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Abstract

The present report further investigates the nauiteria decision making tool named Fuzzy
Compromise Programming. Comparison of different fuzzy set ranking methods (required for
processinduzzy information) is performed. A complete sensitivity analysis concerning decision
maker’s risk preferences was carried out for three water resources systems, and compromise
solutions identified. Then, a weights sensitivity analysis was performedeoafdhe three

systems to see whether the rankings would change in response to changing weights. It was
found that this particular system was robust to the changes in weights.

An inquiry was made into the possibility of modifying Fuzzy Compromise Praogiago

include participation of multiple decision makers or experts. This was accomplished by merging
a technique known as Group Decision Making Under Fuzziness, with Fuzzy Compromise
Programming. Modified technique provides support for the group decisaking under

multiple criteria in a fuzzy environment.
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1.0 Introduction

The field of statisticended its monopoly as being the only field able to model imprecision and
uncertainty. This change is credited to the introduction of fuzzy logic. The theory of fuzzy
logic, unlike statistics (where uncertainty is modeled with randomness), represergsisop

by the fact that certain objects (or certain classes of objects) have poorlyedingd

boundaries. It is assumed that “not all uncertainties easily fit the probabilistic classification”,
Bender and Simonovic (2000). As such, fuzzy logicdsa direct competitor to statistics,
although many problems can be modeled both ways. However, it is argued that fuzzy logic is

able to represent certain sorts of uncertainties better than statistics.

Some of the most popular examples of classes efctjvhere boundaries aren’t clear (or are
poorly defined) are “the class of all real numbers whichrareh greatethan 17, “the class of
beautifulwomen”, or “the class dill men.” Note that the italicized words are ones which
represent terms whosesaning isn't really clear (i.e., it's fuzzy). Multitudes of fuzzy terms

exist in the natural language, suchrasch better tharmuch smaller tharabout or neay

substantial considerablesignificant, to just mention a few. Objects which are descried

these fuzzy terms can, according to Bellman and Zadeh (1970), “convey information despite the
imprecision of the meaning of the italicized words.” Utilizing imprecise information of this type

is the task of the field of fuzzy logic.

This type of infomation (i.e., fuzzy information) is represented by fuzzy sets, which assign
grades of membership to objects within their universe of discourse. This means that a certain

object (or a collection of objects) can belong to some larger class of objectlyifradial



membership. This is analogous or a “gray” or “shady” area, as we don’t really know if the
objects in question belong to the class or not; all we know is that the objects partially belong to
the class, and so we express that with membershgtidas. This way of dealing with

imprecision is ideally suited for the area of modeling human decision making, as in many cases

we process (although subconsciously) this fuzzy information on daily basis.

Human decision making usually deals with makirggaision in presence of vague, incomplete

or imprecise information. With the introduction of the theory of fuzzy sets, modeling decision
making was made possible by yet another set of tools (in addition to ones based on statistics).
One of these tools (zzy Compromise Programming) is summarized in this report, and then
supplemented by an additional featuiiaclusion of multiple experts in the decision making
process. In addition, a detailed study concerning fuzzy set ranking methods (which areynecessa
for processing results produced by Fuzzy Compromise Programming) is presented. It should be
noted that inclusion of multiple experts in the decision making process, together with

comparisons of different fuzzy set ranking methods are the two mairtieégeof this research



2.0 Background Information

This section briefly outlines the definitions of terms relevant to this report, as well as details of
performing fuzzy arithmetic. Introduction and history of compromise programming is then
given, togethewith a summary of Fuzzy Compromise Programming, as modified by Bender and

Simonovic (1996, 2000).

2.1 Definitions

Definition 1. (Classical set)

Classical, or a crisp set, is one which assigns grades of membersitipeod or 1 to objects

within their universe of discourse. To say it in another way, objects either belong to or do not
belong to a certain class; or object either posses a certain property, or they do not; there is no

middle ground. The type of a function that describes this is calledraateristic function.

Definition 2. (Fuzzy set)
A fuzzy set is one which assigns grades of membebstipeerD andl to objects within its
universe of discourse. ¥ is a universal set whose elements{agethen, a fuzzy set A is
defined by, its mmbership function,

Ma: X = [04], ()

which assigns to every a degree of membership, in the interval0,1].

A fuzzy set can be represented by a continuous membership fupct{on, or by a set of
discretepoints. The latter is denoted by ordered pairs,

A={(xua(x)}  xOX. 2)



It is worth noting that a fuzzy set, whose degree of membership i©a@mgl, reduces to a

crisp set.
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Figure 1. lllustration of a crisp and a fuzzy set

Definition 3. (Support of a fuzzy set)
Support of a fuzzy seét (written assupp(A) is a (crisp) set of points i for which p, is

positive. An alternate way of saying this would be that the support of a fuz&yiss#éie vald

universe of discourse & (i.e., all validx’s). Mathematically stated,

supi A) ={x 0 X |i,(x)>0}. (3)

Synonyms of support are degree of fuzziness or a fuzzy spread.
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Figure 2. Support of a fuzzy set

Definition 4. (Normal fazy set)

A fuzzy setA is normal if its maximal degree of membership is unity (i.e., there must exist at

least one for which p,(x)=1). Of course, nemormal fuzzy sets have maximum degree of

membership less than one.

Definition 5. (Convexuzzy set)

A fuzzy setA is convex if and only if it satisfies the following property:

UA()\Xl+(1_)\)X2)2min(UA(X1 )’HA(XZ» (4)

whereA is in the interval0,1], and X, <x,. An example of a convex, as well as a-nonvex

fuzzy set is illustrated in Figer3.
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Figure 3. Convex and nonconvex fuzzy sets

Remark:All fuzzy sets encountered in this report are both normal and convex.

Definition 6. (Intersection and union of fuzzy sets)
Intersection of fuzzy set A with fuzzy set B is
M ans (X) = min(p,(X),1ug( X)) (5)
Union if two fuzzy sets is similarly defined:
M ace (X) = max(ua(x),Hg(x)) (6)
Note that intersection of two fuzzy sets is the largest fuzzy sets contained within A and B, and

union is the smallest. See Figure 4 for clarifarat
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Figure 4. Union and intersection of two fuzzy sets

Definition 7. (Supremum and infimum of fuzzy sets)

Supremum, denoted Bup is the largest possible value within given set, while infimum,

denoted bynf, is the smalldsvalue in a given set.

Definition 8. j-cut of a fuzzy set)

A-cut of a fuzzy set is defined as crisp €t (or a crisp interval) for a particular degree of

membershipa. Mathematically stated,
A" =[a® b*] (7)

wherea, as before, can take on values betwéeh].
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Figure 5. lllustration of an a-cut

Definition 9. (Fuzzy numbers)
A fuzzy number is a fuzzy set which is both normal and convex. In addition, the membership

function of a fuzzy number must be piecewise continuous.

Mostcommon types of fuzzy numbers are triangular and trapezoidal. Other types of fuzzy
numbers are possible, such as-sBalped or gaussian fuzzy numbers, as well as a variety of one
sided fuzzy numbers. These will not be covered here. The interestedisgadierred to a book
by Klir and Yuan (1995) for more information on other types of fuzzy numbers. Triangular

fuzzy numbers are defined by three parameters, while trapezoidal require four parameters.
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Figure 6. Triangular and trapezoidal fuzzy numbers

2.2 Fuzzy Arithmetic

A popular way to carry out fuzzy arithmetic operations is by way of interval arithmetic. This is
possible because any-cut of a fuzzy number is always an interval (see definition 8).

Therefore, any fzzy number may be represented as a series of intervals (one interval for every
a-cut). In the Matlab code that was produced, dGtuts (or intervals) were made, which

means thatr -cuts were made far = 0, 0.01, 0.02, 0.03, ..., 0.98, 0.99, 1Now, this means

that there existOlintervals on which we are to perform interval arithmetic operations.
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The basics of interval arithmetic are given next. For any two intefaals] and[d, €], the

arithmetic operations are performed in the following way:

Addition: [a, b] + [d, €] = [a+d, b+e]; 8)
Subtraction: [a, b] - [d, e] = [a-e, bd]; (9)
Multiplication: [a, b] - [d, €] = [min(ad, ae, bd, be), max(ad, ae, bd, be)];  (10)
Power: [ a,b]“® = [min(’, &, b b°), max(d, &, i, b9]; (11)
Division: [a,b] / [d, €] = [min(a/d, a/e, b/d, ble), max(a/d, a/e, b/d, ble)],(12)

provided that Q1 [d, e].

