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Executive Summary 

Climate impacts on humans, nature and world economics are major research challenges of 

today. Climate and freshwater resources are integrated with each other in a significant way so 

any change in one may influence the other. Continuous rise of global temperature has a 

significant impact on freshwater resources. At present, one of the key objectives of climate 

change research is to build adequate knowledge regarding future climate impacts and how to 

connect climate impacts with adaptation actions. 

Generally, impacts of climate change on regional water resources are assessed for future 

climate scenarios obtained from Global Climate Model (GCM) simulations. GCMs represent 

the state of the art with respect to the simulation of global climate variables in response to 

emission scenarios of greenhouse gasses. GCMs can satisfactorily model smoothly varying 

fields such as mean sea level pressure, but often fail to capture non-smooth fields such as 

precipitation (Hughes and Guttorp, 1994). In addition, the spatial scale of GCM output is very 

coarse (>100 km2). Therefore, downscaling of coarsely gridded GCM data is necessary in order 

to capture the impacts of climate change on hydro-meteorological variables (e.g. temperature, 

precipitation, soil moisture) at a regional scale.  

In this document we discuss the data preparation and computational implementation details for 

multiple downscaling models which are developed at the Facility for Intelligent Decision 

Support (FIDS) research lab, the University of Western Ontario. In this manual four 

downscaling tools are presented in details with the computer code and example applications. 

They are (i) K-nearest neighbor (K-NN CAD) weather generator; (ii) maximum entropy based 

(MBEWG) weather generator; (iii) statistical downscaling model based on beta regression 

(BR); and (iv) physical scaling (SP) method.  
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The remainder of the manual is organized as follows. Section 1 introduces the spatial 

interpolation technique used and its user interface. In section 2, a brief background of the 

change factor methodology and its user interface are provided. Section 3 provides information 

about the K-NN CAD weather generator model where details about MBEWG are given in 

section 4. Detailed information regarding BR based statistical downscaling model and physical 

scaling model are given in sections 5 and 6, respectively.  
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1 Introduction  

Climate change due to greenhouse gas (GHG) emissions is impacting the global hydrological cycle 

as well as regional hydrology across the world, and will continue in the future. Precipitation is 

directly affected due to an increase in global average temperature. Changes in temperature and 

precipitation are already having significant impacts on ecosystems, agriculture and water resources 

activities and will magnify in future. Due to significant changes in temperature and precipitation 

patterns in past decades, climate scientists and engineers are expressing interest in future 

temperature and precipitation projections under changing climate conditions. 

Generally, the outputs of global climate models (GCMs) are used for regional climate change 

impact assessment. GCMs simulate time series of global climate variables (e.g. sea level pressure, 

temperature, specific humidity) considering different GHGs emission scenarios. GCM outputs are 

coarsely gridded (>100 km2) and often fail to capture non-smooth fields such as precipitation 

(Hughes and Guttorp, 1994). Spatial downscaling is required for better understanding and 

assessment of future hydrologic conditions at watershed scales under different climate change 

scenarios. Spatial downscaling (SD) translates large scale climate variables simulated by GCMs 

to a regional scale. Downscaling methods are broadly classified as dynamic or statistical. Dynamic 

downscaling is based on nesting a finer scale regional climate model (RCM) (up to 10 km x 10 km 

horizontal resolution) within GCMs. Statistical downscaling (SD) methods use 

parametric/nonparametric and/or linear/nonlinear relationships between predictor and predictand 

variables (Wilby and Wigley, 1997). SD methods developed so far can be classified into three 

groups: (a) classification/ weather typing methods (Hay et al., 1991; Hughes and Guttorp, 1994); 

(b) regression/transfer function methods (Goyal and Ojha, 2010; Kannan and Ghosh, 2010; 
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Mandal et al., 2016) and (c) weather generators (WG) (Eum and Simonovic, 2012; Srivastav and 

Simonovic, 2014; King et al., 2015).  

