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Abstract 

The present report further investigates the multi-criteria decision making tool named Fuzzy 

Compromise Programming.  Comparison of different fuzzy set ranking methods (required for 

processing fuzzy information) is performed.  A complete sensitivity analysis concerning decision 

maker’s risk preferences was carried out for three water resources systems, and compromise 

solutions identified.  Then, a weights sensitivity analysis was performed on one of the three 

systems to see whether the rankings would change in response to changing weights.  It was 

found that this particular system was robust to the changes in weights. 

An inquiry was made into the possibility of modifying Fuzzy Compromise Programming to 

include participation of multiple decision makers or experts.  This was accomplished by merging 

a technique known as Group Decision Making Under Fuzziness, with Fuzzy Compromise 

Programming.  Modified technique provides support for the group decision making under 

multiple criteria in a fuzzy environment.
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1.0 Introduction 

The field of statistics ended its monopoly as being the only field able to model imprecision and 

uncertainty.  This change is credited to the introduction of fuzzy logic.  The theory of fuzzy 

logic, unlike statistics (where uncertainty is modeled with randomness), represents imprecision 

by the fact that certain objects (or certain classes of objects) have poorly or ill-defined 

boundaries.  It is assumed that “not all uncertainties easily fit the probabilistic classification”, 

Bender and Simonovic (2000).  As such, fuzzy logic is not a direct competitor to statistics, 

although many problems can be modeled both ways.  However, it is argued that fuzzy logic is 

able to represent certain sorts of uncertainties better than statistics. 

 

Some of the most popular examples of classes of objects where boundaries aren’t clear (or are 

poorly defined) are “the class of all real numbers which are much greater than 1”, “the class of 

beautiful women”, or “the class of tall men.”  Note that the italicized words are ones which 

represent terms whose meaning isn’t really clear (i.e., it’s fuzzy).  Multitudes of fuzzy terms 

exist in the natural language, such as much better than, much smaller than, about or near, 

substantial, considerable, significant, to just mention a few.  Objects which are described by 

these fuzzy terms can, according to Bellman and Zadeh (1970), “convey information despite the 

imprecision of the meaning of the italicized words.”  Utilizing imprecise information of this type 

is the task of the field of fuzzy logic. 

 

This type of information (i.e., fuzzy information) is represented by fuzzy sets, which assign 

grades of membership to objects within their universe of discourse.  This means that a certain 

object (or a collection of objects) can belong to some larger class of objects with only partial 
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membership.  This is analogous or a “gray” or “shady” area, as we don’t really know if the 

objects in question belong to the class or not; all we know is that the objects partially belong to 

the class, and so we express that with membership functions.  This way of dealing with 

imprecision is ideally suited for the area of modeling human decision making, as in many cases 

we process (although subconsciously) this fuzzy information on daily basis. 

 

Human decision making usually deals with making a decision in presence of vague, incomplete 

or imprecise information.  With the introduction of the theory of fuzzy sets, modeling decision 

making was made possible by yet another set of tools (in addition to ones based on statistics).  

One of these tools (Fuzzy Compromise Programming) is summarized in this report, and then 

supplemented by an additional feature - inclusion of multiple experts in the decision making 

process.  In addition, a detailed study concerning fuzzy set ranking methods (which are necessary 

for processing results produced by Fuzzy Compromise Programming) is presented.  It should be 

noted that inclusion of multiple experts in the decision making process, together with 

comparisons of different fuzzy set ranking methods are the two main objectives of this research
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2.0 Background Information 

This section briefly outlines the definitions of terms relevant to this report, as well as details of 

performing fuzzy arithmetic.  Introduction and history of compromise programming is then 

given, together with a summary of Fuzzy Compromise Programming, as modified by Bender and 

Simonovic (1996, 2000). 

 

2.1 Definitions 

Definition 1. (Classical set) 

Classical, or a crisp set, is one which assigns grades of membership of either 0 or 1 to objects 

within their universe of discourse.  To say it in another way, objects either belong to or do not 

belong to a certain class; or object either posses a certain property, or they do not; there is no 

middle ground.  The type of a function that describes this is called a characteristic function. 

 

Definition 2. (Fuzzy set) 

A fuzzy set is one which assigns grades of membership between 0 and 1 to objects within its 

universe of discourse.  If X is a universal set whose elements are {x}, then, a fuzzy set A is 

defined by, its membership function, 

 ]1,0[X:A →µ ,        (1) 

which assigns to every x a degree of membership Aµ  in the interval [0,1] . 

 

A fuzzy set can be represented by a continuous membership function )x(Aµ , or by a set of 

discrete points.  The latter is denoted by ordered pairs, 

 { } Xx,))x(,x(A A ∈=      µ .       (2) 
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It is worth noting that a fuzzy set, whose degree of membership is only 0 and 1, reduces to a 

crisp set. 

Universe of Discourse

D
eg

re
e 

of
 M

em
be

rs
hi

p

1.0

Illustration of a crisp and a fuzzy set

Fuzzy set

Crisp set

 
Figure 1. Illustration of a crisp and a fuzzy set 

 

Definition 3. (Support of a fuzzy set) 

Support of a fuzzy set A (written as supp(A)) is a (crisp) set of points in X for which Aµ  is 

positive.  An alternate way of saying this would be that the support of a fuzzy set A is the valid 

universe of discourse of A (i.e., all valid x’s).  Mathematically stated, 

 { }0)x( | Xx)A(supp A >∈= µ .      (3) 

Synonyms of support are degree of fuzziness or a fuzzy spread. 



5 

Universe of Discourse

D
eg

re
e 

of
 M

em
be

rs
hi

p

1.0

Support of a fuzzy set

Support

 
Figure 2. Support of a fuzzy set 

 

Definition 4. (Normal fuzzy set) 

A fuzzy set A is normal if its maximal degree of membership is unity (i.e., there must exist at 

least one x for which 1)x(A =µ ).  Of course, non-normal fuzzy sets have maximum degree of 

membership less than one. 

 

Definition 5. (Convex fuzzy set) 

A fuzzy set A is convex if and only if it satisfies the following property: 

 ))x(),x(min()x)1(x( 2A1A21A µµλλµ ≥−+      (4) 

where λ is in the interval [0,1] , and 21 xx < .  An example of a convex, as well as a non-convex 

fuzzy set is illustrated in Figure 3. 
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Figure 3. Convex and non-convex fuzzy sets 

 

Remark: All fuzzy sets encountered in this report are both normal and convex. 

 

Definition 6. (Intersection and union of fuzzy sets) 

Intersection of fuzzy set A with fuzzy set B is: 

 ))x(),x(min()x( BABA µµµ =∩       (5) 

Union if two fuzzy sets is similarly defined: 

 ))x(),x(max()x( BABA µµµ =∪       (6) 

Note that intersection of two fuzzy sets is the largest fuzzy sets contained within A and B, and 

union is the smallest.  See Figure 4 for clarification. 
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Figure 4. Union and intersection of two fuzzy sets 

 

Definition 7. (Supremum and infimum of fuzzy sets) 

Supremum, denoted by sup, is the largest possible value within given set, while infimum, 

denoted by inf, is the smallest value in a given set. 

 

Definition 8. (λ-cut of a fuzzy set) 

λ-cut of a fuzzy set is defined as crisp set αA  (or a crisp interval) for a particular degree of 

membership, α.  Mathematically stated, 

 ]b,a[A ααα =         (7) 

where α, as before, can take on values between [0,1] . 
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Figure 5. Illustration of an α-cut 

 

Definition 9. (Fuzzy numbers) 

A fuzzy number is a fuzzy set which is both normal and convex.  In addition, the membership 

function of a fuzzy number must be piecewise continuous.   

 

Most common types of fuzzy numbers are triangular and trapezoidal.  Other types of fuzzy 

numbers are possible, such as bell-shaped or gaussian fuzzy numbers, as well as a variety of one 

sided fuzzy numbers.  These will not be covered here.  The interested reader is referred to a book 

by Klir and Yuan (1995) for more information on other types of fuzzy numbers.  Triangular 

fuzzy numbers are defined by three parameters, while trapezoidal require four parameters.  
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Figure 6. Triangular and trapezoidal fuzzy numbers 

 

2.2 Fuzzy Arithmetic 

A popular way to carry out fuzzy arithmetic operations is by way of interval arithmetic.  This is 

possible because any α -cut of a fuzzy number is always an interval (see definition 8).  

