contain different alternatives for source, 

treatment and distribution inputs.  The user has to specify how many alternatives (in each 

component) the tool should use (total number column in the probabilistic optimization 

screen).  In addition, the user is asked to supply 3 different values for weights and 

deviation exponent in order to compare various alternatives, as shown in Figure 32.  
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Figure 32 Probabilistic multi-objective analysis toolbox. 
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3 QNRA APPLICATION 

This chapter explores the utility of some of the fuzzy toolboxes of the developed RASS 

for evaluating the performance of a complex water supply system.  Regional water supply 

system for the City of London is used as the case study.  The two main components being 

investigated in this case study are; (i) the Lake Huron Primary Water Supply System 

(LHPWSS), and (ii) the Elgin Area Primary Water Supply system (EAPWSS). 

 

3.1 System Description 

The City of London regional water supply system consists of two main components; (i) 

the Lake Huron Primary Water Supply System (LHPWSS), and (ii) the Elgin Area 

Primary Water Supply system (EAPWSS).  The LHPWSS system obtains raw water from 

the Lake Huron. Water is treated and pumped from the lake to the terminal reservoir in 

Arva, as shown in Figure 33.  Water from the Arva reservoir is pumped to the north of 

the City of London where it enters the municipal distribution system.  The system 

provides water for the City of London as well as a number of smaller neighboring 

municipalities (through a secondary system).   

 

The EAPWSS system treats raw water from the Lake Erie and pumps the treated water to 

the terminal reservoir located in St. Thomas. Water from the reservoir is pumped to the 

south of the City of London where it enters the municipal distribution system, as shown 

in Figure 33.   In the case of emergency, the City of London can obtain additional water 

from a number of wells located inside the City and in the surrounding areas. 
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3.1.1 Lake Huron Primary Water Supply System (LHPWSS) 

The Lake Huron treatment facility has a treatment capacity of about 336 million liters per 

day (336,400 m3/day).  The plant’s individual components are designed with a 35% 

overload capacity resulting in the maximum capacity of 454,600 m3/day.  The current 

daily production, based on the annual average, is 157,000 m3/day with a maximum 

production value of 64,000 m3/day in 2001.  The water treatment system employs 

conventional and chemically assisted flocculation and sedimentation systems, dual-media 

filtration, and chlorination as the primary disinfection.  Both, the treatment system and 

the water quality are continuously monitored using computerized Supervisor Control and 

Data Acquisition (SCADA) system.  

 

3.1.2 Elgin Area Primary Water Supply System (EAPWSS) 

The Elgin water treatment facility was constructed in 1969 to supply water from the Lake 

Erie to the City of London, St. Thomas and a number of smaller municipalities.  In 1994, 

the facility has been expanded to double its throughput to its current 91,000m
3
/day 

capacity.  A series of upgrades took place from 1994 to 2003 to add surge protection and 

introduce fluoridation treatment.  The design capacity of the treatment facility is 91,000 

m
3
/day, with an average daily flow of 52,350 m

3
/day, which serves about 94,400 persons. 

 

The water treatment in EAPWSS employs almost the same conventional treatment 

methods used in LHPWSS.  The only exception is that the facility uses the fluoridation 

treatment system to provide dental cavity control to the users.  As in LHPWSS, the 

treatment system and water quality are continuously monitored using computerized 
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Supervisor Control and Data Acquisition (SCADA) system.  The finished treated water is 

pumped to the terminal reservoir located in St. Thomas.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 The City of London regional water supply system. 
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El-Baroudy and Simonovic (2005) give detailed description of different processes 

involved in both LHPWSS and EAPWSS.  A schematic of main processes used in both 

systems is shown in Figure 34. 

 

3.2 Case Study Application 

Input CSV files for both systems’ components, LHPWSS and EAPWSS, are prepared 

based on the data from (Earth Tech Canada Inc.,2000), (Earth Tech Canada Inc.,2001), 

(American Water Services Canada-AWSC, 2003a), (American Water Services Canada-

AWSC, 2003b), and (DeSousa and Simonovic, 2003).   

 

Three acceptable levels of performance are arbitrary defined on the universe of the safety 

factor; as (0.75,1.25), (0.50,1.00), and (0.25,1.25).  They are selected to reflect three 

different views of decision-makers as shown by the reliability measure in Equation 6.  