Since any fuzzy number can be represented by a series of crisp intervals, we can then apply
intervalarithmetic operations (such as addition, subtraction, multiplication, division, power) and
obtain an alternate way of performing fuzzy arithmetic. This is what most texts (and Matlab)
consider as fuzzy arithmetic. In addition, this techniquedee conputationally efficient than

brute force/dynamic search combination, but its downfall is that it cannot handlenodél

fuzzy sets (i.e. mukimodal fuzzy sets cannot be expressed as intervals). An excellent text on
fuzzy arithmetic is one by Kaufmanda@Gupta (1985); also, Klir and Yuan (1995) in their book

cover the basics of fuzzy arithmetic rather well.

Note: Bender and Simonovic (1996) developed a different method of performing fuzzy
arithmetic. Their method is based on brute force complimenteddwnamic searches, which

are used to lower computation time. An advantage of their method is that it's able to perform
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fuzzy arithmetic on all types of fuzzy sets, not just fuzzy numbers. However, even with dynamic
searches, the methodagtremelyconputationally intense.

Therefore, it can be concluded that if fuzzy arithmetic is required fecommvex (or multi

modal) fuzzy sets, brute force/dynamic search method should be used. If on the other hand,
fuzzy arithmetic is required to be performedfazzy numbers, then application of interval

arithmetic is sufficient.

2.3 History of Compromise Programming

Classical compromise programming was originally developed by Zeleny (1973), and since then,
it has been applied (and modified) by many. Bargessal. (1985) modified compromise
programming to form composite programming methodology that deals with problems of
hierarchical nature (i.e., when certain criteria contain a number edréebia). Composite
programming works by applying the cormaprise programming equation to each-suiterion,

and then combines the compromise distance metrics of eadatritarion to form a single

composite distance metric (one composite distance metric for each objective of the problem). Its
main strength is #t it's able to assign a different distance metric expomémt each sub

criterion, thus making the user “account for the analytical characteristics of statistical criteria
versus the economic value of observation effort” (Bardossy et al. (1985), pggeA37/such,

composite programming is a natural extension of compromise programming.

Also, composite programming was further modified into fuzzy composite programming, which

instead of crisp input variables, considers fuzzy variables. However, fozgyosite
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programming (as of now) models only criteria values as fuzzy sets, while keeping the distance
metric exponenp and the weights crisp.
Applications of fuzzy composite programming include that of Lee et al. (1991), Lee et al. (1992),

Bardossy an@®uckstein (1992), and Hagemeister et al. (1996).

Goicoechea et al. (1982) use compromise programming to evaluate a set of water resource
systems subject to multiple (conflicting) criteria. Tkach and Simonovic (1997) use this same
approach and apply congmise programming, together with Geographical Information
Systems, to come up with spatial compromise programmangiethodology able to model

spatial variability of criteria values. In addition, Bender and Simonovic (1996, 2000) fuzzified
compromise prgramming (i.e., all parameters in the compromise programming equation were

made into fuzzy sets) and came up with Fuzzy Compromise Programming.

2.4 Compromise Programming

Compromise programming is a mathematical programming technique that ranks a skt@éte
solutions according to their distance from an ideal solution. This closeness is determined by
some measure of distance. To see the meaning of this, consider the following example:
Suppose two objectives are to be met for a maximization probleenwbich seeks the

maximization of all objectives when possible). Also, suppose that the objectives are ‘protection
of the environment’ and ‘development possibility’. Likewise, imagine that four available
alternatives are present, from which one is tet@sen for implementation. Now, the ideal

point (or the ideal alternative) would be one where both objectives are maximized. This point, in

most practical cases is infeasible and as such, a compromise must be sought (i.e., if we are to
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have well a protgted environment, the chance is that there natlbe an excellent development
possibility, and vise versa.) Compromise programming states that the best alternative is one
which is closest to the ideal point. (Note that Gbjectives are present, thistdnce metric is in

n™ dimensional space.) Graphical representation of compromise programming is illustrated by

Figure 7.
A
Ideal point
4 0 Infeasible
region
& p 9
. /‘ &
(0]
= /
ﬁi Possible
e alternatives\
o
-

Objective 1

Figure 7. An illustration of compromise programming

The equation used to olntaa dimensionless distance metrics (one for every alternative) is:

(13)

where:

i=1,2,3...nand representscriteria or objectives;
j =1, 2,3 ... mand represents alternatives;

L; is the distance metric of alternatjy

w; corresponds to a weight of a particular criteria or objective;
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p is a parametep(= 1, 2,0);
f"and f~are the best and the worst value for critgri@spectively;

f, is the actual value of criterian

Of course, each criterion is to be given a level of importance, or a weight. The decision maker’s
preferences (concerning the criteria) are modeled with the vavialpleting that for compromise
programming the wights are used simply to place emphasis on the important criteria. The
parametep is used to represent the importance of the maximal deviation from the ideal point. If
p =1, all deviations are weighted equallypif 2, the deviations are weightedproportion to

its magnitude. Typically, gsincreases, so does the weighting of the deviations. For more
information on the parametpy consult Goicoechea et al. (1982), page-238.

Compromise programming equation is solvedpgfer 1, 2and « , and then the alternatives are
ranked. After the distance metrics are obtained, they are then sorted from smallest to largest,

where the smallest represents the best compromise alternative.

2.5 Fuzzy Compromise Programming

Fuzzy Compromse Programming equation is obtained by fuzzifying the compromise

programming equation (i.e., by fuzzifying equation (13)). Thus, instead of inputting crisp

numbers into equation (13), fuzzy numbers are used instead; instead of using classical arithmetic,
we have to resort to fuzzy arithmetic; instead of simply sorting distance metrics, fuzzy set

ranking methods must be applied to sort the fuzzy distance metrics.
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Differences between crisp and fuzzy numbers are outlined in section 2.1, and a treatment on
fuzzy arithmetic is given in section 2.2. This section will present the motivation behind the

transformation from compromise programming to Fuzzy Compromise Programming.

The fuzzification of criteria values is the main driving force for the mathemataradformation

from crisp to fuzzy. Often the criteria values are subjective in nature, taking such form as “A is
roughly as large as B”, “B isnuch greatethan C”, and “C isubstantiallydifferent from A”.

There are techniques available (see Klir #odn (1995)) that allow generation of these fuzzy

sets, thus preserving the information contained within the italicized words. If criteria values on
the other hand are not subjective, it still may be worthwhile keeping them fuzzy. This is because
of the inherit uncertainty associated with the criteria values themselves. For example, if the
criterion such as cost comes out to be $25,000 it may be useful to model this with a fuzzy
number such asabout$25,000”. Of course, the more we are certain abedtule value of the

cost, the lesser degree of fuzziness we assign to the fuzzy number.

By the same analogy, criteria weights should also be fuzzified because they, too, are subjective
in nature. It is usually the stakeholders, the participants, atettision makers that provide their
individual weights concerning the criteria. Then, this information can be aggregated into

appropriate collective weights, which are then used to obtain a compromise decision.

The same goes for the positive and negatieals within equation (13), as they are very much
subjective. Difficulties present themselves when assigning positive and negative ideals to such

criteria as cost, for example. Different participants will most probably have a different idea of
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what theideal cost should be, and so use of aggregation methods and fuzzy sets may be more
accurate than simply using crisp averages. This way, more information is being preserved

throughout the problem.