Therefore, any fuzzy number may be represented as a series of intervals (one interval for every 

α-cut).  In the Matlab code that was produced, 101 α -cuts (or intervals) were made, which 

means that α -cuts were made for α = 0, 0.01, 0.02, 0.03, … , 0.98, 0.99, 1.0.  Now, this means 

that there exist 101 intervals on which we are to perform interval arithmetic operations. 
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The basics of interval arithmetic are given next.  For any two intervals, [a, b]  and [d, e], the 

arithmetic operations are performed in the following way: 

 

Addition:  [a, b] + [d, e] = [a+d, b+e];       (8) 

Subtraction:  [a, b] - [d, e] = [a-e, b-d];      (9) 

Multiplication: [a, b] · [d, e] = [min(ad, ae, bd, be), max(ad, ae, bd, be)];  (10) 

Power:   e] [d,b] ,a[  = [min(ad, ae, bd, be), max(ad, ae, bd, be)];   (11) 

Division:  [a,b] / [d, e] = [min(a/d, a/e, b/d, b/e), max(a/d, a/e, b/d, b/e)], (12)  

   provided that 0 ∉ [d, e]. 

 

Since any fuzzy number can be represented by a series of crisp intervals, we can then apply 

interval arithmetic operations (such as addition, subtraction, multiplication, division, power) and 

obtain an alternate way of performing fuzzy arithmetic.  This is what most texts (and Matlab) 

consider as fuzzy arithmetic.  In addition, this technique is more computationally efficient than 

brute force/dynamic search combination, but its downfall is that it cannot handle multi-modal 

fuzzy sets (i.e. multi-modal fuzzy sets cannot be expressed as intervals).  An excellent text on 

fuzzy arithmetic is one by Kaufman and Gupta (1985); also, Klir and Yuan (1995) in their book 

cover the basics of fuzzy arithmetic rather well. 

 

Note: Bender and Simonovic (1996) developed a different method of performing fuzzy 

arithmetic.  Their method is based on brute force complimented with dynamic searches, which 

are used to lower computation time.  An advantage of their method is that it’s able to perform 
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fuzzy arithmetic on all types of fuzzy sets, not just fuzzy numbers.  However, even with dynamic 

searches, the method is extremely computationally intense.   

Therefore, it can be concluded that if fuzzy arithmetic is required for non-convex (or multi-

modal) fuzzy sets, brute force/dynamic search method should be used.  If on the other hand, 

fuzzy arithmetic is required to be performed on fuzzy numbers, then application of interval 

arithmetic is sufficient.   

 

2.3 History of Compromise Programming 

Classical compromise programming was originally developed by Zeleny (1973), and since then, 

it has been applied (and modified) by many.  Bardossy et al. (1985) modified compromise 

programming to form composite programming – a methodology that deals with problems of 

hierarchical nature (i.e., when certain criteria contain a number of sub-criteria).  Composite 

programming works by applying the compromise programming equation to each sub-criterion, 

and then combines the compromise distance metrics of each sub-criterion to form a single 

composite distance metric (one composite distance metric for each objective of the problem).  Its 

main strength is that it’s able to assign a different distance metric exponent p for each sub-

criterion, thus making the user “account for the analytical characteristics of statistical criteria 

versus the economic value of observation effort” (Bardossy et al. (1985), page 377).  As such, 

composite programming is a natural extension of compromise programming.   

 

Also, composite programming was further modified into fuzzy composite programming, which 

instead of crisp input variables, considers fuzzy variables.  However, fuzzy composite 



12 

programming (as of now) models only criteria values as fuzzy sets, while keeping the distance 

metric exponent p and the weights crisp.  

Applications of fuzzy composite programming include that of Lee et al. (1991), Lee et al. (1992), 

Bardossy and Duckstein (1992), and Hagemeister et al. (1996). 

 

Goicoechea et al. (1982) use compromise programming to evaluate a set of water resource 

systems subject to multiple (conflicting) criteria.  Tkach and Simonovic (1997) use this same 

approach and apply compromise programming, together with Geographical Information 

Systems, to come up with spatial compromise programming - a methodology able to model 

spatial variability of criteria values.  In addition, Bender and Simonovic (1996, 2000) fuzzified 

compromise programming (i.e., all parameters in the compromise programming equation were 

made into fuzzy sets) and came up with Fuzzy Compromise Programming. 

 

2.4 Compromise Programming 

Compromise programming is a mathematical programming technique that ranks a discrete set of 

solutions according to their distance from an ideal solution.  This closeness is determined by 

some measure of distance.  To see the meaning of this, consider the following example: 

Suppose two objectives are to be met for a maximization problem (one which seeks the 

maximization of all objectives when possible).  Also, suppose that the objectives are ‘protection 

of the environment’ and ‘development possibility’.  Likewise, imagine that four available 

alternatives are present, from which one is to be chosen for implementation.  Now, the ideal 

point (or the ideal alternative) would be one where both objectives are maximized.  This point, in 

most practical cases is infeasible and as such, a compromise must be sought (i.e., if we are to 
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have well a protected environment, the chance is that there will not be an excellent development 

possibility, and vise versa.)  Compromise programming states that the best alternative is one 

which is closest to the ideal point. (Note that if n objectives are present, the distance metric is in 

nth dimensional space.)  Graphical representation of compromise programming is illustrated by 

Figure 7. 

 

Objective 1 
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Possible 
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Infeasible 
region 

O
b

je
ct
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e

 2 

 
Figure 7. An illustration of compromise programming 

 

The equation used to obtain a dimensionless distance metrics (one for every alternative) is:   
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where: 

i = 1, 2, 3 ... n and represents n criteria or objectives; 

j = 1, 2, 3 ... m and represents m alternatives; 

Lj is the distance metric of alternative j ; 

wi corresponds to a weight of a particular criteria or objective; 
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p is a parameter (p = 1, 2,∞ ); 

*
if and −

if are the best and the worst value for criteria i, respectively; 

if  is the actual value of criterion i. 

 

Of course, each criterion is to be given a level of importance, or a weight.  The decision maker’s 

preferences (concerning the criteria) are modeled with the variable w, noting that for compromise 

programming the weights are used simply to place emphasis on the important criteria.  The 

parameter p is used to represent the importance of the maximal deviation from the ideal point.  If 

p = 1, all deviations are weighted equally; if p = 2, the deviations are weighted in proportion to 

its magnitude.  Typically, as p increases, so does the weighting of the deviations.  For more 

information on the parameter p, consult Goicoechea et al. (1982), page 236-237. 

Compromise programming equation is solved for p = 1, 2 and ∞ , and then the alternatives are 

ranked.  After the distance metrics are obtained, they are then sorted from smallest to largest, 

where the smallest represents the best compromise alternative.   

 

2.5 Fuzzy Compromise Programming 

Fuzzy Compromise Programming equation is obtained by fuzzifying the compromise 

programming equation (i.e., by fuzzifying equation (13)).  Thus, instead of inputting crisp 

numbers into equation (13), fuzzy numbers are used instead; instead of using classical arithmetic, 

we have to resort to fuzzy arithmetic; instead of simply sorting distance metrics, fuzzy set 

ranking methods must be applied to sort the fuzzy distance metrics.   
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Differences between crisp and fuzzy numbers are outlined in section 2.1, and a treatment on 

fuzzy arithmetic is given in section 2.2.  This section will present the motivation behind the 

transformation from compromise programming to Fuzzy Compromise Programming. 

 

The fuzzification of criteria values is the main driving force for the mathematical transformation 

from crisp to fuzzy.  Often the criteria values are subjective in nature, taking such form as “A is 

roughly as large as B”, “B is much greater than C”, and “C is substantially different from A”.  

There are techniques available (see Klir and Yuan (1995)) that allow generation of these fuzzy 

sets, thus preserving the information contained within the italicized words.  If criteria values on 

the other hand are not subjective, it still may be worthwhile keeping them fuzzy.  This is because 

of the inherit uncertainty associated with the criteria values themselves.  For example, if the 

criterion such as cost comes out to be $25,000 it may be useful to model this with a fuzzy 

number such as “about $25,000”.  Of course, the more we are certain about the true value of the 

cost, the lesser degree of fuzziness we assign to the fuzzy number.  

 

By the same analogy, criteria weights should also be fuzzified because they, too, are subjective 

in nature.  It is usually the stakeholders, the participants, or the decision makers that provide their 

individual weights concerning the criteria.  Then, this information can be aggregated into 

appropriate collective weights, which are then used to obtain a compromise decision. 

 

The same goes for the positive and negative ideals within equation (13), as they are very much 

subjective.  Difficulties present themselves when assigning positive and negative ideals to such 

criteria as cost, for example.  Different participants will most probably have a different idea of 
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what the ideal cost should be, and so use of aggregation methods and fuzzy sets may be more 

accurate than simply using crisp averages.  This way, more information is being preserved 

throughout the problem. 