Their reliability measures are 1.88, 1.00 and 0.31, respectively.  Further, they are referred 

to as reliable level (level 1), neutral level (level 2), and unreliable level (level 3), as 

shown in Figure 35. 

 

The DSS tool can accommodate an unlimited number of water quality parameters.  

Temperature, turbidity, pH, and residual Chlorine are selected as representatives of water 

quality parameters for both LHPWSS and EAPWSS.  The three fuzzy measures are 

calculated for both shapes of membership functions, i.e. triangular and trapezoidal.     
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Figure 34 Schematic representation of the main process in LHPWSS and EAPWSS. 
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Figure 35 Acceptable levels of performance. 

 

3.2.1 Fuzzy Performance Measures 

The same acceptable levels of performance are used to calculate the fuzzy combined 

reliability-vulnerability and robustness measures for the four water quality parameters 

and discharge.  

 

The results in Table 1, show that the discharge fuzzy combined reliability-vulnerability 

measure for LHPWSS is 0.427.  This value reflects the compatibility of the system with 

one of the three predefined levels of performance, as defined in Equation 17; in this case 

it is the neutral level (level 2).  This measure increases to 0.451 in case of using the 

triangular membership function shape.  The same effect on the fuzzy robustness is 

evident for all water quality parameters.   For example, the discharge fuzzy robustness 

Reliable

Un-Reliable 
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measure for the LHPWSS ranges from 45-160 in case of using the trapezoidal shape and 

51-170 in case of the triangular shape.   

 

Table 1 The LHPWSS system fuzzy performance measures for different 

membership function shapes.   

 Fuzzy Performance Measure Triangular 

MF 

Trapezoidal 

MF 

Combined Reliability-Vulnerability 0.451 0.427 

Robustness (level 2 – level 1) 170 160 

Robustness (level 3 – level 1) 51 45 

Discharge 

Robustness (level 3 – level 2) 72 64 

Combined Reliability-Vulnerability 0.517 0.516 

Robustness (level 2 – level 1) NA 160 

Robustness (level 3 – level 1) 8421 8000 

Temperature 

Robustness (level 3 – level 2) 8421 8000 

Turbidity Combined Reliability-Vulnerability 1.000 1.000 

pH Combined Reliability-Vulnerability 1.000 1.000 

Residual 

Chlorine 

Combined Reliability-Vulnerability 1.000 1.000 

Resiliency 0.020 0.020 

NA
*
 Not-available value as there is no change in overlap area. 

            

The fuzzy combined reliability-vulnerability measure for the remaining water quality 

parameters, reaches its maximum as the system-state membership functions of these 
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parameters are completely overlapped by the reliable accepted level of performance 

(level 1), as shown in Figure 36.   

 

The complete overlap indicates that the fuzzy robustness index reaches infinity, as 

defined by Equation 9.  This measure is extremely high for all water quality parameters.  

For example, the range is from 160-8000 for temperature.  Therefore, LHPWSS is 

considered to be highly robust.   

 

The fuzzy resiliency measure value for the LHPWSS is 0.020, which means that it takes 

the system more than 49 days after failure to return to the full operation mode, as defined 

by Equation 10.  This value is high as it means the system service can be disrupted for 

about 2 months and large portion of the population served by this system (estimated to be 

about 325 000 person) can be affected by this disruption. 

 

Similar conclusions are read for EAPWSS from the results shown in Table 2.  Although 

EAPWSS is much less reliable than LHPWSS as its discharge fuzzy reliability-

vulnerability index ranges from 0.035 in the case of trapezoidal membership function 

shape to 0.05 in the case of triangular shape.  As concluded for LHPWSS, the use of a 

triangular fuzzy membership function positively affects the system reliability, as shown 

in Figure 37.  