King et al., (2015) developed a K-nearest neighbor (K-NN CAD V4) based weather generator 

where Srivastav and Simonovic (2014) developed a multisite, multivariate weather generator using 

maximum entropy bootstrap (MBEWG). In addition to these, Mandal et al.,(2016) developed a 

multisite beta regression (BR) based statistical downscaling models to downscale precipitation 

data. Last but not the least Gaur and Simonovic (2016a) developed a physical scaling model for 

downscaling climate data. All these models are included in this report. As the GCM outputs have 

coarse spatial resolutions, the GCM data has to be spatially interpolated for the station coordinates 

before temporal downscaling. The details about spatial downscaling are given in the following 

section.    

The main objective of this document is to provide technical details (including programming code) 

of statistical downscaling models developed by the Facility for Intelligent Decision Support 

(FIDS). Source code for two weather generators (K-nearest neighbor and maximum entropy 

bootstrap), regression based (beta regression) model and physical scaling downscaling model are 

provided in the appendices of this report. In addition, digital files, as well as sample input and 

output data, for the four downscaling tools are available in the “downscaling” folder of  the online 

repository FIDS-UWO/climate. 

  

http://www.eng.uwo.ca/research/iclr/fids/
http://www.eng.uwo.ca/research/iclr/fids/
https://github.com/FIDS-UWO/climate
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2 Spatial Interpolation of GCM Data 

As the output of different GCMs have different spatial resolutions, the climate data extracted from 

GCMs are spatially interpolated before downscaling. The inverse distance weighting (IDW) 

technique is used for spatial downscaling following Shepard (1968). This is a local, deterministic 

spatial interpolation technique which follows the first law of geography in that observations 

located nearby to one another are likely to be more similar. This is implemented by using distance-

decay function to compute a weighted spatial average of selected points surrounding the 

interpolated point of interest. The distance-decay function used in this report defines the weighting 

for a particular station to be inversely proportional to the square of the distance between the station 

and the nearest set of GCM grid data points. The weight associated (Wj) with four nearest grid 

points to a particular station (vi) can be calculated using the following equation: 
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where d1, d2, d3 and d4 are the distances between the station (vi) and the four nearest grid points; 

vj is climate variable value from the grid points and vi(t) is the sum of weighted average for a 

particular time t. Eq (2.1) is used for calculating the weighted average of climate variable for the 

station vi. A hypothetical example (Srivastav et al., 2016) of spatial precipitation interpolation 

using inverse distance method is given below. 
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In this example, the observation station lies within four grid points (Figure 0.1). In the first step, 

we calculate the weights using inverse distance method using Eq (2.1). 
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Figure 0.1 Hypothetical example of spatial interpolation 

In the final step we calculate the spatially interpolated precipitation using the above weights with 

Eq (2.2). Using W1…W4 in Eq (2.2), we obtain the interpolated value of precipitation P at the 

desired location. 



5 

 

  
1 1 2 2 3 3 4 4P Pw P w Pw P w     

     
(20 0.167) (25 0.428) (16 0.107) (22 0.297)

22.30

       


 

2.1 User Interface and Source Code for IDW 

In the previous section, we discussed the mathematical equations behind IDW and provided a 

hypothetical example. In the present section, we are providing details of a graphical user interface 

for IDW that was developed using Python. The code and interface are available here: FIDS-

UWO/climate/downscaling.  

In order to run any of the Python code discussed and included in this report, it is recommended to 

download a scientific Python distribution with Python 3.6 or greater such as Anaconda or 

Enthought Canopy. This will include pre-compiled packages for high-performance arrays 

supporting linear algebra routines, data analysis tools, and netCDF reading and writing 

capabilities. The 3rd party packages used in this work are listed in Table 0.1. 

Table 0.1 3rd party Python packages used to implement the inverse distance interpolation, 

climate scaling, and KNN-CAD algorithms. 