 

Last, but not least, is the fuzzified value of the distance metric exponent p.  According to Bender 

and Simonovic (2000), “this is the most vague and imprecise element of the distance metric 

calculation.”  The exponent p is simply used for weighting deviations of criteria values from its 

ideal point.  Of course, if it were known what the weighting of the deviations should be, the 

problem would be simple.  However, such information in most practical situations is just not 

available, and so we resort to fuzzy sets in representing the parameter p.   

 

Now that all terms of equation (13) are fuzzy sets, the resulting distance metrics, jL , also 

become fuzzy sets.  In order to determine the alternative that is closest to the ideal alternative, 

fuzzy distance metrics have to be ordered from smallest to largest.  In other words, fuzzy 

distance metrics have to be sorted.  It is noted that ranking fuzzy distance metrics (which are 

fuzzy numbers in our study) is not as straightforward as ranking crisp numbers.  More detail on 

this is given in section 3.0.
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3.0 Ranking Fuzzy Sets 

Ordering of fuzzy quantities is based on extracting various features from fuzzy sets.  These 

features may be a center of gravity, an area under the membership function, or various 

intersection points between fuzzy sets.  A particular fuzzy set ranking method extracts a specific 

feature from fuzzy sets, and then ranks them [fuzzy sets] based on that feature.  As a result, it is 

reasonable to expect that different ranking methods can produce different ranking order for the 

same sample of fuzzy sets.  Intricacies like these make ranking fuzzy sets rather difficult – these 

are outlined in section 3.1.  A brief survey of available ranking methods found in the literature is 

presented in section 3.2, together with selection criteria used to select methods for the application 

of our study. Lastly, details of these selected methods are given in section 3.3.   

 

3.1 Problems with Ranking Fuzzy Quantities 

All fuzzy set ranking methods can be categorized into two classes (after Yuan (1991)): 

1) Methods which convert a fuzzy number to a crisp number by applying a mapping function F 

(i.e., if A is a fuzzy number, then F(A) = a, where a is a crisp number).  Fuzzy numbers are then 

sorted by ranking crisp numbers (i.e., a’s) produced by the mapping. 

2) Methods which use fuzzy relations to compare pairs of fuzzy numbers, and then construct a 

relationship which produces a linguistic meaning of the comparison.  The ordering results are 

something like ‘fuzzy number A is slightly better than fuzzy number B’. 

 

However, each methodology has its own advantages and disadvantages.   

With 1), it has been argued that “by reducing the whole of our analysis to a single [crisp] 

number, we are loosing much of the information we have purposely been keeping throughout our 
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calculations” (Freeling (1980), p.348).  This methodology, on the other hand, produces a 

consistent ranking of all fuzzy sets considered (i.e., if A is ranked greater than B, and B is ranked 

greater than C, then A will always be much greater than C).  Also, there will always exist a fuzzy 

set which is ranked as “best”, “second best”, “third best”, and so on. 

 

With 2), by keeping the comparisons linguistic, we are preserving the inherit fuzzy information 

of the problem.  However, as Yuan (1991) points out, “it may not always be possible to construct 

total ordering among all alternatives based on pairwise fuzzy preference relations”.  This means 

that even if A is better than B, and B is better than C, A may not always be better than C.  

 

Discouraging facts about fuzzy set ranking methods, unfortunately, do not end here.  In their 

review, Bortolan and Degani (1985) find that for simple cases, most fuzzy set ranking methods 

produce consistent rankings.  Difficult cases however, produce different rankings for different 

methods.  This means that if membership functions overlap (or intersect) for some values of x, or 

if the supports of fuzzy numbers differ even slightly, different methods will most likely produce 

different rankings.  This is discussed in detail in section 5.0. 

 

3.2 Available ranking methods and selection criteria 

Literature review reveals that multitudes of fuzzy set ranking methods exist.  Papers by Bortolan 

and Degani (1985) as well as Wang and Kerre (2001a, 2001b) present a comprehensive survey of 

the available methods.  From Bortolan-Degani and Wang-Kerre papers, the following seventeen 

methods were considered in our study: 
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Balwin and Guild (1979), Campos Ibanes and Munoz (1989), Chang and Lee (1994), Chen 

(1985), Chen and Klien (1997), Cheng (1998), Dubois and Prade (1983), Fortemps and Roubens 

(1996), Kim and Park (1990), Lee and Li (1988), Liou and Wang (1992), Matarazzo and Munda 

(2001), Modarres and Sadi-Nezhad (2001), Peneva and Popchev (1998), Yao and Wu (2000), 

Yager (1981), and Yoon (1996). 

 

In order to select methods for application of ranking fuzzy distance metrics, it was decided that 

only methods which allow decision maker participation be selected.  This participation is usually 

in the form of risk preferences, where the decision maker is allowed to specify the degree of risk 

with which he/she wishes to make the decision.  Of the above methods, only nine included forms 

of risk preferences (Balwin and Guild (1979), Campos Ibanes and Munoz (1989), Chang and Lee 

(1994), Chen (1985), Chen and Klien (1997), Fortemps and Roubens (1996), Kim and Park 

(1990), Liou and Wang (1992), Peneva and Popchev (1998)). 

 

To further narrow down these nine methods, the following selection criteria was used: 

1) The ranking method must be able to rank fuzzy sets of various shapes (not just triangular 

and/or trapezoidal fuzzy sets).   

2) Method should be able to rank fuzzy sets which are non-normal and non-convex. 

3) The method must be able to rank several fuzzy sets.  That is, the methods should not just 

compare two fuzzy alternatives, nor pick the best choice from the list. 

4) There must exist a numeric preference relation that conveys which alternatives are most 

favoured. 
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5) There ought to exist a linguistic interpretation of the ranked alternatives (i.e. A4 is 

strongly better than A1, A2 and A3, and A3 is moderately better than A1 and A2, etc). 

6) The preference relation from 5) must be rational.  That is, if A is preferred to B, and B is 

preferred to C, then A should be preferred to C. 

 

The table below shows how nine methods compare against properties 1) through 6). 

 

Table 1. Fuzzy Set Ranking Methods vs. Properties 

Methods/Properties 1) 2) 3) 4) 5) 6) 

Chen and Klein (1997) ? ? ? ?   ? 

Chen (1985) ? ? ? ?   ? 

Fortemps and Roubens (1996) ? ? ? ?   ? 

Chang and Lee (1994) ? ? ? ? ? ? 

Baldwin and Guild (1979) ? ? ? ?   ? 

Liou and Wang (1992) ?   ? ?   ? 

Kim and Park (1990) ?   ? ?   ? 

Peneva and Popchev (1998)     ? ?   ? 

Campos and Gonzales (1989) ? ? ? ?   ? 

 

 
Based on the information above, only methods of Chen (1985) and Chang and Lee (1994) were 

selected for application of ranking fuzzy distance metrics.  Other seven methods were rejected, 

for reasons that are outlined next. 

 

Method of Chen and Klein (1997) 

This method gives limited control to the decision maker in specifying his/her preferences.  

Further, it is pointed out that varying the decision maker participation “can change the magnitude 
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of preference and indifference, but not the actual order” of the alternatives (Chen and Klein 

(1997), page 30).  It is because of these two facts that the method is rejected. 

 

Method of Peneva and Popchev (1998) 

This method is rejected because it requires fuzzy quantities to be triangular.  Fuzzy Compromise 

Programming produces fuzzy numbers which are not triangular, and so Peneva and Popchev’s 

method can not be used for our study. 

 

Method of Kim and Park (1990) 

This method is extremely similar to Chen’s (1985) method,  (i.e., both are based on finding 

intersections of minimizing/maximizing sets with fuzzy numbers in question).  The only 

difference between the two methods is in the specification of risk preferences – Chen’s (1985) 

method does it by varying exponents of the maximizing and minimizing sets, while Kim and 

Park’s (1990) method emphasizes intersections of minimizing/maximizing sets with fuzzy 

numbers differently.  Chen’s (1985) methods is presented in section 3.3.2, while Kim and Park’s 

equations are given next: 

 

Maximizing ( )x(Gmax ) and minimizing ( )x(Gmin ) sets are defined as:  
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The equation for ranking the fuzzy alternatives using Kim and Park’s (1990) method is: 
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 [ ])G)x(sup(1)k1()G)x(sup(k)i(KP minimaxi ∩−−+∩= µµ  (16) 

where the constant k represents decision maker’s preference, and has a valid range of [0 1] ).   

Kim and Park’s (1990) method is rejected because of its close resemblance to Chen’s (1985) 

method. 

 

Method of Baldwin and Guild (1979) 

Baldwin and Guild’s (1979) method can give reasonable results only when fuzzy sets overlap.  

This feature makes the method not general enough for our purpose, and so it is rejected. 