 



 86

0.00

0.25

0.50

0.75

1.00

0.00 1.00 2.00 3.00 4.00 5.00

Safety Factor

M
e
m

b
e
rs

h
ip

 V
a
lu

e

Turbidity

0.00

0.25

0.50

0.75

1.00

0.00 1.00 2.00 3.00 4.00 5.00

Safety Factor

M
e
m

b
e
rs

h
ip

 V
a
lu

e

pH

0.00

0.25

0.50

0.75

1.00

0.00 1.00 2.00 3.00 4.00 5.00

Safety Factor

M
e
m

b
e
rs

h
ip

 V
a
lu

e

Level 1 Level 2

Level 3 R.Chlorine State (Trapizoidal)

R.Chlorine State (Triangular)

Residual Chlorine

 

Figure 36 LHPWSS water quality parameters states. 
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Table 2 The EAPWSS system fuzzy performance measures for different 

membership function shapes.   

 Fuzzy Performance Measure Triangular 

MF 

Trapezoidal 

MF 

Combined Reliability-Vulnerability 0.050 0.035 

Robustness (level 2 – level 1) 6 3 

Robustness (level 3 – level 1) 4 2 

Discharge 

Robustness (level 3 – level 2) 5 4 

Combined Reliability-Vulnerability 0.188 0.165 

Robustness (level 2 – level 1) 898 1128 

Robustness (level 3 – level 1) 299 564 

Temperature 

Robustness (level 3 – level 2) 3592 4699 

Turbidity Combined Reliability-Vulnerability 1.000 1.000 

pH Combined Reliability-Vulnerability 1.000 1.000 

Residual 

Chlorine 

Combined Reliability-Vulnerability 1.000 1.000 

Resiliency 0.045 0.045 

NA
*
 Not-available value as there is no change in overlap area. 

 

The fuzzy resiliency measure value for the EAPWSS is 0.045, which means that it is 

more resilient than LHPWSS as it takes the system 21 days after failure to return to the 

full operation mode.  These conclusions agree with the previous work reported by El-

Baroudy and Simonovic (2005). Appendix II includes example output files produced by 

the QNRA component. 
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Figure 37 EAPWSS discharge-state for triangular and trapezoidal membership 

functions. 

 

3.2.2 Fuzzy Simulation 

RASS Tool is used to simulate discharge data of LHPWSS using 2003 monthly data, 

(American Water Services Canada-AWSC, 2003b).  A 0.75 is used as an output threshold 

membership grade (h in Equation 43), i.e. the simulated discharge belongs to the 

discharge output membership function with a grade that is larger or equal to 0.75, as in 

Equation 21.  Figure 38 shows one year output using both classical least-square method 

and the output discharge fuzzy membership functions.  Appendix II includes example 

output file produced by the QNRA. 
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Figure 38 Fuzzy and the least-square simulation of LHPWSS discharges. 

 

3.2.3 Fuzzy Optimization 

The discharges values for six high lift pumps used in LHPWSS are optimized.  The 

objective function of the optimization process is the summation of those discharge 

values.  The objective function and the constraints of the fuzzy optimization problem are 

as follows: 
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where 

iQ  is the i-th pump discharge;  

i is the subscript for pump, where i=1,2,…; and 

p1 is the tolerance to the violation of the first constraint. 
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The first constraint in Equation 45 is set for the three active pumps, where the other three 

pumps are used as back-ups.  The left hand side (LHS) of this constraint is set to be equal 

to the discharge requirement of the plant.  Fuzziness is introduced to this constraint using 

the tolerance p1. This value indicates the tolerance permitted to this constraint, i.e. the 

optimum solution can violate the constraint LHS value not more than 0.5 m
3
/sec.  The 

second constraint requires that the discharge of the variable speed pump, Q2, be 15% 

higher than the discharge of the single speed pump.  This constraint has tolerance value 

of zero, i.e. no tolerance to constraint violation.    

 

The QNRA optimization toolbox uses this objective function, the constraints and the 

tolerance of the first constraint to solve the fuzzy linear programming problem and the 

results are shown in Figure 39.  The summery result report, shown in Figure 39, starts by 

listing the optimum values of the decision variables (i.e. pumps’ discharge).  The 

optimum value of the objective function is provided after the decision variable list.  The 

user has to update the capacity file (using optimum discharge values for the 

corresponding pumps) and re-run the risk measures toolbox to re-calculate the new fuzzy 

risk measures.   

 

In this case, with optimal discharge of the high lifting pumps, the resultant fuzzy 

reliability-vulnerability and robustness measure do not change, i.e. their values are 0.451 

and 72, respectively.  It can be concluded that the system discharge reliability and 

robustness do not depend on the high lift pumps, therefore, it is recommended to use the 
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tool to identify the weak link in the system that has a direct effect on its reliability and 

robustness.                  