Package Version Usage 

numpy 1.11.3 High performance arrays, linear algebra, and matrix manipulation 

pandas 0.19.2 CSV file reading and data preparation 

numba 0.30.1 JIT compilation used to accelerate numpy-based code 

libnetcdf 4.3.3.1 C++ library for reading and writing netCDF 

netCDF4 1.2.7 Python wrapper for libnetCDF 

xarray 0.9.1 
High level library to load, manipulate, and extract data from netCDF4 among other file 

formats. Uses netCDF4 for this work. 

qt 5.6.2 C++ library for GUI building based on the Qt framework 

pyqt 5.6.0 Python wrapper for qt 

https://github.com/FIDS-UWO/climate/tree/master/downscaling
https://github.com/FIDS-UWO/climate/tree/master/downscaling
https://www.continuum.io/downloads
https://www.enthought.com/products/canopy/
http://www.numpy.org/
http://pandas.pydata.org/
http://numba.pydata.org/
https://www.unidata.ucar.edu/software/netcdf/
http://unidata.github.io/netcdf4-python/
http://xarray.pydata.org/
https://www.qt.io/
https://riverbankcomputing.com/software/pyqt/
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If these packages are not included in the scientific Python distribution used, there are different 

options to go about their installation. On Anaconda Python one can do $ conda install package for 

the package of interest (where $ signifies the start of a command from the terminal on Linux/Mac 

or command line on Windows), or use the graphical package manager included with Enthought 

Canopy. If the package is not found one can try $ pip install package which uses Python’s built-

in package manager. There is one more option for installation which is to try Christoph Gohlke’s 

unofficial Windows binaries here, which includes a range of pre-compiled packages for Windows.  

The graphical user-interface was created in Python to help facilitate user input to the inverse-

distance weighting, climate scaling, and KNN weather generator algorithms described in this 

manual. The simplest way to run the interface is from the command line in the directory where 

“input.py” which is located in the “downscaling/idw” directory the online repository FIDS-

UWO/climate.  This can be done by using the command $ python input.py from the directory 

containing the script. If the reader prefers to use an Integrated Development Environment (IDE) 

to run code, there are a number of different Python IDEs available which will not be discussed 

here. After running “input.py” a window (Figure 0.2) will appear containing tabs for the IDW, 

change factor methodology (Section 3), and KNN-CAD algorithms (Section 4). In this section, we 

will demonstrate the IDW technique and details about its interface.    

For spatial interpolation using inverse distance weighting (IDW) technique, we developed a user-

friendly interface (Figure 0.2). The details of graphical user interface (GUI) element are given 

below: 

http://www.lfd.uci.edu/~gohlke/pythonlibs/
https://github.com/FIDS-UWO/climate
https://github.com/FIDS-UWO/climate
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(1) Input: Select GCM files (.nc file) to be interpolates. Browser option is provided, so the 

selection can be made anywhere from the computer. Select a folder where .nc files are 

saved. 

(2) Output: Select the place where the interpolated files should be stored. 

(3) Station information: Provide the name of each point to be interpolated to (generally 

meteorological stations) along with its geographical coordinates. The latitude (Lat) and 

longitude (Lon) are to be expressed in decimal degree format with latitude in degrees 

north and longitude in degrees east from Greenwich.  

 

Figure 0.2 User interface for IDW 

(4) Variable: Input the name of the variable stored in the netCDF to be interpolated. For 

example, if the file: 
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“tasmax_day_CanESM2_rcp26_r1i1p1_20060101-21001231.nc” is selected as input, the 

corresponding variable should be “tasmax” this information is typically included in the 

metadata of the netCDF file.  

(5) Alpha: This option is used to specify the alpha parameter of the distance-decay function 

used in the inverse distance interpolation. The selection of this parameter requires careful 

consideration and includes assumptions as to how climate variables vary spatially with 

distance from known observations. In this work the inverse squared distance value is 

used which corresponds to alpha value of 2. 

(6) Points: This option specifies how many nearest grid points are considered for the 

interpolation. As a default the 4 closest points are used.   

(7) Extra: Most netCDF files containing GCM output are 3-dimensional, in that the quantity 

of interest is represented as a surface varying in with latitude and longitude. However, 

some climate variables (e.g. specific humidity (hus), u-wind, v-wind) are also simulated 

using different pressure levels. This option can be used to specify the value of additional 

dimension in order to reduce the netCDF file to one that is 3-dimensional. For example, 

hus (specific humidity) has eight different pressure levels (100000, 85000, 70000, 50000, 

25000, 10000, 5000, 1000 Pa). If user wants to interpolate hus at 5000 Pa pressure level, 

in option (7) the “plev=5000” value should be entered. Additional filters can be included 

separated by commas.   