 

Method of Liou and Wang (1992) 

The Total Integral Value (TIV), the ranking index developed by Liou and Wang (1992), has a 

similar form of Chang and Lee’s (1994) index.  The TIV is given by equation below:   

 ∫ ∫ −− −+= ααµβααµβ d)()1(d)()A(TIV 1
AR

1
AL     (17) 

where β can take on values between [0,1]  and is used as a parameter to express user preferences. 

In fact, the Total Integral Value is a special case of the Overall Existence Ranking Index of 

Chang and Lee (1994).  It is for that reason that method of Liou and Wang (1992) is rejected. 

 

Method of Campos Ibanes and Munoz (1987), and method of Fortemps and Roubens (1996) 

Again, the methods of Campos Ibanes and Munoz (1987) and Fortemps and Roubens (1996) are 

special cases of Chang and Lee’s (1994) Overall Existence Ranking Index.  Therefore, it is 

reasonable to reject these two methods from our study. 
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3.3 Ranking Methods used in this report 

This section presents details of Chang and Lee’s (1994) and Chen’s (1985) ranking indices.  In 

addition, an alternate method based on the combination of Bender and Simonovic’s (1996, 2000) 

Weighted Center of Gravity index and Cheng’s (1998) distance method is developed for the 

purpose of checking results produced by Chang and Lee’s (1994) and Chen’s (1985) indices.   

Note: all risk preferences given here are for minimization problems, that is an optimist (or a risk 

taker) would prefer small distance metric values, while a pessimist (risk averse), to be safe, 

would expect higher values. 

 

3.3.1 Method of Chang and Lee (1994) 

Chang and Lee (1994) simplify their Overall Existence Ranking Index (OERI) for the use of 

convex fuzzy numbers (the type of fuzzy numbers encountered in our project).  Equation (18) 

corresponds to their ranking index. 

[ ]∫ −− +=
1

0

1
2

1
1 )()()()()()( ααµαχαµαχαω dAOERI ARAL     (18) 

where )(1 αχ  and )(2 αχ  are the subjective type weighting indicating neutral, optimistic and 

pessimistic preferences of the decision maker, with the restriction that 1)()( 21 =+ αχαχ .  

Parameter )(αω  is used to specify weights which are to be given to certain degrees of 

membership (if any).  For example, sometimes degree of membership of around, say5.0=α  is 

valued the most, so then an appropriate equation could be specified to reflect that.  (It is noted 

that in our comparison of alternatives, all degrees of membership were given equal weight, 

namely 1)( =αω ).  Lastly, )(1 αµ −
AL  represents an inverse of the left part, and )(1 αµ −

AR  the 
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inverse of the right part of the membership function.  The limits of integration (and the limits of 

α ) are [0 1] . 

 

It is noted that linear and non-linear functions for the subjective type weighting are possible, thus 

giving the user more control in the ranking.  For the present study however, only constants were 

used to represent risk preferences. 

 

Then, for 1χ  values greater than 0.5, the left side of the membership function is weighted more 

than the right side, which in turn makes the decision maker more optimistic.  Of course, if the 

right side is weighted more, the decision maker is more of a pessimist (this is because he/she 

prefers larger distance metric values, which means the farther solution from the ideal solution).  

In summary, the risk preferences are: if 1χ  < 0.5, the user is a pessimist (risk averse); if 1χ  = 

0.5, the user is neutral; and if 1χ  > 0.5, the user is an optimist (risk taker). 

 

3.3.2 Method of Chen (1985) 

After obtaining n fuzzy sets, maximizing, )x(Mµ , and minimizing, )x(mµ  sets are defined by 

the following equations: 
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where ))x(sup(w ii µ= , )winf(w i= , )xinf(xmin = , )xsup(xmax =  and the subscript i 

represents the ith alternative.  The participation of the decision maker is controlled by the 

constant r.  If 1r =  the decision maker is conservative or neutral (see Figure 8); if 5.0r =  the 

decision maker is a risk taker, or an optimist, (see Figure 9), and if 2r =  the decision maker is 

risk averse, or a pessimist, (see Figure 10).  Of course, values of r below 0.5 represent extreme 

optimism, while r values which are greater than 2 represent extreme pessimism. 

 

To graphically represent equations (19) and (20), alternative 4 from Tisza River Basin example 

taken from Bender and Simonovic (1996) was chosen at random.  Note that the maximizing set 

is shown in red (right most set), and the minimizing set in green (left most set). 
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Figure 8. Chen’s (1985) neutral preferences 
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Figure 9. Chen’s (1985) optimistic preferences 
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Figure 10. Chen’s (1985) pessimistic preferences 

 

To rank the alternatives, right ( )(AU M ) and left ( )(AUm ) utility values are calculated as follows: 

 ))()(sup()( xxAU MiM µµ ∩=      (21) 

 ))()(sup()( xxAU mim µµ ∩=       (22) 

)(AU M  is the intersection of the maximizing set (red) with the right portion of the alternative in 

question (black), and )(AUm  is the intersection of the minimizing set (green) with the left part of 

the membership function (black).  The total utility value is then computed as: 

 2/))()(()( AUwAUAU mMT −+=      (23) 

After this, the results are ordered from smallest to largest, smallest being the better alternative. 
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Comments: 

Two concerns about this method must be noted.  Firstly, the presence of an alternative with the 

membership function that is far to the left (or far to the right) from other alternatives, influences 

the way maximizing and minimizing sets are obtained.  Therefore, by just one alternative being 

far away from the rest, increases (or decreases) the value of the parameter xmax (or xmin), which in 

turns shapes the maximizing and the minimizing sets.  Liou and Wang (1992) also realized this, 

and showed in a four alternative system, that by moving one alternative to the left and then to the 

right changed the ranking value (and thus the ranking order) of all the alternatives within the 

system.  Because of this, they deemed Chen’s (1985) method illogical.  However, if all 

alternatives are relatively close together, Chen’s (1985) method can give reasonable results.  

Exactly how far apart the alternatives have to be before the method gives illogical results is not 

known at this time.   

Secondly, since this method uses only two degrees of membership (the degrees of membership 

associated with the left and the right utility values), an objection can be raised that not enough 

fuzzy information is used in the ranking.  This shortcoming is made explicit in section 5.0. 

 

3.3.3 Modified Cheng’s (1998) method (check method) 

In addition to above methods, we are proposing a modification to an existing ranking method.   

The driving force for this modification is to end up with a method for ranking fuzzy sets which 

can check the results of the previous two methods.  The argument for the modification is as 

follows: 
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Yager (1981) proposed a ranking index which is based on the area under the membership 

function.  Yager’s (1981) index is expressed as: 

 ∫
∫=

dx)x(
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      (24) 

where g(x) is a measure of the importance of the value of x. 

Then, Bender and Simonovic (1996, 2000) modified Yager’s (1981) index into the Weighted 

Center of Gravity (WCoG) index: 
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where exponent q is used to put more weight on higher membership values.   

 

Cheng (1998) is developed a distance method similar to WCoG. 

 ∫
∫=

dx)x(

dx)x(x
x

A

A

0 µ

µ

       (26) 

 ∫
∫

−

−

=
dy)y(

dy)y(y
y

1
A

1
A

0 µ

µ

       (27) 

where the inverse of )(xAµ  is )(1 yA
−µ . 

The Ranking index of Cheng (1998) is computed as follows: 

 
2
0

2
0 yx)A(R +=

       (28) 

With all this in mind, the modification to Cheng’s (1998) method is proposed.  First, the indices 

),( 00 yx have to be modified so that they take Yager’s (1981) form. 
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where functions g(x) and g(y) are the measure of importance of x and y respectively. 

Then, the next step is the same as that of Bender and Simonovic (1996, 2000), in which Yager’s 

(1981) index was modified to WCoG to include the exponent q.   
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Noting that the parameter q is used for the purpose of providing more weight to higher degrees 

of membership, we must assure that this is done in both x and y directions.  The transition from 

(29) to (31) is identical to one performed by Bender and Simonovic (1996, 2000), and so it 

requires little explanation.  Simply stated, equation (31) puts more emphasis on higher 

membership values (i.e., Aµ ) by raising them to an exponent q.  In other words, higher 

membership values give more weight in the ranking. 

 

The transition from equation (30) to (32) however, requires explanation.  In equation (32), x 

values (i.e., 1−
Aµ ) are raised to an exponent, not membership values.  So, for convex fuzzy 

numbers we must consider left and right inverses separately, namely: 
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Case 1. For the left part of the fuzzy number, more weight should be provided to higher x values, 

because higher x values correspond to higher membership values.  Thus, it is reasonable to raise 

1−
ALµ  to an exponent q.  