Last, but not least, is the fuzzified value of the distametric exponerg. According to Bender
and Simonovic (2000), “this is the most vague and imprecise element of the distance metric
calculation.” The exponeitis simply used for weighting deviations of criteria values from its
ideal point. Of coursef it were known what the weighting of the deviations should be, the
problem would be simple. However, such information in most practical situations is just not

available, and so we resort to fuzzy sets in representing the parameter

Now that all tems of equation (13) are fuzzy sets, the resulting distance méiricalso

become fuzzy sets. In order to determine the alternative that is closest to the ideal alternative,
fuzzy distance metrics have to be ordered from smalldatgest. In other words, fuzzy

distance metrics have to be sorted. It is noted that ranking fuzzy distance metrics (which are
fuzzy numbers in our study) is not as straightforward as ranking crisp numbers. More detail on

this is given in section 3.0.
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3.0 Ranking Fuzzy Sets

Ordering of fuzzy quantities is based on extracting various features from fuzzy sets. These
features may be a center of gravity, an area under the membership function, or various
intersection points between fuzzy sets. A particfuary set ranking method extracts a specific
feature from fuzzy sets, and then ranks them [fuzzy sets] based on that feature. As a result, it is
reasonable to expect that different ranking methods can produce different ranking order for the
same sample dtizzy sets. Intricacies like these make ranking fuzzy sets rather diffithdse

are outlined in section 3.1. A brief survey of available ranking methods found in the literature is
presented in section 3.2, together with selection criteria usetetd seethods for the application

of our study. Lastly, details of these selected methods are given in section 3.3.

3.1 Problems with Ranking Fuzzy Quantities

All fuzzy set ranking methods can be categorized into two classes (after Yuan (1991)):

1) Methads which convert a fuzzy number to a crisp number by applying a mapping fuRction
(i.e., if Aiis a fuzzy number, thelR(A) = a, wherea is a crisp number). Fuzzy numbers are then
sorted by ranking crisp numbers (i&s) produced by the mapping.

2) Methods which use fuzzy relations to compare pairs of fuzzy numbers, and then construct a
relationship which produces a linguistic meaning of the comparison. The ordering results are

something like ‘fuzzy number A slightly betterthan fuzzy number B’.

However, each methodology has its own advantages and disadvantages.
With 1), it has been argued that “by reducing the whole of our analysis to a single [crisp]

number, we are loosing much of the information we have purposely been keeping throughout our
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catulations” (Freeling (1980), p.348). This methodology, on the other hand, produces a
consistent ranking of all fuzzy sets considered (i.&\,iff ranked greater thaB, andB is ranked
greater tharC, thenA will always be much greater th&). Also, here will always exist a fuzzy

set which is ranked as “best”, “second best”, “third best”, and so on.

With 2), by keeping the comparisons linguistic, we are preserving the inherit fuzzy information
of the problem. However, as Yuan (1991) points outnaty not always be possible to construct
total ordering among all alternatives based on pairwise fuzzy preference relations”. This means

that even ifA is better tharB, andB is better tharC, A may not always be better th@n

Discouraging facts abotiizzy set ranking methods, unfortunately, do not end here. In their
review, Bortolan and Degani (1985) find that for simple cases, most fuzzy set ranking methods
produce consistent rankings. Difficult cases however, produce different rankings fomtliffere
methods. This means that if membership functions overlap (or intersect) for some valuas of

if the supports of fuzzy numbers differ even slightly, different methods will most likely produce

different rankings. This is discussed in detail in sach.O.

3.2 Available ranking methods and selection criteria

Literature review reveals that multitudes of fuzzy set ranking methods exist. Papers by Bortolan
and Degani (1985) as well as Wang and Kerre (2001a, 2001b) present a comprehensive survey of
the available methods. From Bortol@®gani and Wanélerre papers, the following seventeen

methods were considered in our study:
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Balwin and Guild (1979), Campos Ibanes and Munoz (1989), Chang and Lee (1994), Chen
(1985), Chen and Klien (1997), Cheng (1993)pois and Prade (1983), Fortemps and Roubens
(1996), Kim and Park (1990), Lee and Li (1988), Liou and Wang (1992), Matarazzo and Munda
(2001), Modarres and Sadezhad (2001), Peneva and Popchev (1998), Yao and Wu (2000),

Yager (1981), and Yoon (1996).

In order to select methods for application of ranking fuzzy distance metrics, it was decided that
only methods which allow decision maker participation be selected. This participation is usually
in the form of risk preferences, where the decision makaiosed to specify the degree of risk

with which he/she wishes to make the decision. Of the above methods, only nine included forms
of risk preferences (Balwin and Guild (1979), Campos lbanes and Munoz (1989), Chang and Lee
(1994), Chen (1985), Chen andi¢h (1997), Fortemps and Roubens (1996), Kim and Park

(1990), Liou and Wang (1992), Peneva and Popchev (1998)).

To further narrow down these nine methods, the following selection criteria was used:
1) The ranking method must be able to rank fuzzy setsrausashapes (not just triangular
and/or trapezoidal fuzzy sets).
2) Method should be able to rank fuzzy sets which arenoomal and nowonvex.
3) The method must be able to rank several fuzzy sets. That is, the methods should not just
compare two fuzzy edrnatives, nor pick the best choice from the list.
4) There must exist a numeric preference relation that conveys which alternatives are most

favoured.
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5) There ought to exist a linguistic interpretation of the ranked alternatives (i.e. A4 is
strongly better #mn Al, A2 and A3, and A3 is moderately better than Al and A2, etc).
6) The preference relation from 5) must be rational. That is, if A is preferred to B, and B is

preferred to C, then A should be preferred to C.

The table below shows how nine methods compaggainst properties 1) through 6).

Table 1. Fuzzy Set Ranking Methods vs. Properties

Methods/Properties 1|1 2| 3| 4| 5| 6
Chen and Klein (1997) ? ? ? ? ?
Chen (1985) ? ? ? ? ?
Fortemps and Roubens (1996) ? ? ? ? ?
Chang and Lee (1994) ? ? ? ? ? ?
Baldwin and Guild (1979) ? ? ? ? ?
Liou and Wang (1992) ? ? ? ?
Kim and Park (1990) ? ? ? ?
Peneva and Popchev (1998) ? ? ?
Campos and Gonzales (1989) ? ? ? ? ?

Based on the information above, only methods of Chen (1985) and Chang and Lee (1994) were
selected for application of ranking fuzzy distance metrics. Other seven methods were rejected,

for reasons that are outlid next.

Method of Chen and Klein (1997)
This method gives limited control to the decision maker in specifying his/her preferences.

Further, it is pointed out that varying the decision maker participation “can change the magnitude
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of preference and indérence, but not the actual order” of the alternatives (Chen and Klein

(1997), page 30). Itis because of these two facts that the method is rejected.

Method of Peneva and Popchev (1998)
This method is rejected because it requires fuzzy quantitiestt@bgular. Fuzzy Compromise
Programming produces fuzzy numbers which are not triangular, and so Peneva and Popchev’s

method can not be used for our study.

Method of Kim and Park (1990)

This method is extremely similar to Chen’s (1985) method, (i.&h, dre based on finding
intersections of minimizing/maximizing sets with fuzzy numbers in question). The only
difference between the two methods is in the specification of risk prefere@tesn’s (1985)

method does it by varying exponents of the maximgizand minimizing sets, while Kim and

Park’s (1990) method emphasizes intersections of minimizing/maximizing sets with fuzzy
numbers differently. Chen’s (1985) methods is presented in section 3.3.2, while Kim and Park’s

eguations are given next:

Maximizing (G, (X)) and minimizing G,,,(X)) sets are defined as:
0 x-x,, O
Gmax( X) Dilj X < X< Xmax
o — X (14)
Zero otherwise
-x O
Gmln(x) EliD Xmm <X< X
X (15)
Zero otherwise

The equation for ranking the fuzzy alternatives using Kim and Park’s (1990) method is:
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KP(i) = ksup(p(X) 1 G +(1-K)[1=sup( () n G,,,.)]  (16)
where the constamtrepresents decision maker’s preference, and has a valid rajip]of
Kim and Park’s (1990) method is rejected because of its close resemblance to Chen’s (1985)

method.

Method of Baldwin and Guild (1979)
Baldwin and Guild’'s (1979) method can give reasonable results only when fuzzy sets overlap.

This feature makes the method not general enough for our purpose, and so it is rejected.

Method of Liou and Wang (1992)
The Total Integral Value (TIV), the ranking iexi developed by Liou and Wang (1992), has a

similar form of Chang and Lee’s (1994) index. The TIV is given by equation below:
TIV(A)=B [ i (a )da + (1= )[ pyx(a )da (17)
where (3 can take on values betwefh1] and is used as a parameter to expreser preferences.