(8) Time Bound: This option is used to specify the time range. Time format depends on the 

local time format of the operating system, but is shown as dd/mm/yyyy here. Users can 

select any temporal range; they want to interpolate. The data should fall within the time 

range that is, for example, if the user chooses: 
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 “tasmax_day_CanESM2_rcp26_r1i1p1_20060101-21001231.nc” file for interpolation,  

any time period between 01/01/2006 and 31/12/2100 can be selected - not earlier than 

01/01/2006 or later than 31/12/2100. 

(9) Spatial Extent: This option is for a specifying the spatial extend of the interpolation. The 

GCMs provide global simulations. Therefore, this option could be used to clip 

information for a certain spatial domain. This option along with option 8 will save 

computer memory and reduce the computational time for interpolation. The coordinate 

format here is the same format as described in option (3).  

(10) Run: This button is for executing the process. If successful, the screen will look like 

Figure 0.3. 

(11) Reset: This option is for resetting the user input. 

 

Figure 0.3 User interface for IDW during interpolation 
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A demo output file (“Output_idw_tasmax_day_CanESM2_historical_r1i1p1.csv”) from IDW 

interface can be found in the downscaling/idw directory. The detailed code of IDW interface is 

given in  

Appendices 

Appendix A.   

 

The following section will provide information about Change Factor (CF) methodology used to 

incorporate projected changes in climate into observed data.  

  

https://github.com/FIDS-UWO/climate/tree/master/downscaling/idw
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3 Change Factor Methodology  

Change Factor (CF) methodology is used to incorporate projected changes in climate for a future 

time slice into observed data series for local scale climate change impact assessment. This 

procedure is also known as the delta change method. Anandhi et al., (2011) found that multiple 

change factors associated with specific percentiles ranges of a climate variable’s distribution were 

more effective in transferring changes projected by climate models than a single mean change 

factor.  The algorithm used here is based on the work of Anandhi et al., (2011), and was 

incorporated with a graphical user interface for the multiple change factor methodology for the 

daily time scale.  

To use the interface, the reader is referred to the steps discussed in Section 0. After opening the 

interface the “Scaling” tab can be used to display the input options for the CF algorithm (Figure 

0.1). Before scaling using the CF method, GCM data needs to be spatially interpolated (Section 

0). This interface has multiple options which are discussed below. 

 

Figure 0.1 Interface for Change Factor (CF) methodology 



12 

 

(1) Variable Name: This field is used to specify the variable to be scaled e.g. “tasmax” for 

maximum temperature.    

(2) Observed File: This field is used to specify the file with historical observations. A demo 

dataset (“CF Observed File.csv”) of historical data can be found here: downscaling/cfm.  

(3) Historical GCM file: Selection of the interpolated historical GCM file (description given 

in section 0). A sample of the interpolated historical GCM data (input to the CF calculation) 

is given here: downscaling/cfm.   

(4) Future GCM File: Spatially interpolated future GCM data set. A demo (“Future GCM 

File_pr_day_CanESM2_rcp45_r1i1p1.csv”) file of interpolated future GCM data (input to 

the CF calculation) is given here: downscaling/cfm. 

(5) Output Path: Selection of a folder for saving the output file. A demo output file (“Output 

_CF_ scaled_pr_day_CanESM2_rcp45_r1i1p1.csv”) is provided here: downscaling/cfm. 

(6) Scaling Method:  Choice between two options - additive and multiplicative following  

Anandhi et al., (2011). The additive option transfers the change in mean to the observed 

data, while multiplicative transfers both, the change in mean and variance. It is 

recommended to use the multiplicative option for precipitation data and additive for 

temperature data. 

(7) Bins: Specification of the number of bins for which the change factors will be calculated 

and applied across the distribution of the GCM input data and observed data respectively. 

The default number of bins is set to be equal to 25 (Anandhi et al., 2011).     

(8) Run: To execute the process click on this button. A green progress bar should appear 

during the process of running the program (Figure 0.2).   