Case 2. For the right part of the fuzzy number, more weight should be provided to lower x 

values, because lower x values correspond to higher membership values.  To provide more 

emphasis on lower x values, we propose raising 1−
ARµ  to an exponent ( qq −+1max ).  By doing 

this, less and less emphasis is placed on higher x values (i.e., more and more emphasis is placed 

on lower x values).  That way, higher membership values are weighed more in the ranking 

process.   

Lastly, the parameter qmax represents the maximum value of the exponent q.  (The author 

recommends using qmax = 4.) 

 

Finally, the modified index is expressed by equation (33). 

 
2
0

2
0 y~x~)A(R

~ +=
       (33) 

Cheng (1998) shows that his method has benefits over other methods which use only x0 as a 

point of reference for ranking.  These benefits are preserved in the modified index, and an 

additional feature, parametric control is added. 

 

Parametric control in a fuzzy set ranking method is needed because it is possible to conceive that 

two fuzzy sets can have the same centroid even if their supports were different.  Thus, the 

presence of the exponent q takes into consideration degrees of fuzziness of the fuzzy sets to be 

compared.  See Figure 11 for such a case.  (Note: a ranking of A and B is given in section 5.0.) 
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Figure 11. Fuzzy numbers with same centroids but different supports 

 

In performing the sensitivity analysis, the levels of importance of x and y were represented by 

rx)x(g =  and ry)y(g = , respectively.  The values of r that were used were [1, 2, 3].  Also, for 

each value of r, parameter q took on values of [1, 2, 3, 4].  For example, when 1r = , the fuzzy 

sets were ranked with 1q = , 2q = , 3q =  and so on.  The same procedure was followed for 

other values of r.   

 

This method, adapted by incorporating Yager (1981) and Cheng’s (1998) indices, is to act as a 

check method for the above two methods.  Modified Cheng’s (1998) method is ideal for this task 

because it incorporates mapping functions in both x and y directions.
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4.0 Fuzzy Compromise Programming for Multiple Decision Makers 

There exists an array of ways to include multiple experts (or decision makers) into the decision 

making process via Fuzzy Compromise Programming.  One method has been investigated for the 

application in this research – Group Decision Making Under Fuzziness.  Other methodologies 

available are listed in the Recommendations for Future Research section. 

 

4.1 Group Decision Making Under Fuzziness 

Kacprzyk and Nurmi (1998) present a methodology which takes in opinions of m individuals 

concerning n crisp alternatives, and then outputs an alternative (or a set of alternatives) that are 

preferred by most individuals.  Each individual is required to make a pairwise comparison 

between the alternatives; then a fuzzy preference relation matrix is constructed for each expert, 

results aggregated, and a group decision made.   Please note that Kacprzyk and Nurmi’s (1998) 

methodology can assign different experts different levels of importance (i.e., sometimes it makes 

sense that someone’s opinion counts more than someone else’s).  In our study, everyone’s 

opinion was counted the same.  In addition, an overall degree of consensus of all participating 

individuals can also be calculated. 

 

4.2 Group Decision Making Algorithm of Kacprzyk and Nurmi (1998) 

Number of alternatives are denoted by subscripts i, j = 1, 2, 3, ... n and number of individuals by 

subscript k = 1, 2, 3, ... m.  In order to construct a fuzzy preference relation matrix for each 

individual, we must ask that person to compare every two alternatives in the system.  For 

example, if there are three alternatives in the system (A1, A2 and A3), the individual must 

compare A1 to A2, A1 to A3, and A2 to A3, and tell us, for reach comparison, what alternative 
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he/she prefers and to what degree.  The options given to the individual are (from Kacprzyk and 

Nurmi (1998)): 
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With the restrictions above, each individual is to construct a fuzzy preference relation matrix.  

For our three alternative example, a sample matrix for individual 1 may be: 
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Note: our individual 1 said that he/she preferred A1 to both A2 and A3, and A3 to A2, only 

slightly.  Clearly, our individual thinks that A1 is the best option. 

 

Once we obtain the fuzzy preference relation matrix from each individual, the aggregation of the 

results is performed in the following way.  First, hij is calculated to see weather Ai defeats (in 

pairwise comparison) Aj (hij = 1) or not (hij = 0). 
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which is the extent, from 0 to 1, to which individual k is not against alternative Aj, where 0 

standing for definitely not against to 1 standing for definitely against, through all intermediate 

values. 

Next, we calculate 

 ∑
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         (31) 

which expresses to what extent, from 0 to 1, all individuals are not against alternative Aj. 

Then, we compute 

 )h(v jQ
j

Q µ=          (32) 

which represents to what extent, from 0 to 1 as before, Q (most) individuals are not against 

alternative Aj.  Q is a fuzzy linguistic quantifier, (in our case meaning “most”) which is defined, 

after Zadeh (1983): 
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Lastly, the final result (fuzzy Q-core) is expressed as: 
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and is interpreted as a fuzzy set of alternatives that are not defeated by Q (most) individuals. 

 

Similarly, fuzzy α /Q-core and fuzzy s/Q-core can be determined.  The former is obtained by 

changing equation (29) into 
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and then performing all above steps as before.  (1 - α ) represents a degree of defeat to which Ai 

defeats Aj; as such it is taken between [0,0.5].  The final result in this case is interpreted as a 

fuzzy set of alternatives that are not sufficiently (at least to a degree (1 - α )) defeated by Q 

(most) individuals.  The parameter α  was arbitrarily chosen at 0.3. 

Fuzzy s/Q-core is determined by changing equation (29) to: 
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and, again, performing all above steps as before.  With (36) above, strength is introduced into the 

defeat, and the final result interprets as a fuzzy set of alternatives that are not strongly defeated 

by Q (most) individuals. 

 

4.3 Merging Group Decision Making with Fuzzy Compromise Programming 

This section gives the algorithm used in including multiple experts in the decision making 

process that uses Fuzzy Compromise Programming. 

1. Each decision maker is to specify his/her fuzzy weights concerning the importance of 

each criterion in the problem. 

2. Then, for each expert, a set of fuzzy alternatives is generated via Fuzzy Compromise 

Programming. 

3. After this, for each individual, a fuzzy preference relation matrix is generated (more on 

this later). 

4. Finally, after everyone’s fuzzy preference relation matrix is obtained, Q-core, α/Q-core 

and s/Q-core algorithms are performed, and a group decision is made. 
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4.4 Obtaining Individual Fuzzy Preference Relation Matrices 

An individual fuzzy preference relation matrix is obtained via available ranking methods.  Each 

individual’s set of alternatives is ranked with a selected ranking method, and from the ranking 

values, the fuzzy preference relation matrix is obtained.  (It is noted that neutral user preferences 

are used for the generation of this matrix.)  The individual matrices were obtained in the 

following way: 

 

First, a ranking method is called to rank the alternatives for each expert.  Then, from all the 

ranking values for that expert, a difference is found for every two alternatives compared.  To see 

what this means, consider the following.  Suppose that a ranking method produces a vector of 

ranking values for each particular alternative, that is { }An3A2A1A r ,... ,r,r,rranV = .  Then, a 

difference is found for every pair of Air  and 1Air + .   From these differences in the ranking values, 

a fuzzy preference relation matrix is constructed.  Then, if ( 1AiAi rr +− ) is large and negative, that 

means that A1 is much more preferred than A2.  Therefore, a fuzzy preference relation for this 

pair is given a value close to (or just less than) 1.0.  Similarly, if the difference is large and 

positive, meaning that A2 is much more preferred to A1, a value close to 0 is assigned for that 

particular pair.  Of course, the if statements in the code cover all intermediate cases and thus 

assign values between [0,1]  within the fuzzy preference relation matrix.
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5.0 Results and Discussions 

This section gives the results of all experiments performed in this study.  The purpose of the first 

set of experiments (those of section 5.2) was to investigate the sensitivity of ranking fuzzy 

distance metrics with methods available in the literature.  In other words, fuzzy distance metrics 

taken from case studies by Bender and Simonovic (1996) were ranked with three methods 

presented in section 3.3.  Further, a complete sensitivity analysis concerning decision maker’s 

risk preferences (from extreme pessimism to extreme optimism) was performed to investigate 

whether rankings would change in response to changing risk preferences.  Case studies used 

were: Tisza River Basin, Yugoslavia Systems S1 and S2. 

 

The purpose of the second set of experiments (those of section 5.3) was to investigate the 

sensitivity of criteria weights (the parameter wi in equation (13)) to the problem of ranking fuzzy 

distance metrics.  Four different sets of criteria weights were used in the Tisza River Basin 

example to observe how criteria weights influence rankings of the resulting fuzzy distance 

metrics.  For each set of criteria weights, a sensitivity analysis concerning risk preferences was 

performed as well.  