 

 

Figure 39 DSS fuzzy optimization output. 

 

3.2.4 Fuzzy Multi-Objective Analysis 

The utility of the fuzzy multi-objective analysis toolbox is demonstrated using 

hypothetical input data.  LHPWSS and EAPWSS technical reports do not contain enough 

information to build real case study application.   It is assumed that the two single speed 

pumps of the low lifting system in LHPWSS are to be replaced.  Five pump brands 

(alternative 1- alternative 5) are considered based on five criteria as shown in Table 3.    

These criteria are; (1) prices in dollars, (2) size in square meters, (3) maximum discharge 

capacity in m
3
/sec., (4) installation time in days, and (5) brand quality.  It has to be noted 

that triangular membership function is used to express uncertain and qualitative criteria.  

Using the fuzzy multi-objective toolbox the ranking of the five alternatives revealed that 

alternative 1 is the best alternative and alternative 5 is the worst for every decision 

making preference, as shown in  



 92

Table 3. Criteria ideal values and weights of LHPWSS multi-objective case study.   

Criterion Weight Best ideal Worst ideal 

price ($) 

0.8 0.9 1 25 30 35 40 50 60 

size (Square m) 

0.4 0.5 0.6 1 2 3 2 4 6 

capacity (m
3
/s) 

0.8 0.9 1 0.5 0.8 1 0.2 0.4 0.6 

installation time (day) 

0.2 0.3 0.4 4 6 8 10 12 14 

Brand quality 

0.2 0.3 0.4 0.5 0.8 1 0 0.1 0.2 

 

 

 

Figure 40. Summary results of LHPWSS Fuzzy multi-objective problem. 
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4 CONCLUSION 

The developed RASS is used as a risk assessment and management tool that 

accommodates two different approaches; (i) fuzzy approach, and (ii) probabilistic 

approach.  The tool can be used as an integrated risk management framework to 

strengthen the risk management practice within the public service.  This can be achieved 

through the use of the capabilities of the two approaches to handle different aspects of 

uncertainty in real world problems.  The RASS is designed to provide a simple, 

comprehensive and user-friendly tool that accommodates different levels of decision-

making and promotes public interest in risk management.   

 

The RASS is used to asses the performance of the Lake Huron Primary Water Supply 

System (LHPWSS) and the Elgin Area Primary Water Supply system (EAPWSS) as a 

case study.  It is concluded that LHPWSS system is more reliable and less vulnerable 

than EAPWSS system.  It is, concluded, that the robustness of LHPWSS outweighs that 

robustness of EAPWSS for all parameters, i.e. discharge and water quality parameters. 

The findings of the case study support the results reported by El-Baroudy and Simonovic 

(2005).  The case study is also used to perform simulation and optimization and 

demonstrate the utility of the RASS in risk assessment and management in water supply 

system, as a typical example of complex engineering systems.  The tool can be used to 

identify weak points in the system and the potential for performance improvement.   
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APPENDX I 

QNRA QUESTIONS AND COMMENTS 
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(i) Evaluation of knowledge of Risk  

a. Are you interested in risk assessment of your water supply system? 

Expected User Input: YES/NO 

User Action: If the answer is YES, proceed to the next step. 

If the answer is NO, quit the RASS. 

 

Comment: This step is mandatory.  It is expected that the users will not act if they do not 

believe in the existence of any type of risk.   

 

b. (CAUSES)  

1. Role of engineering in risk assessment 

“Is the current water supply system capacity sufficient to 

meet the demand?” 

Expected User Input: YES/NO 

“Using a scale from 0 to 1, indicate how significant the 

system capacity is for system performance.” 

Expected User Input: Value (0 å 1) 

 

User Action: If the answer is YES, give numeric value (from 0 to 1) 

representing the significance of this cause and proceed to the next step.  If the 

answer is NO, proceed to the next step.  
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Comment: The input value provided by the user in case of YES answer can be fine tuned 

by using the performance tool of the QNRA component.  The estimated values are 

compared to the calculated values that are obtained by changing capacity of system 

components. 