In fact, the Total Integral Value is a special case of the Overall Existence Ranking Index of

Chang and Lee (1994). It is for that reason that method of Liou and Wang (1992) is rejected.

Method of Campos Ibanes and Munoz (1987), aetthod of Fortemps and Roubens (1996)
Again, the methods of Campos Ibanes and Munoz (1987) and Fortemps and Roubens (1996) are
special cases of Chang and Lee’s (1994) Overall Existence Ranking Index. Therefore, it is

reasonable to reject these two methfvdsn our study.
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3.3 Ranking Methods used in this report

This section presents details of Chang and Lee’s (1994) and Chen’s (1985) ranking indices. In
addition, an alternate method based on the combination of Bender and Simonovic’s (1996, 2000)
Weighted @nter of Gravity index and Cheng’s (1998) distance method is developed for the
purpose of checking results produced by Chang and Lee’s (1994) and Chen’s (1985) indices.
Note: all risk preferences given here are for minimization problems, that is amsbfdina risk

taker) would prefer small distance metric values, while a pessimist (risk averse), to be safe,

would expect higher values.

3.3.1 Method of Chang and Lee (1994)
Chang and Lee (1994) simplify their Overall Existence Ranking Index (OERhdarse of
convex fuzzy numbers (the type of fuzzy numbers encountered in our project). Equation (18)

corresponds to their ranking index.
1
OERI(A) = [ea(e) . 07t @) + X0 5(@) ] (18)
0

wherex,(a ) and x,(a ) are the subjective type weigig indicating neutral, optimistic and
pessimistic preferences of the decision maker, with the restrictiory @) + X, (@) =1.
Parameter(a ) is used to specify weights which are to be given to certain degrees of

membershipif any). For example, sometimes degree of membership of around=£ay is
valued the most, so then an appropriate equation could be specified to reflect that. (It is noted

that in our comparison of alternatives, all degrees of mefmbpengre given equal weight,

namelyw(a )=1). Lastly, u,; (o) represents an inverse of the left part, and (@) the



24

inverse of the right part of the membership function. The limits of integration (atichitseof

a ) are[0 1].

It is noted that linear and ndinear functions for the subjective type weighting are possible, thus
giving the user more control in the ranking. For the present study however, only constants were

used to epresent risk preferences.

Then, for x, values greater thal5, the left side of the membership function is weighted more

than the right side, which in turn makes the decision maker more optimistic. Of course, if the
right side is wighted more, the decision maker is more of a pessimist (this is because he/she

prefers larger distance metric values, which means the farther solution from the ideal solution).
In summary, the risk preferences areyif < 0.5, the ser is a pessimist (risk averse);xf =

0.5, the user is neutral; and ¥, > 0.5, the user is an optimist (risk taker).

3.3.2 Method of Chen (1985)

After obtainingn fuzzy sets, maximizing4,, (X), and minimizing,u,( x) sets are defined by

the following equations:

(X):mNi(X_Xmin)Ij < X<X
uM Xmax_ Xmin)E Xmin max (19)
Zero otherwise
_ (X Xpp) O
Um( X) - Xmm _ Xmax) % Xmin <X< Xmax (20)

Z€ero otherwise
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wherew, = sup(y; (X)), w=inf(w ), X, =inf(x), X,., = sup(x) and the subscript
represents thi" alternative. The participation of the decision maker is controlled by the
constantr. If r =1 the decision maker is conservative or neutral (see Figure 8y @.5 the
decison maker is a risk taker, or an optimist, (see Figure 9), ancti2 the decision maker is
risk averse, or a pessimist, (see Figure 10). Of course, valubgloiv0.5 represent extreme

optimism, whiler values which are greater tha represent extreme pessimism.

To graphically represent equations (19) and (20), alternative 4 from Tisza River Basin example
taken from Bender and Simonovic (1996) was chosen at random. Note that the maximizing set

is shown in red (right most set),datine minimizing set in green (left most set).

0 1 2 3 4 5 6 7 8
Universe of Discourse

Figure 8. Chen’s (1985) neutral preferences



26

1
£20.8}
<
[2
[}
£
£ 0.6}
=
S
304
>
()
[a]

0.2f
O 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
Universe of Discourse
Figure 9. Chen’s (1985) optimistic preferences
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Figure 10. Chen’s (1985) pessiistic preferences

To rank the alternatives, right)(, (A)) and left U, (A)) utility values are calculated as follows:

U (A) = sup(; (x) n 1y, (X)) (21)

U, (A) =sup(; (X) n 1, (X)) (22)
U,, (A) is the inersection of the maximizing set (red) with the right portion of the alternative in
question (black), antl . (A) is the intersection of the minimizing set (green) with the left part of
the membership function (black). The total utilitylwe is then computed as:

Ur (A) =(U, (A) +w-U,(A)/2 (23)

After this, the results are ordered from smallest to largest, smallest being the better alternative.
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Comments:

Two concerns about this method must be noted. Firstly, the presence of an adteritiative
membership function that is far to the left (or far to the right) from other alternatives, influences
the way maximizing and minimizing sets are obtained. Therefore, by just one alternative being
far away from the rest, increases (or decreabesyalue of the paramet@fax (Or Xmin), which in

turns shapes the maximizing and the minimizing sets. Liou and Wang (1992) also realized this,
and showed in a four alternative system, that by moving one alternative to the left and then to the
right clanged the ranking value (and thus the ranking order) of all the alternatives within the
system. Because of this, they deemed Chen’s (1985) method illogical. However, if all
alternatives are relatively close together, Chen’s (1985) method can give t#agesalts.

Exactly how far apart the alternatives have to be before the method gives illogical results is not
known at this time.

Secondly, since this method uses only two degrees of membership (the degrees of membership
associated with the left anldet right utility values), an objection can be raised that not enough

fuzzy information is used in the ranking. This shortcoming is made explicit in section 5.0.

3.3.3 Modified Cheng’s (1998) method (check method)

In addition to above methods, we are @sipg a modification to an existing ranking method.
The driving force for this modification is to end up with a method for ranking fuzzy sets which
can check the results of the previous two methods. The argument for the modification is as

follows:
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Yager(1981) proposed a ranking index which is based on the area under the membership

function. Yager’'s (1981) index is expressed as:

vy - [8OOMA0K
[ Ha(x)0x

(24)

where g(x) is a measure of the importance of the value of

Then, Bender and Simonovic @® 2000) modified Yager's (1981) index into the Weighted
Center of Gravity (WCo0G) index:

[a0)mA(x)dx
WCoG=
[ A(x)dx

(25)

where exponent ¢ is used to put more weight on higher membership values.

Cheng (1998) is developed a distance method similrGoG.

_ [qu(x)dx

SRNTIREA 26
YU (y)dy

yo :.ﬂ;d
j U, (y)dy 27)

where the inverse oft, (x) is py(Yy).

The Ranking index of Cheng (1998) is computed as follows:

R(A)=V7(§+)7§ (28)

With all this in mind, the modification to Cheng’s (1998) method is proposed. First, the indices

(%,,Y,) have to be modified so that they take Yager’'s (1981) form.
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__ [()ua(x)dx
[Ha(x)dx (29)
y _ [9R(y)dy
[HaCy)dy (30)

where functiongy(x) andg(y) are the measure of importancexaindy respectively.
Then, the next step is the same as that of Bender and Simonovic (1996, 2000), in which Yager’s
(1981) index was modified to WCoG to include the exponent

__ J900ImA (0] 0x
Xy = a
IR e

- [N + k(1 =2 Jdy
T I O TN @2

Noting that the parametegris used for the purpose of providing more weight to higher degrees
of membership, we must assure that this is done inybatidy directions. The transition from
(29) to (31) is identidato one performed by Bender and Simonovic (1996, 2000), and so it
requires little explanation. Simply stated, equation (31) puts more emphasis on higher

membership values (i.ey ,) by raising them to an exponemnt In other wordshigher

membership values give more weight in the ranking.