(9) Reset: Clearing user inputs. 

https://github.com/FIDS-UWO/climate/tree/master/downscaling/cfm
https://github.com/FIDS-UWO/climate/tree/master/downscaling/cfm
https://github.com/FIDS-UWO/climate/tree/master/downscaling/cfm
https://github.com/FIDS-UWO/climate/tree/master/downscaling/cfm
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Figure 0.2 Interface for Change Factor calculation filled with demo information 

Figure 0.2 shows an example of the input information needed to run CF algorithm. After successful 

execution of this method, an output file will be generated and can be found in the output folder. A 

demo output (“Output _CF_ scaled_pr_day_CanESM2_rcp45_r1i1p1.csv”) is given here: 

downscaling/cfm. Coding details of CF method and its interface are given in Error! Reference 

source not found.. The following section discusses KNN-CAD weather generator and its 

interface.  

  

file:///C:/Users/pbreach/Dropbox/FIDS/PhD/Publication/Sohom%20Bluebook/downscaling/cfm
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4 KNN-CAD Weather Generator 

The KNN-CAD weather generator discussed in this section is based on the modified version of 

KNN-CADv4, developed by King et al., (2015) for computational efficiency. Additional 

discussion is available in Appendix C. KNN-CADv4 is a block-bootstrap non-parametric multisite 

weather generator based on the K-nearest neighbour (K-NN) algorithm for a given day of the year. 

The algorithm was designed to be able to resample a given input observed weather series to a 

length suitable for statistical analyses. For hydrological applications, it may be used for generating 

Intensity-Duration-Frequency (IDF) curves for rainfall, or precipitation and temperature variables 

for hydrologic modelling with which flow frequency curves could be obtained. In this section, the 

modified algorithm will be briefly discussed along with the interface developed to run the KNN-

CAD algorithm. The Python programming language was used to implement this algorithm, and 

the computer code can be found in Appendix C. See Section 0 for details regarding the Python 

installation.   

Future climate variables projections using a weather generator are obtained in two steps: (1) 

scaling of future climate variables; and (2) generation of synthetic future climate time series. The 

delta change, or change factor, methodology discussed in Section 3 has been used for future-

scaling the climate variables. The procedure used here for weather generation of future climate 

series is performed in three steps: 

1. Spatial Interpolation – GCM output files need to be spatially interpolated (Section 2). 

2. Scaling – CF methodology applied to incorporate future projected climate changes into 

observed data (Section 0). 

3. Weather Generation - Use of the weather generator to resample the future-scaled climate 

series.  
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The first two steps have been discussed in Sections 0 and 0. In the final step illustrated here, it is 

assumed that the input files have been generated using previously described procedures. The three 

steps procedure is illustrated in 

, while the user interface for 

the modified KNN-CADv4 algorithm is shown in Figure 0.2.  

 

Figure 0.1 User interface for KNN-CAD algorithm 
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Instructions for running the interface are provided in Section 0. There are multiple inputs and 

options for the KNN-CAD weather generator, which are detailed here: 

(1) Input File: Specify the input file for a given climate variable. Only one climate variable per 

file is specified, and all files should be in the same format. Sample input CSV files with the 

prescribed formatting are provided in the “downscaling/knncad” directory. 

(2) Variable Name: Specify the variable corresponding to the input file (primarily for the purpose 

of assembling the input files together before running the KNN-CAD algorithm). 

(3) Perturbation: The drop-down menu specifies three different perturbation options to choose 

from: (i) None, (ii) Normal, and (iii) Log-Normal. The first option does not incorporate any 

perturbation into the resampled data and will result in a replicated climate series with range of 

values matching the range of the observed data. The second option uses “Normal” perturbation, 

for which a random normally-distributed variable with mean corresponding to the climate 

variable value of the given day and standard deviation equal to that of the K-NN is used. 

Finally, the third option implements a random two-point log-normally distributed variable to 

perturb the observed data series. In past climate downscaling experiments, temperature-like 

variables are used with the “Normal” perturbation option, while precipitation-like variables are 

used with the “Log-Normal” perturbation option. Perturbation is used to introduce variability 

in the resampled climate data and allow values to go out of the observed data range. 

(4) Add: Add the data under the “Add Variables” section to the “Current Variables” list (possible 

addition of additional variables). For the hydrological analyses performed in the past, daily 

precipitation, maximum temperature, and minimum temperature have been used together. 
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(5) Current Variables: This table will display the variables along with their file names and 

selected perturbation option that have been selected to execute the KNN-CAD algorithm. 