 

Third set (section 5.4) of experiments was set up to test the proposed methodology of including 

multiple experts into the decision making process via Fuzzy Compromise Programming.  Each 

expert was allowed to specify his/her weights concerning the criteria of the problem, which were 

then used to form a group compromise decision. 
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5.1 Comments on features of fuzzy numbers that can influence ranking 

Before the interpretation of the results takes place, few things must be noted.  Firstly, few 

comments are made about different features of fuzzy numbers, such as the degree of fuzziness 

and proximity of a fuzzy number to the origin.  After that, features of fuzzy number that make 

the rankings sensitive to risk preferences are given. 

 

Simply stated, compromise programming favours smallest possible distance metrics.  In the same 

way, Fuzzy Compromise Programming favours fuzzy distance metrics which are closer to the 

origin.  That is to say, if every point on the left part of the membership function has a smaller 

distance metric value (for everyα ) than other fuzzy numbers, then that left part would be 

preferred.  If the same is true for the right part, then definitely the fuzzy number in question will 

be ranked as smallest and therefore the best.  (For example, see Figure 16. Expert 2 distance 

metrics.  In this figure, A1 is always smaller than A5.) 

 

Spreads on the other hand, have a more interesting effect on the ranking of fuzzy numbers.  It is 

possible to conceive of system which has a fuzzy number with a quite large spread and relatively 

close to the origin, and also of a fuzzy number with a small spread and at the same time far from 

the origin.  The alternative closer to the origin, despite its large spread, will be ranked as better 

than one further away.  However, because of its large spread, its performance will be very 

unclear, but still better than the less vague (worse) performance of a fuzzy number further away.  

Of course, the opposite is also possible.  We can imagine a fuzzy number with a small degree of 

fuzziness and relatively close to the origin, as well as a fuzzy number with a large degree of 

fuzziness and far away from the origin.  In this case, the fuzzy number with a small spread and 
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close to the origin will definitely be preferred to the other fuzzy number.  Many cases of the 

latter kind are encountered in this study. 

 

To see how the risk preferences affect the ranking of the results, please consider the example 

from Figure 11. Fuzzy numbers with same centroids but different supports.  (For demonstration 

purposes, let the fuzzy set A = trifn(1,5,9), and B = trifn(3,5,7).)  It is for cases like this that the 

ranking will depend on whether we chose an optimistic, pessimistic, or a neutral point of view.  

For Chang and Lee’s (1994) method, if we are optimistic (i.e., weigh higher the left part of the 

membership function) we would get that A < B.  If we are pessimistic and weigh higher the right 

part of the membership function, then the result A > B will be produced.  Of course if we are 

neutral, a result A = B is produced.  Chen’s (1985) method, on the other hand produced a result 

of A = B, no matter what the risk preferences.  However, since no symmetric fuzzy numbers 

were compared, this shortcoming did not play a role in this study; regardless, it is a flaw of the 

method.   

Modified Cheng’s method, also produced unreasonable results for this case.  For example, for r = 

1, the result of B > A, A > B, B > A and A > B was produced for q = 1, 2, 3 and 4 respectively.  

However, as will be seen in later sections, this discrepancy plays no role in ranking fuzzy 

distance metrics for our case studies, because our case studies are so robust, that they are almost 

insensitive to the ranking method.   

 

Another feature that makes the rankings sensitive to risk preferences is the intersection of 

membership functions.  More precisely, if the left part of one membership function intersects a 

left part of another membership function, then the ranking of these two alternatives will depend 



40 

on the relative risk preference chosen.  (This point is also covered by Chang and Lee (1994), 

page 5, and by Bender and Simonovic (1996), page 46, and so it won’t be discussed further.) 

Therefore we must conclude that ranking order will be sensitive to risk preferences in cases 

where either one fuzzy number’s support is contained within another fuzzy number’s support, or 

if membership functions of fuzzy numbers intersect, or both. 

 

5.2 Ranking Methods Applied to Case Studies from Bender and Simonovic (1996) 

The results presented here include the applications of three selected ranking methods (with 

complete sensitivity analyses) to three case studies.  The purpose of doing this investigation was 

to determine the variability (if any) of rankings, with application of different methods.  The 

fuzzy distance metrics used in this part of the report were taken from Bender and Simonovic 

(1996), pages 94-105.  The methods applied were that of Chang and Lee (1994), Chen (1985), 

together with modified Cheng’s (1998) method. 

 

5.2.1 Tisza River Basin Case Study 

Information on this case study is given (in full detail) in Appendix B - Tisza River Basin.  The 

distance metrics, as obtained by Bender and Simonovic (1996) are shown in Figure 12: 
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Figure 12. Tisza river basin distance metrics 

 

All fuzzy set ranking methods produced identical rankings, namely [1 2 4 3 5].  In addition, the 

ranking order was not affected by the changes in decision maker’s preferences.  Sensitivity 

analysis was performed for all methods, and it was found that the ranking order still did not 

change.  (Reason for this is given at the start of section 5.0.)  By looking at Figure 12, it is 

observed that the first two alternatives, in addition to being very similar and having the smallest 

spreads, are closer to the origin than other alternatives.  (Their closeness to the origin means they 

are favoured in Fuzzy Compromise Programming.)  Alternatives 3 and 5 are also extremely 

similar in nature, but they have larger spreads and are slightly shifted to the right.  It must be 

concluded that this is why they are consistently ranked last. 
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5.2.2 Yugoslavia System S1 Case Study 

The background of this case study is not given in the appendix, as the purpose with this 

information is to investigate the consistency of the rankings by applying different fuzzy set 

ranking methods.  Again, the distance metrics in fuzzy form, from Bender and Simonovic (1996) 

are: 
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Figure 13. Yugoslavia System S1 distance metrics 

 

In performing sensitivity analysis with Chen’s (1985) method, the ranking order of [5 6 3 4 2 1] 

was produced for all values of r, except in the case of extreme optimism (r < 0.1), which 

produced [6 5 3 4 2 1].  It is noted that the degree to which alternative 6 was preferred to 5, was 

not significant, and thus does not pose a major problem. 
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Chang and Lee’s (1994) method, however, produced more variations.  For 1χ  values of 0.3, 0.5 

and 0.7, the ranking was identical to that produced by Chen’s (1985) method.  Cases of extreme 

optimism and extreme pessimism produced different rankings, which was not observed in the 

application of Chen’s method.  It does make sense that if most weight is placed on only one part 

of the membership function, the ranking will be based mainly on than one part.  If then, these 

parts are different from each other, it is reasonable to expect different rankings.  Note that 

alternatives in Yugoslavia System S1 are more different from each other than are the alternatives 

in the Tisza River Basin example.  It is expected that this is why the largest difference in rank are 

showing for this system. 

 

With modified Cheng’s (1998) method, most of the time the ranking of [5 6 3 4 2 1] is observed.  

This is again consistent with the results that were obtained previously.  Alternatives 1, 2 and 4 

were always ranked as worst, whereas alternatives 5, 6 and 3 were ranked in all possible 

combinations.  This variation is, no doubt, due to weighting of parameters r and q.  Regardless of 

the variation, this method provided an adequate check (that alternatives 5, 6 and 3 are among the 

best ones).    

 

5.2.3 Yugoslavia System S2 Case Study 

The only difference between System S1 and System S2 is that the former contains six, while the 

latter contains eight alternatives.  The criteria for both systems were identical.  As before, the 

distance metrics, from Bender and Simonovic (1996) are: 
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Figure 14. Yugoslavia System S2 distance metrics 

 

As in the previous sub-section, Chen’s (1985) method produced the identical ranking for all 

values of r which were greater than 0.1, namely [3 1 7 8 4 2 6 5].  For values of r smaller than 

0.1, the ranking of [1 3 7 8 4 2 6 5] was observed.  Again, the degree of preference for alternative 

1 over alternative 3 was so small, that it can be deemed insignificant. 

 

The only variations with Chang and Lee’s (1994) approach were the ranking of the three worst 

solutions.  The best five solutions were always consistently ranked as [3 1 7 8 4].   

 

With modified Cheng’s (1998) method, five best solutions, namely [3 1 7 8 4] were ranked 

consistently for every case considered.  Some deviation in the ranking existed for the three worst 

alternatives [2 6 5], but this was not significant enough to cause worrying.  As before, this 
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system had a much lower spread than S1, and that is why significant amount of deviation was not 

present 

 

5.3 Weights Sensitivity Analysis for the Tisza River Basin Example 

As previously mentioned, all relevant background information for this case study is given in 

Appendix B.  The fuzzy input data, taken from Bender and Simonovic (1996) is given in 

Appendix C.  The definition of fuzzy one was trifn(0.99,1.0,1.01), and the fuzzy exponent p = 

trifn(1,2,2).  These two parameters affect the shape of the resulting fuzzy distance metrics.   