The transition from equation (30) to (32) however, requires explanation. In equatiox (32),
values (i.e.,u ;") are raised to an exponent, not membership values. So, fonchuzzy

numbers we must consider left and right inverses separately, namely:
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Case 1. For the left part of the fuzzy number, more weight should be provided to higher x values,

because higher x values correspond to higher membership values. Thus, dniabiea® raise
WL to an exponerd.
Case 2. For the right part of the fuzzy number, more weight should be provided ta lower

values, because lowervalues correspond to higher membership values. To provide more
emphasis on lower values, we propose raising to an exponentd,., +1-q). By doing

this, less and less emphasis is placed on higher x values (i.e., more and more emphasis is placed
on lowerx values). That way, higher membership valaee weighed more in the ranking

process.

Lastly, the parametay,ax represents the maximum value of the expoger{fThe author

recommends usingmax = 4.)

Finally, the modified index is expressed by equation (33).
R(A) =%+,
(33)
Cheng (1998) shows that his method has benefits over other methods which useasray

point of reference for ranking. These benefits are preserved in the modified index, and an

additional feature, parametric control is added.

Parametric control in fuzzy set ranking method is needed because it is possible to conceive that
two fuzzy sets can have the same centroid even if their supports were different. Thus, the
presence of the exponemtakes into consideration degrees of fuzziness of the fuzzysbe

compared. See Figure 11 for such a case. (Note: a ranking of A and B is given in section 5.0.)
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Figure 11. Fuzzy numbers with same centroids but different supports

In performing the sensitivity analysis, the levelsngbortance ok andy were represented by
g(x)=x"andg(y)=y", respectively. The values othat were used wef&, 2, 3]. Also, for
each value of, parameteq took on values ofl, 2, 3, 4]. For example, whem =1, the fuzzy

sets were ranked witq =1, g =2, g =3 and so on. The same procedure was followed for

other values of.

This method, adapted by incorporating Yager (1981) and Ch€#p8) indices, is to act as a
check method for the above two methods. Modified Cheng’s (1998) method is ideal for this task

because it incorporates mapping functions in bo#imdy directions.
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4.0 Fuzzy Compromise Programming for Multiple Decision Makes

There exists an array of ways to include multiple experts (or decision makers) into the decision
making process via Fuzzy Compromise Programming. One method has been investigated for the
application in this researchGroup Decision Making Under Fuzess. Other methodologies

available are listed in the Recommendations for Future Research section.

4.1 Group Decision Making Under Fuzziness

Kacprzyk and Nurmi (1998) present a methodology which takes in opinionsnofividuals
concerningn crisp alteratives, and then outputs an alternative (or a set of alternatives) that are
preferred by most individuals. Each individual is required to make a pairwise comparison
between the alternatives; then a fuzzy preference relation matrix is constructed fexmgerth

results aggregated, and a group decision made. Please note that Kacprzyk and Nurmi’'s (1998)
methodology can assign different experts different levels of importance (i.e., sometimes it makes
sense that someone’s opinion counts more than somea'® .elln our study, everyone’s

opinion was counted the same. In addition, an overall degree of consensus of all participating

individuals can also be calculated.

4.2 Group Decision Making Algorithm of Kacprzyk and Nurmi (1998)

Number of alternatives ardenoted by subscriptg = 1, 2, 3, ... nand number of individuals by
subscripk = 1, 2, 3, ... m In order to construct a fuzzy preference relation matrix for each
individual, we must ask that person to compare every two alternatives in the si{stem.
example, if there are three alternatives in the system (A1, A2 and A3), the individual must

compare Al to A2, Al to A3, and A2 to A3, and tell us, for reach comparison, what alternative
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he/she prefers and to what degree. The options given to ikiiad are (from Kacprzyk and

Nurmi (1998)):

1.0

%5(0.5,1)
u“=r.5

%}I.D( 005)
H0.0

if Aiis definitely preferredto Aj
if Aiis slightly preferredto Aj
in thecaseof indifferernce

if Ajis slightly preferredto Ai
if Ajis definitely preferredto Ali

With the restrictions above, each individual is to construct a fuzzy preference relation matrix.

For our three alternative example, a sample matrix for individual 1 may be:

O | j=1 2 30
e _ 4=1] 0 06 087
02 | 04 0 040
93 | 02 06 of

Note: our individual 1 said that he/she preferred Al to both A2 and A3, and A3 to A2, only

slightly. Clearly, our individual thinks that Al is the best option.

Once we obtain the fuzzy preference relation matrix from each individual, the aggreddbe

results is performed in the following way. Fitg},is calculated to see weather Ai defeats (in

pairwise comparison) Ap{ = 1) or not f; = 0).

. O if <05
! otherwise

Then, we calculate

hk:i N hk
n_li:J j”

(29)

(30)
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which isthe extent, fron® to 1, to which individuak is not against alternative Aj, whebe
standing for definitely not against 1ostanding for definitely against, through all intermediate
values.

Next, we calculate

1l

k=1
which expesses to what extent, frodnto 1, all individuals are not against alternative A,j.

Then, we compute
Vg =Ho(hy) (32)
which represents to what extent, fr@o 1 as before, Q (most) individuals are not against

alternative Aj. Q is a fuzzlinguistic quantifier, (in our case meaning “most”) which is defined,

after Zadeh (1983):

gl if x>0.8
Mo (X) = Dx-06 if 0.3< x<0.8 (33)
if x<0.3

Lastly, the final result (fuzzy @ore) is expressed as:
Co ={(ALVE).(A2,V3).( A3V )....( A )} (34)

and is interpreted as a fuzzy set of alternatibat are not defeated by Q (most) individuals.

Similarly, fuzzy a /Q-core and fuzzy s/€ore can be determined. The former is obtained by

changing equation (29) into

A if rf <a <05
otherwise

hi(a) = (35)
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and then performing all above pgeas before.1(- a ) represents a degree of defeat to which Ai
defeats Aj; as such it is taken betwg@sD.5]. The final result in this case is interpreted as a
fuzzy set of alternatives that are not sufficiently (at least tayeedd] - a )) defeated by Q

(most) individuals. The parametar was arbitrarily chosen &t3.

Fuzzy s/Qcore is determined by changing equation (29) to:

(2(05-r/) if <05

he =
ij .
otherwise

(36)

and, again, performing adlbove steps as before. With (36) above, strength is introduced into the
defeat, and the final result interprets as a fuzzy set of alternatives that are not strongly defeated

by Q (most) individuals.

4.3 Merging Group Decision Making with Fuzzy Compromi® Programming
This section gives the algorithm used in including multiple experts in the decision making
process that uses Fuzzy Compromise Programming.
1. Each decision maker is to specify his/her fuzzy weights concerning the importance of
each criterion irthe problem.
2. Then, for each expert, a set of fuzzy alternatives is generated via Fuzzy Compromise
Programming.
3. After this, for each individual, a fuzzy preference relation matrix is generated (more on
this later).
4. Finally, after everyone’s fuzzy preferenegation matrix is obtained,-Qore,a/Q-core

and s/Qcore algorithms are performed, and a group decision is made.
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4.4 Obtaining Individual Fuzzy Preference Relation Matrices

An individual fuzzy preference relation matrix is obtained via available ranking methods. Each
individual's set of #ernatives is ranked with a selected ranking method, and from the ranking
values, the fuzzy preference relation matrix is obtained. (It is noted that neutral user preferences
are used for the generation of this matrix.) The individual matrices wereeibia the

following way:

First, a ranking method is called to rank the alternatives for each expert. Then, from all the
ranking values for that expert, a difference is found for every two alternatives compared. To see

what this means, consider theldoling. Suppose that a ranking method produces a vector of

ranking values for each particular alternative, thatisV :{rAl,rAz,rA3 ,...,rAn}. Then, a
difference is found for every pair of,, andr,,,. From these tferences in the ranking values,

a fuzzy preference relation matrix is constructed. Them,ifH,,,) is large and negative, that

means that Al is much more preferred than A2. Therefore, a fuzzy preference relation for this
pair is givera value close to (or just less thdn). Similarly, if the difference is large and

positive, meaning that A2 is much more preferred to Al, a value cl@sis @ssigned for that
particular pair. Of course, the if statements in the code cover ahietiaite cases and thus

assign values betwe¢,1] within the fuzzy preference relation matrix.
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5.0 Results and Discussions

This section gives the results of all experiments performed in this study. The purpose of the first
set of experiments (those ofcen 5.2) was to investigate the sensitivity of ranking fuzzy

distance metrics with methods available in the literature. In other words, fuzzy distance metrics
taken from case studies by Bender and Simonovic (1996) were ranked with three methods
presentd in section 3.3. Further, a complete sensitivity analysis concerning decision maker’s
risk preferences (from extreme pessimism to extreme optimism) was performed to investigate
whether rankings would change in response to changing risk preferencestuGeseused

were: Tisza River Basin, Yugoslavia Systems S1 and S2.