 

2. Role of regulations and planning in risk assessment:  

“Are sufficient water supply system regulation and planning 

documentation available? “ 

Expected User Input: YES/NO 

“Using a scale from 0 to 1, indicate how significant the 

availability of regulation and planning documentation is for 

the mitigation of system risks.” 

Expected User Input: Value (0 å 1) 

 

User Action: If the answer is YES, give numeric value (from 0 to 1) 

representing the significance of this cause. If the answer is NO, proceed to the 

next step. 

 

Comment: some planning practices have a direct effect on the risk of contamination to 

water supplies, such as zoning laws which play a significant role in water supply 

protection.  This is in addition to the requirement to meet the needs of the heavily 

populated areas which impose a great load on the municipalities.  Therefore, increasing 
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system requirements, accepting less restrict quality standards and accommodating high 

risk polluting activities (such as industrial activities) reflect those effects.   

 

3. Role of human activities in risk assessment:  

“Is there a possible conflict between human activities and the 

protection of the water supply source?” 

Expected User Input: YES/NO 

“Using a scale from 0 to 1, indicate how significant the 

impact of human activities is on the protection of the water 

supply source.” 

Expected User Input: Value (0 å 1) 

 

User Action: If the answer is YES, give numeric value (from 0 to 1) 

representing the significance of this cause and then proceed to the next step.  

If the answer is NO, proceed to the next step. 

 

Comment: Human activities contribute to multiple point- and non-point source pollution 

of water supply.  

 

4. Role of natural hazards in risk assessment:  

“Are there natural hazards that may affect the water supply 

system? “ 
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Expected User Input: YES/NO 

“Using a scale from 0 to 1, indicate how significant the 

impact of natural hazards is on the system performance.” 

Expected User Input: Value (0 å 1) 

 

User Action: If the answer is YES, give numeric value (from 0 to 1) 

representing the significance of this cause and then proceed to the next step.  

If the answer is NO, proceed to the next step. 

 

Comment: Naturally occurring extreme events can significantly affect the availability of 

water supply or the quality of the water supply.      

 

5. Role of terrorism in risk assessment: 

 “Is the water supply system vulnerable to possible terrorist 

attack? “ 

Expected User Input: YES/NO 

“Using a scale from 0 to 1, indicate the significance of 

possible terrorist attacks on the system performance.” 

Expected User Input: Value (0 å 1) 
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User Action: If the answer is YES, give numeric value (from 0 to 1) 

representing the significance of this cause and then proceed to the next step.  

If the answer is NO, proceed to the next step. 

 

Comment: Terrorist attacks can have similar affects to the worst naturally occurring 

events on the availability of water supply.  They can also cause a deterioration of the 

quality of the water supply. 

 

c. IMPACTS 

1. Health Impacts:  

“Is a water-born disease outbreak possible?”  

Expected User Input: YES/NO 

“Using a scale from 0 to 1, indicate how significant the 

impact of water-born disease outbreak is?” 

Expected User Input: Value (0 å 1) 

 

User Action: If the answer is YES, give numeric value (from 0 to 1) 

representing the significance of this impact and then proceed to the next step.  

If the answer is NO, proceed to the next step. 

 

Comment: Health impact of water supply quality deterioration is one of the main 

concerns. That should be avoided by all means (Walkerton incident of  May 2000 can be 

used as an example).   
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2. Environmental Impacts : 

“Is a water-born disease outbreak possible? “ 

Expected User Input: YES/NO 

“Using a scale from 0 to 1, indicate the significance of the 

conflict between the human use of water and the ecosystem 

well-being.” 

Expected User Input: Value (0 å 1) 

 

User Action: If the answer is YES, give numeric value (from 0 to 1) 

representing the significance of this impact and then proceed to the next step.  

If the answer is NO, proceed to the next step. 

 

Comment: The dependence of other life forms on the availability of water 

resources that are also used by humans is usually neglected when there is a 

pressing social need for water.    

 

3. Social Impacts : 

“Is there a link between water availability and the life style of 

the community?“ 

Expected User Input: YES/NO 
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“Using a scale from 0 to 1, indicate how significant the 

impact of water availability is on the life style of the 

community.” 

Expected User Input: Value (0 å 1) 

 

User Action: If the answer is YES, give numeric value (from 0 to 1) 

representing the significance of this impact and then proceed to the next step.  