Additional variables can be added as per the instructions for previous step. 

(6) Window Size: The window size is used to set the number of days around the current day of 

year to use when defining the L and K nearest neighbors (see King et al (2015)). A default 

value is 14. 

(7) Lambda: This perturbation parameter is to be applied to the resampled observed climate 

series. A value of 0 would result in a climate series that has the maximum level of perturbation 

applied in accordance with the perturbation option used, while a value of 1 implies no 

perturbation. This value is typically selected to be as large as possible but less than 1. The 

default value of 0.9 (10% of data perturbed).  

(8) Replications: The number of replications corresponds to the number of synthetic climate 

series to be generated of equal length to the observed climate series. This number should be 

large enough to obtain an adequate synthetic data length for analysis. However, very large 

numbers should be chosen with caution. The KNN-CAD algorithm used here currently holds 

all generated data in memory until the calculation process is completed. If the number is too 

large, there is a risk of consuming computing resources to the point of a crash. For this reason, 

the number of replication is limited to 20 while the default is 5.  

(9) Block Size: The KNN-CADv4 algorithm resamples used ‘blocks’ of the observed climate 

series as opposed to a single day. This allows for resampling to take place with minimal 

deterioration of the temporal autocorrelation of the observed climate. The default value is set 

to 10 days.  
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(10) Remove: This option removes the currently selected row corresponding to the “Current 

Variables” table. 

(11) Output Path: Specifies the path where the generated file will be placed. 

(12) Run: Execution of the KNN-CAD algorithm using the information provided. 

(13) Reset: Reset the user input information. 

 

 

An example of the algorithm running with all provided input is shown in shown in Figure 0.2. 

Python code used to implement the KNN-CAD algorithm is included in Appendix C.  

 

Figure 0.2 User interface for KNN-CAD algorithm running with all inputs filled in. 

The next section discusses about the Maximum Entropy Based Weather Generator (MEBWG). 
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5 Maximum Entropy Based Weather Generator (MEBWG) 

Srivastav and Simonovic (2014) have developed a non-parametric multisite, multivariate 

maximum entropy based weather generator (MEBWG) for generating synthetic climate series of 

daily precipitation, minimum and maximum temperature values. There are three main 

computational steps involved in the implementation of the MEB weather generator: (1) orthogonal 

transformation of daily climate variables at multiple sites to remove spatial correlation; (2) use of 

maximum entropy bootstrap (MEB) to generate synthetic replicates of climate variables; and (3) 

inverse orthogonal transformation of synthetic climate variables to re-established spatial 

correlation. For more technical details about MEBWG, please refer to Srivastav and Simonovic 

(2014). In this section, the computer code developed for the implementation of MEBWG is 

discussed.  

Source code for MEBWG is available in Appendix-D. In addition, source code, input and output 

sample data are available in at downscaling/mbewg. Before using MEBWG, input data must be 

interpolated (Section 0) and scaled for future climate (Section 0), as was done for the KNN-CAD 

downscaling procedure (Section 0). Downscaling using MEBWG can be divided into three main 

steps (Figure 0.1). 

 

Figure 0.1 Steps involved in downscaling climate variables using MBEWG 

https://github.com/FIDS-UWO/climate/tree/master/downscaling/mbewg
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In the downscaling/mbewg directory of the FIDS-UWO/climate repository there are three Matlab 

files described below: 

(1) MBE_input.m: This file is for input preparation to the MEBWG and includes user 

prompts for input. 

(2)  MBE_RKS.m: This file contains the functions used to implement the algorithm. User 

changes to this code are not recommended for running the MBEWG. 

(3) csvwrite_with_headers.m: This file helps to write output into .csv format with a header.  

In previous climate downscaling experiments the model was used with precipitation, maximum 

and minimum temperature data sets and was shown to reproduce well the observed climate 

statistics from the input data while generating a synthetic climate series. Illustrative input data sets 

are provided in the downscaling/mbewg directory. To run this model user needs to have Matlab 

installed along with the statistics toolbox. For this work Matlab R2016a was used. 