The purpose of the second set of experiments (those of section 5.3) was to investigate the
sensitivity of criteria weights (the parametgrin equation (13)) to the problem of ranking1y
distance metrics. Four different sets of criteria weights were used in the Tisza River Basin
example to observe how criteria weights influence rankings of the resulting fuzzy distance
metrics. For each set of criteria weights, a sensitivity anatysiserning risk preferences was

performed as well.

Third set (section 5.4) of experiments was set up to test the proposed methodology of including
multiple experts into the decision making process via Fuzzy Compromise Programming. Each
expert was alloed to specify his/her weights concerning the criteria of the problem, which were

then used to form a group compromise decision.
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5.1 Comments on features of fuzzy numbers that can influence ranking

Before the interpretation of the results takes place tifiavgs must be noted. Firstly, few

comments are made about different features of fuzzy numbers, such as the degree of fuzziness
and proximity of a fuzzy number to the origin. After that, features of fuzzy number that make

the rankings sensitive to riskgferences are given.

Simply stated, compromise programming favours smallest possible distance metrics. In the same
way, Fuzzy Compromise Programming favours fuzzy distance metrics which are closer to the
origin. That is to say, if every point on thdtlpart of the membership function has a smaller
distance metric value (for every) than other fuzzy numbers, then that left part would be

preferred. If the same is true for the right part, then definitely the fuzzy number in quetitio

be ranked as smallest and therefore the best. (For example, see Figure 16. Expert 2 distance

metrics. In this figure, Al is always smaller than A5.)

Spreads on the other hand, have a more interesting effect on the ranking of fuzzy numbers. It is
possible to conceive of system which has a fuzzy number with a quite large spread and relatively
close to the origin, and also of a fuzzy number with a small spread and at the same time far from
the origin. The alternative closer to the origin, deststiarge spread, will be ranked as better

than one further away. However, because of its large spread, its performance will be very
unclear, but still better than the less vague (worse) performance of a fuzzy number further away.
Of course, the opposiis also possible. We can imagine a fuzzy number with a small degree of
fuzziness and relatively close to the origin, as well as a fuzzy number with a large degree of

fuzziness and far away from the origin. In this case, the fuzzy number with a snedl apde
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close to the origin will definitely be preferred to the other fuzzy number. Many cases of the

latter kind are encountered in this study.

To see how the risk preferences affect the ranking of the results, please consider the example
from Figure 11Fuzzy numbers with same centroids but different supports. (For demonstration
purposes, let the fuzzy sét= trifn(1,5,9) andB = trifn(3,5,7)) It is for cases like this that the
ranking will depend on whether we chose an optimistic, pessimistiayeuteal point of view.

For Chang and Lee’s (1994) method, if we are optimistic (i.e., weigh higher the left part of the
membership function) we would get that A < B. If we are pessimistic and weigh higher the right
part of the membership function, th#ére result A > B will be produced. Of course if we are
neutral, a result A = B is produced. Chen’s (1985) method, on the other hand produced a result
of A = B, no matter what the risk preferences. However, since no symmetric fuzzy numbers
were comparedhis shortcoming did not play a role in this study; regardless, it is a flaw of the
method.

Modified Cheng’s method, also produced unreasonable results for this case. For example, for
1, the result of B> A, A> B, B> A and A > B was producedgferl, 2, 3 and 4 respectively.
However, as will be seen in later sections, this discrepancy plays no role in ranking fuzzy
distance metrics for our case studies, because our case studies are so robust, that they are almost

insensitive to the ranking metth

Another feature that makes the rankings sensitive to risk preferences is the intersection of
membership functions. More precisely, if the left part of one membership function intersects a

left part of another membership function, then the rankirtgese two alternatives will depend
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on the relative risk preference chosen. (This point is also covered by Chang and Lee (1994),
page 5, and by Bender and Simonovic (1996), page 46, and so it won't be discussed further.)
Therefore we must conclude thahking order will be sensitive to risk preferences in cases

where either one fuzzy number’s support is contained within another fuzzy number’s support, or

if membership functions of fuzzy numbers intersect, or both.

5.2 Ranking Methods Applied to Case Stiies from Bender and Simonovic (1996)

The results presented here include the applications of three selected ranking methods (with
complete sensitivity analyses) to three case studies. The purpose of doing this investigation was
to determine the variabilit(if any) of rankings, with application of different methods. The

fuzzy distance metrics used in this part of the report were taken from Bender and Simonovic
(1996), pages 9405. The methods applied were that of Chang and Lee (1994), Chen (1985),

togeher with modified Cheng’s (1998) method.

5.2.1 Tisza River Basin Case Study
Information on this case study is given (in full detail) in Appendix Bsza River Basin. The

distance metrics, as obtained by Bender and Simonovic (1996) are shown in Bigure 1
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Figure 12. Tisza river basin distance metrics

All fuzzy set ranking methods produced identical rankings, namely [1 2 4 3 5]. In addition, the
ranking order was not affected by the changes in decision maker’'s prefereanssivify

analysis was performed for all methods, and it was found that the ranking order still did not
change. (Reason for this is given at the start of section 5.0.) By looking at Figure 12, it is
observed that the first two alternatives, in additofeing very similar and having the smallest
spreads, are closer to the origin than other alternatives. (Their closeness to the origin means they
are favoured in Fuzzy Compromise Programming.) Alternatives 3 and 5 are also extremely
similar in nature, bt they have larger spreads and are slightly shifted to the right. It must be

concluded that this is why they are consistently ranked last.
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5.2.2 Yugoslavia System S1 Case Study

The background of this case study is not given in the appendix, as tlosguih this

information is to investigate the consistency of the rankings by applying different fuzzy set
ranking methods. Again, the distance metrics in fuzzy form, from Bender and Simonovic (1996)

are:
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Figure 13. YugoslaviaSystem S1 distance metrics

In performing sensitivity analysis with Chen’s (1985) method, the ranking order of [56 34 2 1]
was produced for all values of except in the case of extreme optimisrd 0.1), which
produced [6 5 3 4 2 1]. Itis noted thihe degree to which alternative 6 was preferred to 5, was

not significant, and thus does not pose a major problem.
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Chang and Lee’s (1994) method, however, produced more variationsy ; Matues of 0.3, 0.5

and 0.7, the ranking wadentical to that produced by Chen’s (1985) method. Cases of extreme
optimism and extreme pessimism produced different rankings, which was not observed in the
application of Chen’s method. It does make sense that if most weight is placed on onlyt one par
of the membership function, the ranking will be based mainly on than one part. If then, these
parts are different from each other, it is reasonable to expect different rankings. Note that
alternatives in Yugoslavia System S1 are more different from ether than are the alternatives

in the Tisza River Basin example. It is expected that this is why the largest difference in rank are

showing for this system.

With modified Cheng’s (1998) method, most of the time the ranking of [5 6 3 4 2 1] is observed
This is again consistent with the results that were obtained previously. Alternatives 1, 2 and 4
were always ranked as worst, whereas alternatives 5, 6 and 3 were ranked in all possible
combinations. This variation is, no doubt, due to weighting aimaters andq. Regardless of

the variation, this method provided an adequate check (that alternatives 5, 6 and 3 are among the

best ones).

5.2.3 Yugoslavia System S2 Case Study
The only difference between System S1 and System S2 is that the ¢omteans six, while the
latter contains eight alternatives. The criteria for both systems were identical. As before, the

distance metrics, from Bender and Simonovic (1996) are:
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Figure 14. Yugoslavia System S2 distance metrics

As in the previous sublection, Chen’s (1985) method produced the identical ranking for all
values ofr which were greater than 0.1, namely [31 7 8 4 2 6 5]. For valuesnadller than
0.1, the ranking of [1 3 7 8 4 2 6 5] was observed. Again, tigeegeof preference for alternative

1 over alternative 3 was so small, that it can be deemed insignificant.