If the answer is NO, proceed to the next step. 

 

Comment: The daily availability of water makes people overlook its importance 

as a source of life.  However, water contamination from non-point sources 

(created from everyday activities such as lawn watering, parking lot run-off…etc) 

can significantly affect water supply quality.  

 

4. Economic Impacts : 

“Is there a link between the water supply and the economic 

activity of the community?“ 

Expected User Input: YES/NO 

“On a scale from 0 to 1, indicate how significant the impact 

of water supply is on the economic activities of the 

community?” 

Expected User Input: Value (0 å 1) 
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User Action: If the answer is YES, give numeric value (from 0 to 1) 

representing the significance of this impact and then proceed to the next step.  

If the answer is NO, proceed to the next step. 

 

Comment: Every aspect of human life depends solely on the daily availability of 

water supply.  Water supply shortage and poor water quality pose a major threat 

to human health and consequently threaten economic well-being.  For example, 

using bottled water as an alternative to drinking directly from the water supply 

can significantly affect the economic well-being of low-income families.      
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APPENDIX II 

RASS TOOLBOXES GUIDE 
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II.1 Fuzzy performance measures toolbox 

Step 1 Select the fuzzy toolbox 

by pressing the 

corresponding button. 

 

   

Step 2 Specify the project folder, 

where all the output data 

files are stored. 

 

 

   

Step 3 Specify the location of the 

water quality parameter 

list file.  It is a CSV 

format file containing all 

water quality parameters 

included in the input data 

files. 
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Step 4 Select the shape of the  

fuzzy membership 

function (Triangular or 

Trapezoidal) 

 

   

Step 5 Specify the location of the 

system resistance (supply 

capacity) and the load 

(requirement).  Both files 

have to be in CSV format 

(without headings). 

  

   

Step 6 Type in the resolution of 

the alpha step (a value 

between 0-1). 
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Step 7 Select the type of load-

resistance (Capacity-

demand) relationship. 

 

 

   

Step 8 Define the acceptable 

levels of performance.  

The user has to specify 

level(s) of performance 

for each domain of the 

input fields (i.e. 

discharge, pressure, and 

water quality parameters).  

The Level Editor can be 

used to enter manually 

those levels, or he/she can 

prepare a CSV input file.  

The tool asks the user to 

select the way he/she 

prefers to enter the levels 

with. 
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Step 9 Calculate fuzzy risk 

measures by pressing the 

risk measures button in 

the analysis toolbox. 

Identify the levels to be 

used for calculating the 

robustness index (it 

requires two different 

levels of performance). 

 

 

Step 10 Save the summary report.  

The tool produces a space 

separated output text file.  

Any text editor can open 

this output file. 
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II.2 Fuzzy simulation toolbox 

Step 1 Select the fuzzy toolbox 

by pressing the 

corresponding button. 

Start simulation by 

pressing the simulation 

button in the analysis 

toolbox. 

 

 

Step 2 Specify the number of 

simulation years and the 

output membership 

(belonging) grade.  The 

value of the grade ranges 

between 0 and 1.  

 

 

Step 3 Select the domain of 

simulation (i.e. discharge, 

pressure, or water quality 

parameter) to be 

simulated. 
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Step 4 Load the input data file.  

It is a CSV file format 

(without headings) 

containing historical 

domain data records and 

the corresponding 

membership value for 

each record. 

 

   

Step 5 Save the summary report.  

The tool produces a space 

separated output text file.  

Any text editor can open 

this output file. 
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II.3 Fuzzy optimization toolbox 

Step 1 Select the fuzzy toolbox 

by pressing the 

corresponding button. 

Start optimization by 

pressing the optimization 

button in the analysis 

toolbox. 

 

 

Step 2 Specify optimization type 

(i.e. maximization or 

minimization).   

 

 

Step 3 Load the input data file.  

It is a CSV file format 

(with headings) 

containing constraints 

coefficients, right hand 

side values, and tolerance 

values. 
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Step 4 Save the summary report.  

The tool produces a space 

separated output text file.  

Any text editor can open 

this output file. 

 

 

 

 

II.4 Fuzzy multi-objective analysis toolbox 

Step 1 Select the fuzzy toolbox 

by pressing the 

corresponding button. 