 

By weights sensitivity analysis it is meant that fuzzy weights were varied for the Tisza River 

Basin example, and then a sensitivity analysis concerning decision maker’s risk preferences was 

performed (i.e., from extreme pessimism, to neutral, to extreme optimism).  Four sets of weights 

were considered, and as such, four sets of fuzzy distance metrics were generated.  (Note that all 

other fuzzy input, such as p, *
if , −

if  and if  were held constant.)  To investigate the variability 

of the rankings, weights from four experts were used.  The experts were: 

 

Expert 1, and Expert 4: held viewpoints somewhere in between the extremes of Expert 2 and 3; 

Expert 2: had a mind set of someone who places emphasis on the protection of the environment, 

and very little on the development; 

Expert 3:  possessed strong opinions in favour of development, with very little concern to the 

environment; 
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Every expert was asked to rank the importance of the criteria using a scale 1 - 5, with 1 being 

least important and 5 most important, and all values in between.  From this data, triangular fuzzy 

weights were constructed in the following manner: 

1 = trifn(0.0,0.1,0.2); 2 = trifn(0.2,0.3,0.4); 3 = trifn(0.4,0.5,0.6); 4 = trifn(0.6,0.7,0.8); and 5 = 

trifn(0.8,0.9,1.0).  If importance of the criteria was indicated by a number like 3.5, the 

corresponding fuzzy weight was trifn(0.5,0.6,0.7). 

 

The table below lists the importance ranking of each expert for each criteria. 

Table 2. Expert weights 

Criteria # 1 2 3 4 5 6 7 8 9 10 11 12 

Expert 1 3 3 4 4 4 4 4 4 3.5 4 3.5 4 
Expert 2 1 3 5 3 2 2 5 1 5 5 2 2.5 
Expert 3 5 4 3 5 5 5 1 2 2 2 5 5 
Expert 4 5 3 5 2 2 5 4 2 4 3 3 2 
 

As a result of application of Fuzzy Compromise Programming, the Figures 15 - 18 represent four 

sets of fuzzy distance metrics. 
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Figure 15. Expert 1 distance metrics 
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Figure 16. Expert 2 Distance Metrics 
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Figure 17. Expert 3 Distance Metrics 
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Figure 18. Expert 4 Distance Metrics 
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5.3.1 Results and Comments of the Weights Sensitivity Analysis 

The results of the ranking for each expert are given next: 

Expert 1: [1 2 4 3 5]; Expert 2: [1 2 4 5 3]; Expert 3: [1 2 4 3 5]; Expert 4: [2 1 4 5 3]. 

The actual ranking values for all cases considered are given in Appendix D [floppy disk].  It is 

noted that by changing the weights, some variation is, indeed, present.  However, because of the 

robustness of the Tisza River Basin system alternatives, even these variations were not large.  

Note that in performing expert risk preference sensitivity analysis, it was observed that all 

rankings were insensitive to user preferences for every method.  This fact can be explained by 

observing that, for every expert, features which are expected to change the rankings were not 

present in the four sets of fuzzy distance metrics.  In addition, the circumstances in which Chen’s 

(1985) (and modified Cheng’s (1998)) method can not give adequate rankings were also not 

present.  As such, insensitivity to risk preferences is deemed quite reasonable. 

 

Also, it is noted that alternatives 1 and 2 are extremely similar.  That is, they are consistently 

closer towards the origin than other alternatives - a feature that compromise programming 

favours.  Because of this, they are consistently ranked as the two best alternatives.  Their degree 

of fuzziness, again being the smallest from the set, indicates that their relative degree of 

performance is quite good.  Alternatives 3, 4 and 5 on the other hand, have roughly the same 

shape, but greater degrees of fuzziness (greater than alternatives 1 and 2) - this indicates that 

their degree of performance is quite vague.  Also, they are farther away from the origin that 

alternatives 1 and 2, and so are consistently ranked as the three worst alternatives. 
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5.4 Results of the Overall Group Decision 

Four sets of data were taken from sub-section 5.2 and then applied to group decision making 

algorithms outlined in section 4.0.  The results were not at least unexpected.  They are: 

Q-core: {1.0, 1.0, 0, 0.4, 0}; which represents the degrees that alternatives 1 and 2 were not at all 

defeated (in pairwise comparison). 

α/Q-core: {0.7750, 0.6500, 0, 0, 0}; which gives the degrees that alternatives 1 and 2 were not 

sufficiently defeated (to a degree of 0.7). 

s/Q-core: {0.7250, 0.5625, 0, 0, 0}; which expresses the degrees that alternatives 1 and 2 were 

not strongly defeated. 

 

Results outputted by this methodology concern only the best alternatives, or ones that were not 

defeated in pairwise comparison.  As such, no information is given about the three worst 

alternatives.  Regardless, a final decision can now be made.  Alternative 1 is the best overall 

water resources option for the Tisza River Basin.
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6.0 Recommendations for Future Research 

Even with the final decision of the previous paragraph, more analysis should be performed 

before anything is done to the basin.  For example, in performing the weights sensitivity analysis, 

only weights were changed by each expert, while keeping other parameters (such as fuzzy one, 

fuzzy p, positive and negative ideals) constant.  Perhaps, in the future each expert should be 

allowed to determine their own positive and negative ideals, together with their own definition of 

the fuzzy p.  That, it is anticipated, will make Fuzzy Compromise Programming more realistic in 

modeling human decision making. 

Also, only one methodology for including multiple decision makers was implemented in the 

group decision process.  As was mentioned previously, other methodologies are also available, 

and so they should be used.  One such methodology is suggested by Bender and Simonovic 

(1996), and it involves adjusting fuzzy weights and fuzzy criteria values to include views and 

opinions of multiple experts.  Essentially, this adjustment produces a set of data that corresponds 

to an opinion of the entire group, which is then inputted into the Fuzzy Compromise code and the 

results sorted appropriately.  Some work on aggregation operators – which could be used to 

aggregate individual opinions into a single, group opinion was done by Despic and Simonovic 

(2000).  As such, it could probably be applied to our group decision making problem.   

In addition, Cheng (1999) as well as Ghyym (1999) present additional methodologies for 

including multiple experts into the fuzzy decision environment.  It is suggested that 

methodologies listed in this section be seriously considered for future work in this area.
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Appendix A – Tisza River Basin Example 

The Tisza River Basin example was studied with the purpose of determining an optimal long 

range (60 years) water resources system that is best suited for the region.  In developing the 

alternatives, David and Duckstein (1976) considered twelve criteria, many of which were 

subjective.  The table below shows the alternatives, together with criteria values for each system 

in the study. 

Table 2. Original Criteria Values used by David and Duckstein (1976) 

  Criteria I II  III  IV V 

1  Total Annual Cost (109 Forints/year) 99.6 85.7 101.1 95.1 101.8 
2 Probability of Water Shortage 4 19 50 50 50 
3 Energy (Reuse Factor) 0.7 0.5 0.01 0.1 0.01 
4 Land and Forrest Use (1000 ha) 90 80 80 60 70 
5 Water Quality Very Good Good Bad Very Bad Fair 
6 Recreation Very Good Good Fair Bad Bad 
7 Flood Protection Good Excellent Fair Excellent Bad 
8 Manpower Impact Very Good Very Good Good Fair Fair 
9 Environmental Architecture Very Good Good Bad Good Fair 
10 Development Possibility Very Good Good Fair Bad Fair 

11 International Cooperation Very Easy Easy Fairly Difficult  Difficult  Fairly Difficult  

12 Sensitivity Not Sensitive Not Sensitive Very Sensitive Sensitive Very Sensitive 
 

A short description of the criteria is outlined next: 

1) Total Annual Cost includes the cost of construction together with operation and 

maintenance of the system.   

2) Probability of Water Shortage criterion is self explanatory, and thus will not be 

elaborated on. 

3) Energy Reuse Factor is a ratio of generated energy (hydroelectric power) to the 

consumed energy (i.e., water pumping costs) of the system.  Therefore, this ratio 

should be as high as possible. 

4) Land and Forrest Use is amount of land and forests that are required by the 
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system.  This will be needed for reservoirs (storage) and canals (transfer).  Thus, 

the less of the land and forests is used in developing the region, the better. 

Note criteria 5-10 are evaluated with linguistic terms {excellent, very good, good, 

fair, bad}; criterion 11 is evaluated with {very easy, easy, fairly difficult, difficult}, 

and criterion 12 with {very sensitive, sensitive, fairly sensitive, not sensitive}. 

5) Water Quality includes the quality of drinking water, as well as the overall quality 

of water found in the rivers and streams within the basin. 

6) Recreation is again a self-explanatory criterion.  It is an important in that as the 

region develops and population increases, this criterion will directly have an 

impact on the quality of life of the public with in the river basin.  As such, it 

should be as best as possible. 