The only variations with Chang and Lee’s (1994) approach were the ranking of the three worst

solutions. The best five solutions were always caoarsilst ranked as [3 1 7 8 4].

With modified Cheng’s (1998) method, five best solutions, namely [3 1 7 8 4] were ranked
consistently for every case considered. Some deviation in the ranking existed for the three worst

alternatives [2 6 5], but this wastrsignificant enough to cause worrying. As before, this
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system had a much lower spread than S1, and that is why significant amount of deviation was not

present

5.3 Weights Sensitivity Analysis for the Tisza River Basin Example

As previously mentioned llaelevant background information for this case study is given in
Appendix B. The fuzzy input data, taken from Bender and Simonovic (1996) is given in
Appendix C. The definition of fuzzy one wagn(0.99,1.0,1.01)and the fuzzy exponept=

trifn(1,2,2). These two parameters affect the shape of the resulting fuzzy distance metrics.

By weights sensitivity analysis it is meant that fuzzy weights were varied for the Tisza River
Basin example, and then a sensitivity analysis concerning decision snadlepreferences was
performed (i.e., from extreme pessimism, to neutral, to extreme optimism). Four sets of weights
were considered, and as such, four sets of fuzzy distance metrics were generated. (Note that all

other fuzzy input, such a5 f~, f,

~and f, were held constant.) To investigate the variability

of the rankings, weights from four experts were used. The experts were:

Expert 1, and Expert 4: held viewpoints somewhere in bettheesxtremes of Expert 2 and 3;

Expert 2: had a mind set of someone who places emphasis on the protection of the environment,
and very little on the development;

Expert 3: possessed strong opinions in favour of development, with very little concern to th

environment;
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Every expert was asked to rank the importance of the criteria using a séglevith 1 being

least important and 5 most important, and all values in between. From this data, triangular fuzzy
weights were constructed in the following man

1 = trifn(0.0,0.1,0.2) 2 = trifn(0.2,0.3,0.4) 3 = trifn(0.4,0.5,0.6) 4 = trifn(0.6,0.7,0.8)and5 =
trifn(0.8,0.9,1.0) If importance of the criteria was indicated by a number3ikethe

corresponding fuzzy weight wa#n(0.5,0.6,0.7).

Thetable below lists the importance ranking of each expert for each criteria.

Table 2. Expert weights

Criteria# | 1 2 3 4 5 6 7 8 9 [ 10| 11 | 12
Expert 1 3 3 4 4 4 4 4 4 [ 35| 4 | 35| 4
Expert 2 1 3 5 3 2 2 5 1 5 5 2 |25
Expert 3 5 4 3 5 5 5 1 2 2 2 5 5
Expert 4 5 3 5 2 2 5 4 2 4 3 3 2

As a result of application of Fuzzy Compromise Programming, the Figure$8LEepresent four

sets of fuzzy distance metrics.
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5.3.1 Results and Comments of the Weights Sensitivity Analysis

The results of the ranking for eagkpert are given next:

Expert 1: [12 4 3 5];Expert 2: [1 245 3];Expert 3: [1 24 35];Expert4:[2145 3].

The actual ranking values for all cases considered are given in Appendix D [floppy disk]. Itis
noted that by changing the weights, somea¥i@n is, indeed, present. However, because of the
robustness of the Tisza River Basin system alternatives, even these variations were not large.
Note that in performing expert risk preference sensitivity analysis, it was observed that all
rankings wee insensitivelo user preferences for every method. This fact can be explained by
observing that, for every expert, features which are expected to change the rankings were not
present in the four sets of fuzzy distance metrics. In addition, the cirewestia which Chen'’s
(1985) (and modified Cheng’s (1998)) method can not give adequate rankings were also not

present. As such, insensitivity to risk preferences is deemed quite reasonable.

Also, it is noted that alternatives 1 and 2 are extremely similhaat is, they are consistently

closer towards the origin than other alternativadeature that compromise programming

favours. Because of this, they are consistently ranked as the two best alternatives. Their degree
of fuzziness, again being thenallest from the set, indicates that their relative degree of
performance is quite good. Alternatives 3, 4 and 5 on the other hand, have roughly the same
shape, but greater degrees of fuzziness (greater than alternatives 1 #ns iRdicates that

their degree of performance is quite vague. Also, they are farther away from the origin that

alternatives 1 and 2, and so are consistently ranked as the three worst alternatives.
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5.4 Results of the Overall Group Decision

Four sets of data were taken frorb-section 5.2 and then applied to group decision making
algorithms outlined in section 4.0. The results were not at least unexpected. They are:

Q-core: {1.0, 1.0, 0, 0.4, 0}; which represents the degrees that alternatives 1 and 2 were not at all
defeatedin pairwise comparison).

a/Q-core: {0.7750, 0.6500, 0, 0, 0}; which gives the degrees that alternatives 1 and 2 were not
sufficiently defeated (to a degree of 0.7).

s/Q-core: {0.7250, 0.5625, 0, 0, 0}; which expresses the degrees that alternative? Wened

not strongly defeated.

Results outputted by this methodology concern only the best alternatives, or ones that were not
defeated in pairwise comparison. As such, no information is given about the three worst
alternatives. Regardless, a final demmscan now be made. Alternative 1 is the best overall

water resources option for the Tisza River Basin.
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6.0 Recommendations for Future Research

Even with the final decision of the previous paragraph, more analysis should be performed
before anything is@he to the basin. For example, in performing the weights sensitivity analysis,
only weights were changed by each expert, while keeping other parameters (such as fuzzy one,
fuzzy p, positive and negative ideals) constant. Perhaps, in the future eachséxpsd be

allowed to determine their own positive and negative ideals, together with their own definition of
the fuzzyp. That, it is anticipated, will make Fuzzy Compromise Programming more realistic in
modeling human decision making.

Also, only one méodology for including multiple decision makers was implemented in the

group decision process. As was mentioned previously, other methodologies are also available,
and so they should be used. One such methodology is suggested by Bender and Simonovic
(1996), and it involves adjusting fuzzy weights and fuzzy criteria values to include views and
opinions of multiple experts. Essentially, this adjustment produces a set of data that corresponds
to an opinion of the entire group, which is then inputted inéoRuzzy Compromise code and the
results sorted appropriately. Some work on aggregation operatdrish could be used to
aggregate individual opinions into a single, group opinion was done by Despic and Simonovic
(2000). As such, it could probably bepdied to our group decision making problem.

In addition, Cheng (1999) as well as Ghyym (1999) present additional methodologies for
including multiple experts into the fuzzy decision environment. It is suggested that

methodologies listed in this sectiba seriously considered for future work in this area.
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The Tisza River Basin example was studied with the purpose of determining an optimal long

range (60 years) wer resources system that is best suited for the region. In developing the

alternatives, David and Duckstein (1976) considered twelve criteria, many of which were

subjective. The table below shows the alternatives, together with criteria values feystach

in the study.

Table 2. Original Criteria Values used by David and Duckstein (1976)

Criteria I Il 1] v Vv
1| Total Annual Cost (f0Forints/year) 99.6 85.7 101.1 95.1 101.8
2 |Probability of Water Shortage 4 19 50 50 50
3 |Energy (Reuse Factor) 0.7 0.5 0.01 0.1 0.01
4 |Land and Forrest Use (1000 ha) 90 80 80 60 70
5 |Water Quality Very Good Good Bad Very Bad Fair
6 |Recreation Very Good Good Fair Bad Bad
7 |Flood Protection Good Excellent Fair Excellent Bad
8 [Manpower Impat Very Good | Very Good Good Fair Fair
9 |Environmental Architecture Very Good Good Bad Good Fair
10/Development Possibility Very Good Good Fair Bad Fair
11}International Cooperation Very Easy Easy Fairly Difficult | Difficult | Fairly Difficult
12|Sensitiviy Not Sensitivg Not Sensitive] Very Sensitive| Sensitive] Very Sensitive

A short description of the criteria is outlined next:

1) Total Annual Cost includeabe cost of construction together with operation and

maintenance of the system.