Start multi-objective 

analysis by pressing the 

multi-objective analysis 

button in the analysis 

toolbox. 
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Step 2 Specify the shape of the 

membership function to 

be used by the tool (i.e. 

Triangular or 

Trapezoidal) 

 

 

 

Step 3 Load the input data files.  

The first file contains the 

positive and negative 

values for each criterion 

and the corresponding 

weights.  The second file 

contains different 

alternative.  Both files are 

in CSV file format 

(without headings). 

 

 The user has to specify 

the number of alternatives 

used in the alternatives’ 
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input data file. 

 

Step 4 Start ranking different 

alternatives by pressing 

the ranking button. 

Save the summary report.  

The tool produces a space 

separated output text file.  

Any text editor can open 

this output file. 
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II.5 Probabilistic performance measures toolbox 

Step 1 Select the probabilistic 

toolbox by pressing the 

corresponding button. 

 

   

Step 2 Specify number of input 

fields (i.e. discharge 

fields) in the source input 

file which will be read by 

the tool. 

 

 

   

Step 3 Type in the name you 

would like to be used for 

the previously input fields 

(i.e. “Discharge”). 
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Step 4 Specify the location of the 

source input file.  

 

   

Step 5 Repeat steps 2-4 for 

treatment input(s) and 

distribution input(s) 

 

   

Step 6 Check records continuity 

by pressing the 

corresponding button.  

Discontinuity in any file 

of the three input data 

files is reported to the 

user. 
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Step 7 Specify failure criteria 

(threshold) for each input.  

Each input field can have 

a maximum and/or 

minimum or both, 

maximum and minimum 

failure criteria).  If there 

are no maximum or 

minimum thresholds a 

value of -1 is entered. 

 

   

Step 8 Save the summary report.  

The tool produces a space 

separated output text file.  

Any text editor can open 

this output file. 
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II.6 Probabilistic simulation toolbox 

Step 1 Select the probabilistic 

toolbox by pressing the 

corresponding button. The 

select the “simulation” 

button. 

 

   

Step 2 Specify number of 

simulation years.  

Simulation can be 

performed for each 

domain independently. 

 

   

Step 3 Choose the preferred 

simulation option (i.e. 

with or without seasonal 

variation), In the former 

case, the user has to select 

the preferred distribution 

and specify its parameters 

in the corresponding text 

boxes.  In the later case, 
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the user has to specify an 

input data file with three 

distributions (one for each 

domain) and the 

corresponding parameters.

 

 

Step 4 The tool notifies the user 

of the location of the 

simulated records for each 

domain.  
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II.7 Probabilistic multi-objective analysis toolbox 

Step 1 Select the probabilistic 

toolbox by pressing the 

corresponding button.  

The select the “multi-

objective analysis” button. 

 

   

Step 2 Load alternatives input 

file by pressing the 

corresponding button.  

Specify the total number 

of source alternatives (i.e. 

3 discharge alternatives). 

 
 

 

Step 3 Specify the number of 

input fields in each 

alternative (i.e. 3 different 

fields for each 

alternative).  As an 

example, there can be 

temperature, ph under 

each treatment alternative. 
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Step 4 Give a title name for each 

input field (i.e. discharge, 

temperature…etc)  

 

 

Step 5 Repeat steps 2-4 for each 

domain, i.e. treatment and 

distribution.   

 

 

Step 6 The tool notifies the user 

if he/she wants to consider 

seasonal variation of input 

inputs.  The user has to 

answer with (y) in case of 

approval to account for 

seasonal variation or (n) 

in the other case.  
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Step 7 Specify the maximum and 

minimum failure criteria 

(threshold).  It is optional 

to specify both values or 

one value and assign (-1) 

for the other value to 

indicate the use of single 

failure criteria.  
 

 

Step 8 Fill in the number of 

alternatives to be used, 

weights for each domain 

and deviation exponent. 
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Step 9 The tool notifies the user 

of the location of the 

summery results file.   

 

 

 

 

 

 

 

 



 129

APPENDIX III 

SAMPLE OF INPUT FILES  
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III.1 Fuzzy performance measures toolbox 

1. Parameter list file 

It lists all the parameters included in the resistance (capacity) and load (requirement) 

input data files.  It is in CSV format (without headings). 