7) Adequate Flood Protection for the Tisza River (and its tributaries) should be 

provided.  The social and economic consequences of floods can be quite severe, 

and so as much of protection as possible should be provided. 

8) Manpower Impact is a criterion that has two parts.  First, the number of persons 

needed for the construction and operation of the system should be as low as 

possible (due to monetary reasons).  On the other hand, the persons employed 

should receive an adequate yearly income.   

9) Environmental Architecture includes the preservation of the existing environment, 

including natural habitats for the various species of animals, fish and insects.  

Also, the esthetics of the region should be preserved as well. 

10) Development Possibility is a social criterion that must be considered due to the 

fact that the population of the region will most likely increase within the next fifty 



57 

years.  Again, as before, it should be as best as possible.  (Note that criterion 9 is 

in direct conflict to criterion 10!) 

11) International Cooperation is a factor that concerns the regions’ neighbours, and 

thus is extremely important.  It is measured with the degree of difficulty the 

implementation of the system is likely to raise international concern.  Of course, 

the more international concern, the worse. 

12) Sensitivity criterion is one which requires most explanation.  The water resources 

system to be implemented should be flexible enough to accommodate a variety of 

requirements, which can not be known at the present time.  The system should be 

able to link itself with another system, which might be built sometime in the 

future.  Also, “it should be able to cope with several types of uncertainties, such 

as the natural uncertainty inherit in forecasting, the strategic uncertainty due to 

unknown future allocation policy, the economic uncertainty pertaining to the cost 

and loss functions... “ (David and Duckstein (1976), p.738).   

 

Figures A1 and A2 show the location of the alternatives, and the following paragraphs briefly 

describe each alternative water resources system.  (Maps are courtesy www.maps.com.) 
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Figure A19. Locations of Alternatives I and III 

 

 
Figure A20. Location of Alternatives II, IV and V 
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(The following text is taken from reference David and Duckstein (1976)) 

System I - Danube-Tisza Interbasin Transfer Using a Multi-Purpose Canal-Reservoir 

System 

The system used the water resources of both Tisza and Danube rivers.  The water is transferred 

all year around from the Danube by a gravity canal in the flat area and by a pumped canal 

reservoir system in the mountains.  There is enough allocated water in the Danube River for the 

present and the future; therefore the development and operation of the system does not depend to 

a great extent on international operation. 

However, the system would consume large quantity of resources (e.g., land and forest resources 

for reservoir sites); it would not be of much help for flood control and drainage; and the quality 

of the Danube River is likely to decrease in the future, so that some treatment will be needed.  

The sensitivity of the system to these data is rather low. 

 

System II - Pumped Reservoir System in the Northeastern Part of the Region 

This pumped reservoir system supplied only from the Tisza River is developed [mainly] on the 

hilly region [of northeastern Hungary].  The system is also basically oriented toward water 

resources utilization, but the natural supply of water is available only four to five months per 

year.  The system, which provides excellent flood protection, also consumes large quantities of 

resources.  The water quality and the runoff condition are based on good international 

cooperation.  Large peek pumping capacities are needed because the pumping time is generally 

limited to high water in the river.  The system sensitivity to these data is not important. 
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System III - Flat Land Reservoir System 

This system could be developed on the flat- land part of the region.  The system using Tisza water 

would be composed of shallow flat land reservoirs 2 to 4 m deep, but only a limited area of 5.5 

sq km could be used for reservoirs.  A large quantity of land and forest resources is needed.  The 

development and operation of the system is fairly difficult from both energy management and 

international cooperation viewpoints.  The operation costs, especially for reuse, are quite high.  

The system is very sensitive to the basic data. 

 

System IV - Mountain Reservoir System in Upper Tisza River Basin 

This system would be located outside the country.  It uses and regulates the water resources of 

the Tisza River by gravity.  All storage capacity available in the framework of international 

cooperation is used, but not all the water resources.  Excellent international cooperation must be 

initiated and maintained, which may be difficult.  Because of international cooperation, 

difficulties would arise in evaluating costs.  As a result of these uncertainties, the system is 

sensitive to data. 

 

System V - Groundwater Storage System 

The system would be developed mainly on the flat-land part of the region, especially on the 

eastern part.  The system using the Tisza water and stored groundwater resources would be 

composed of underground storage spaces.  But such spaces are limited; therefore, reuse [of 

water] would have to be high and salinity problems might arise in the future.  Efficient use of the 

small storage space needs international cooperation so that water will be available to fill the 

reservoirs.  Lastly, the system is very sensitive to uncertainties.
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Appendix B – Tisza Fuzzy Input Data 

 

Table 3, Tisza River Basin fuzzy weights, positive and negative ideals 

wi = trifn(a, b, c) f*  f- 

0.5 0.66 0.75 25 30 30 0 0.5 0.5 
0.5 0.66 0.75 99 100 100 0 1 1 
0.5 0.66 0.75 0.9 1 1 0 0.1 0.1 
0.5 0.66 0.75 0.99 1 1 0 0.1 0.1 
0.5 0.66 0.75 0.9 1 1 0 0.1 0.1 
0.5 0.66 0.75 0.9 1 1 0 0.1 0.1 
0.25 0.33 0.5 99 100 100 0 0.1 0.1 
0.25 0.33 0.5 0.9 1 1 0 0.1 0.1 
0.5 0.66 0.75 0.9 1 1 0 0.1 0.1 
0.5 0.66 0.75 0.9 1 1 0 0.1 0.1 
0.25 0.33 0.5 0.9 1 1 0 0.1 0.1 
0.25 0.33 0.5 0.9 1 1 0 0.1 0.1 

 

 

 

Table 4. Tisza River Basin fuzzy criteria values 

f1 f2 f3 f4 f5 

10.3 10.4 10.5 24.2 24.3 24.4 8.8 8.9 9 14.8 14.9 15 8.1 8.2 8.3 
94 96 98 79 81 83 48 50 52 48 50 52 48 50 52 
0.6 0.7 0.8 0.4 0.5 0.6 0 0.1 0.2 0.6 0.7 0.8 0.2 0.3 0.4 
0.69 0.7 0.71 0.49 0.5 0.51 0 0.01 0.02 0.09 0.1 0.11 0 0.01 0.02 
0.6 0.7 0.8 0.4 0.5 0.6 0.2 0.3 0.4 0 0.1 0.2 0 0.1 0.2 
0.4 0.5 0.6 0.8 0.9 1 0.2 0.3 0.4 0.8 0.9 1 0 0.1 0.2 
8 10 12 18 20 22 18 20 22 38 40 42 28 30 32 

0.6 0.7 0.8 0.6 0.7 0.8 0.4 0.5 0.6 0.2 0.3 0.4 0.2 0.3 0.4 
0.6 0.7 0.8 0.4 0.5 0.6 0 0.1 0.2 0.4 0.5 0.6 0.2 0.3 0.4 
0.7 0.8 0.9 0.5 0.6 0.7 0.3 0.4 0.5 0.1 0.2 0.3 0.3 0.4 0.5 
0.6 0.7 0.8 0.4 0.5 0.6 0.2 0.3 0.4 0 0.1 0.2 0.2 0.3 0.4 
0.1 0.2 0.3 0.1 0.2 0.3 0.7 0.8 0.9 0.5 0.6 0.7 0.7 0.8 0.9 
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Appendix C – Results 

 

Table 5. Tisza River Basin results 

Chang and Lee's (1994) Chen's (1985) method 

χ1 = 0.1 χ1 = 0.5 χ1 = 0.9 r = 2 r = 1 r = 0.5 

1 1 1 1 1 1 

2 2 2 2 2 2 

4 4 4 4 4 4 

3 3 3 3 3 3 

5 5 5 5 5 5 
 

 

Table 6. Yugoslavia System S1 results 

Chang and Lee's (1994) 
method 

Chen's (1985) method 

χ1 = 0.1 χ1 = 0.5 χ1 = 0.9 r = 2 r = 1 r = 0.5 

6 5 5 5 5 5 

3 6 4 6 6 6 

5 3 6 3 3 3 

4 4 3 4 4 4 

2 2 2 2 2 2 

1 1 1 1 1 1 
 

 

Table 7. Yugoslavia System S2 results 

Chang and Lee's (1994) 
method 

Chen's (1985) method 

χ1 = 0.1 χ1 = 0.5 χ1 = 0.9 r = 2 r = 1 r = 0.5 

3 3 3 3 3 3 

1 1 1 1 1 1 

7 7 7 7 7 7 

8 8 8 8 8 8 

4 4 4 4 4 4 

6 6 2 2 6 6 

2 2 6 6 2 2 

5 5 5 5 5 5 
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