2) Probability of WateShortage criteriois self explanatory, and thus will not be

elaborated on.

3) Energy Reuse Factor @sratio of generated energy (hydroelectric power) to the

consumed energy (i.e., water pumping costs) of the system. Therefore, this ratio

should be as higas possible.

4) Land and Forrest Use is amowfitland and forests that are required by the
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system. This will be needed for reservoirs (storage) and canals (transfer). Thus,
the less of the land and forests is used in developing the region, the better.

Note criteria 510 are evaluated with linguistic ter{excellent, very good, good,

fair, bad}; criterion 11 is evaluated wiffvery easy, easy, fairly difficult, difficut}
and criterion 12 witHvery sensitive, sensitive, fairly sensitive, not sensitive}

5) Water Quality includes the quality of drinking water, as well as the overall quality
of water found in the rivers and streams within the basin.

6) Recreations again a seléxplanatory criterion. It is an important in that as the
region develops and populat increases, this criterion will directly have an
impact on the quality of life of the public with in the river basin. As such, it
should be as best as possible.

7) AdequateFlood Protectiorior the Tisza River (and its tributaries) should be
provided. Tk social and economic consequences of floods can be quite severe,
and so as much of protection as possible should be provided.

8) Manpower Impacis a criterion that has two parts. First, the number of persons
needed for the construction and operation ofsysem should be as low as
possible (due to monetary reasons). On the other hand, the persons employed
should receive an adequate yearly income.

9) Environmental Architecturencludes the preservation of the existing environment,
including natural habitatfor the various species of animals, fish and insects.
Also, the esthetics of the region should be preserved as well.

10)Development Possibilitis a social criterion that must be considered due to the

fact that the population of the region will most liketgrease within the next fifty
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years. Again, as before, it should be as best as possible. (Note that criterion 9 is
in direct conflict to criterion 10V)

11)International Cooperation isfactor that concerns the regions’ neighbours, and
thus is extremelymportant. It is measured with the degree of difficulty the
implementation of the system is likely to raise international concern. Of course,
the more international concern, the worse.

12)Sensitivity criterioris one which requires most explanation. Theswegsources
system to be implemented should be flexible enough to accommodate a variety of
requirements, which can not be known at the present time. The system should be
able to link itself with another system, which might be built sometime in the
future Also, “it should be able to cope with several types of uncertainties, such
as the natural uncertainty inherit in forecasting, the strategic uncertainty due to
unknown future allocation policy, the economic uncertainty pertaining to the cost

and loss fuctions... “ (David and Duckstein (1976), p.738).

Figures Al and A2 show the location of the alternatives, and the following paragraphs briefly

describe each alternative water resources system. (Maps are courtesy www.maps.com.)
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(The following text is taken from reference David and Duckstein (1976))

System |- Danube-Tisza Interbasin Transfer Using a Muti-Purpose CanaiReservoir

System

The system used the water resources of both Tisza and Danube rivers. The water is transferred
all year around from the Danube by a gravity canal in the flat area and by a pumped canal
reservoir system in the mountainshefe is enough allocated water in the Danube River for the
present and the future; therefore the development and operation of the system does not depend to
a great extent on international operation.

However, the system would consume large quantity of res®(e.g., land and forest resources

for reservoir sites); it would not be of much help for flood control and drainage; and the quality

of the Danube River is likely to decrease in the future, so that some treatment will be needed.

The sensitivity of thesystem to these data is rather low.

System Il - Pumped Reservoir System in the Northeastern Part of the Region

This pumped reservoir system supplied only from the Tisza River is developed [mainly] on the
hilly region [of northeastern Hungary]. The systes also basically oriented toward water

resources utilization, but the natural supply of water is available only four to five months per
year. The system, which provides excellent flood protection, also consumes large quantities of
resources. The watquality and the runoff condition are based on good international

cooperation. Large peek pumping capacities are needed because the pumping time is generally

limited to high water in the river. The system sensitivity to these data is not important.
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Sysem lll - Flat Land Reservoir System

This system could be developed on the léaid part of the region. The system using Tisza water
would be composed of shallow flat land reservoirs 2 to 4 m deep, but only a limited area of 5.5
sq km could be used forservoirs. A large quantity of land and forest resources is needed. The
development and operation of the system is fairly difficult from both energy management and
international cooperation viewpoints. The operation costs, especially for reuse, ahégiuite

The system is very sensitive to the basic data.

System IV - Mountain Reservoir System in Upper Tisza River Basin

This system would be located outside the country. It uses and regulates the water resources of
the Tisza River by gravity. All stoge capacity available in the framework of international
cooperation is used, but not all the water resources. Excellent international cooperation must be
initiated and maintained, which may be difficult. Because of international cooperation,
difficulties would arise in evaluating costs. As a result of these uncertainties, the system is

sensitive to data.

System V- Groundwater Storage System

The system would be developed mainly on thelflat part of the region, especially on the
eastern part. The sgm using the Tisza water and stored groundwater resources would be
composed of underground storage spaces. But such spaces are limited; therefore, reuse [of
water] would have to be high and salinity problems might arise in the future. Efficient tge of
small storage space needs international cooperation so that water will be available to fill the

reservoirs. Lastly, the system is very sensitive to uncertainties.



Appendix B — Tisza Fuzzy Input Data

Table 3, Tisza River Basinfuzzy weights, positive and negative ideals

w; = trifn(a, b, c) f* f

0.5 066 0.75| 25 30 300 05 0.5

0.5 066 075 99 100 100]|O0 1 1

0.5 066 0.75| 0.9 1 1|0 01 0.1

0.5 066 075|099 1 1 ]0 01 0.1

0.5 066 0.75| 0.9 1 1|10 0.1 0.1

0.5 066 0.75| 0.9 1 1|0 01 0.1

025 033 05| 99 100 100(0 0.1 0.1

025 033 05| 0.9 1 1 ]0 01 0.1

0.5 066 0.75| 0.9 1 1|10 0.1 0.1

0.5 066 0.75| 0.9 1 1|0 01 0.1

025 033 05| 0.9 1 1|0 01 0.1

025 033 05| 0.9 1 1|10 01 0.1

Table 4. TiszaRiver Basin fuzzy criteria values

f1 f fa fs fs

10.3 104 105|242 243 244|188 8.9 9 148 149 15 |81 8.2 83
94 96 98 | 79 81 83 | 48 50 52 48 50 52 | 48 50 52
06 07 08|04 05 06| 0 01 02|06 07 08|02 03 04
069 0.7 071|049 05 051 0 001 002|009 01 011f O 0.01 o0.02
06 07 08|04 05 06|02 03 04 0 01 02| 0 01 0.2
04 05 06| 08 0.9 1102 03 04|08 0.9 1 0 01 0.2
8 10 12 | 18 20 22 | 18 20 22 38 40 42 | 28 30 32
06 07 08|06 07 08|04 05 06|02 03 04|02 03 04
06 07 08|04 05 06| 0 01 02|04 05 06|02 03 04
07 08 09|05 06 07|03 04 05|01 02 03|03 04 05
06 07 08|04 05 06|02 03 04 0 01 02|02 03 04
01 02 03|01 02 03|07 08 09|05 06 07|07 08 0.9
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Appendix C — Results

Table 5. Tisza River Basin results

Chang and Lee's (1994

Chen's (1985) method

X1 = 0.1 X1 = 0.5 X1 = 0.9

r=2 r=1 r=0.5

1 1 1

a w DN
a w B~ N
aga w B~ DN

1 1

a w B~ N
a w B~ DN
ga w AN -

Table 6. Yugoslavia System S1 results

Chang and Lee's (1994

Chen's (1985) method

X1 = 0.1 X1 = 0.5 X1 = 0.9

r=2 r=1 r=0.5

6 5 5

R N D O W
RN B WO
PN W o b

5 5

P N B WO
RN B WO
R N DM OO O

Table 7. Yugoslavia System S2 results

Chang and Lee's (1994

Chen's (1985) method

X1 = 0.1 X1 = 0.5 X1 = 0.9

r=2 r=1 r=05

3 3 3

OGN O M O N B
O N O 00N -
g oo N M 0O NP

3 3

g o N M 00 NP
O N OO~ 0N B
OGN O M OO NP W
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