 

 

2. Resistance (capacity) file 

It contains all the required resistance (capacity) data for each system component.  It is in 

CSV format (without headings).  For each component the following data fields are 

required: 

o Component Name 

o Component type: this field is required to help in constructing the data file for the 

probabilistic toolbox.  The system in the probabilistic toolbox is divided into 

three main components, i.e. source, treatment, and distribution. 

o Component affiliation in parallel and/or redundant groups:  it specifies the 

number of the parallel and/or redundant group to which the component belongs. 
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o Recovery time:  three or four values (depending on the shape of the used fuzzy 

membership function, i.e. triangular, or trapezoidal) specifying the membership 

function values of the time required to recover from failure. 
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o Parameters: groups of three or four values (depending on the shape of the used 

fuzzy membership function, i.e. triangular, or trapezoidal) specifying the 

membership function values of the parameters used.  The number of the 

parameter has to be consistent with the number in the list and the load 

(requirement) file. 

 

3. Load (requirement) file 

It contains all the required load (requirement) data for each system component.  It is in 

CSV format (without headings).  For each component the following data fields are 

required: 

o Component Name 

o Component type: this field is required to help in constructing the data file for the 

probabilistic toolbox.  The system in the probabilistic toolbox is divided into 

three main components, i.e. source, treatment, and distribution. 

o Component affiliation in parallel and/or redundant groups:  it specifies the 

number of the parallel and/or redundant group to which the component belongs. 

o Parameters: groups of three or four values (depending on the shape of the used 

fuzzy membership function, i.e. triangular, or trapezoidal) specifying the 

membership function values of the parameters used.  The number of the 

parameter has to be consistent with the number in the list and the resistance 

(capacity) file. 
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3. Levels file 

It contains all the required data for different acceptable levels of performance.  It is in 

CSV format (without headings).  The following data fields are required: 

o Level affiliation with different parameters.  For example, if the level is defined 

for discharge, the item filed will be “Discharge”. 
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o Level’s Title: the title name of the level. 

o Level number: it indicates the number of levels for each domain (i.e. 3 for 

discharge domain…etc) 

o Total number of levels in each domain. 

o Point1 and point 2 values expressed in terms of margin of safety or safety factor 

units. 

o Other in-between dummy text fields are required but are not important as they 

will not be used.  These filed are required so as to clarify the file for other users.  
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III.2 Fuzzy simulation toolbox 

Historical data file 

It contains historical records to be simulated together with membership value( belonging) 

of each record..  It is in CSV format (without headings). 

 

 

III.3 Fuzzy optimization toolbox 

Historical data file 

It contains constraints’ coefficients, right hand side (RHS) values and tolerance values for 

each constraint.  It is in CSV format (with headings). 
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III.4 Fuzzy multi-objective toolbox 

1. Weights and ideal values data file 

It contains criteria’s weights, positive (best) ideal values, and negative (worst) ideal 

values.  These values are given in groups of three or four values (depending on the shape 

of the used fuzzy membership function, i.e. triangular, or trapezoidal).  It is in CSV 

format (without headings). 

 

 

2. Alternatives data file 

It contains different alternatives values.  These values are given in groups of three or four 

values (depending on the shape of the used fuzzy membership function, i.e. triangular, or 

trapezoidal).  It is in CSV format (without headings). 
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III.5 Probabilistic performance measures toolbox 

Source, treatment, and distribution files 

They contain record dates and values.  Each domain should be in one file.  Missing data 

points must have (-100) values and should not be left empty.  It is in CSV format 

(without headings). 
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III.6 Probabilistic simulation toolbox 

Historical records’ statistics files 

It contains all statistics of the three domains.   It is in CSV format (without headings). 

These statistics are: 

o Mean 

o Standard Deviation 

o Correlation 

o Skewness 

o Distribution type: 1 for normal distribution, 2 for log normal distribution, 3 for 

Gamma distribution, and 4 for Gumbel distribution. 
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III.7 Probabilistic multi-objective toolbox 

Source, treatment, and distribution files 

They contain records dates and values for each alternative.  Each domain should be in 

one file.  Missing data points must have (-100) values and should not be left empty.  It is 

in CSV format (without headings). 

 

 

 

 