5.1 Source Code Execution  

To run the MEBWG model, input files should be prepared as is demonstrated by the illustrative 

input data sets, and should be included in the same directory as the Matlab files. Next, run the 

“MBE_input.m” file from Matlab and a dialog window should appear (Figure 0.2). The user is 

then prompted to input the number of replications to make from the observed data which 

corresponds to the number of synthetic climate series of data length equal to the observed series 

to be generated. The default value is two.        

 

Figure 0.2 MEBWG: dialogue window 

https://github.com/FIDS-UWO/climate/tree/master/downscaling/mbewg
https://github.com/FIDS-UWO/climate/tree/master/downscaling/mbewg
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A message should show up in the Matlab console which reads, “Code is running! Please wait” 

(Figure 0.3). Another dialog box should appear after completion of the generation process (Figure 

0.4).  If the downscaling task is not complete, “Downscaling is not completed” message will be 

displayed.   

 

Figure 0.3 MEBWG command window message 

 

Figure 0.4 MEBWG: dialogue window after completion of the downscaling task 

An important note, if the GCM name, realization, and RCP (representative concentration 

pathways) do not match for all input files, it will show an error message, “'Error: GCM files are 

not matching!!”. In the event that this error occurs, check that the input file names shown in demo 

data set at downscaling/mbewg or make a change in “MBE_input.m” Line 35-37. Details code of 

MEBWG provided in Appendix D. The following section will discuss the beta regression based 

statistical downscaling model.     

 

 

 

 

https://github.com/FIDS-UWO/climate/tree/master/downscaling/mbewg
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6 Beta Regression Based Statistical Downscaling Model   

Mandal et al.,(2016) developed a multisite downscaling method based on the beta regression (BR). 

The proposed method generates downscaled daily precipitation conditioned on precipitation states. 

Here the details to run the computer code used to build BR downscaling model are discussed.  

The BR model was developed in the Matlab environment. The statistical toolbox of Matlab R2016a 

academic version is used to develop the model. Before using BR model, the user needs to prepare 

the input data. The following section describes how to prepare the data to run the BR model in the 

Matlab.  

6.1 Data Preparation 

For the BR model to run, the user needs historically observed precipitation data, as well as 

historical and future GCM output datasets. The BR model is developed based on a statistical 

relationship between predictor climate variables and a predictand, which in this case is 

precipitation. For the predictor variables, daily maximum and minimum air surface temperature 

(Tmax and Tmin), mean sea level pressure (mslp), specific humidity (hus) at 500 hPa, zonal (u-

wind) and meridional (v-wind) wind are used. The user needs to extract these variables from GCM 

output for the historical and future time periods. The following steps should be taken to prepare 

the data to run the BR model:  

(1) Download predictor variables from the Coupled Model Intercomparison Project 5 

(CMIP5) GCM output database. http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html 

(2) Interpolate all GCM climate variables at downscaling station locations. For spatial 

interpolation use IDW method (follow Section 0). Combine all the variable data into 

http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html
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a single file for a particular scenario. Illustrative input and output files are provided 

here: downscaling/br. Temperature data is in units of degrees Kelvin (K).   

(3) Prepare observed historical precipitation data as shown here: downscaling/br.  

“Observed Precipitation.csv” 

(4)   “Input.m” to run the model.  

All the illustrative data sets and source code are provided at: downscaling/br. In addition, the 

Matlab source code for the BR method is provided in Appendix-E. There are four Matlab files for 

the BR model: 

(1) Input BR.m: This file prepares input for and runs the BR model. 

(2) betareg_main.m: This file is for regression calculation.  

(3) Beta_Regression.m: This file is for conditional probability and precipitation states calculation. K-

means clustering, classification and regression trees (CART) are included in this file. 

(4)  betalik.m: This file is for link functions in beta regression. Log transformation is used in this model. 

6.2 BR Source Code Execution 

The user should run “Input BR.m” from Matlab to execute BR model. Multiple input windows 

will appear in succession. First a window will appear asking for time period of interest. In this 

window, the user must specify historical and future time slices as shown in Figure 0.1. This 

interface is suitable for any timeframe but it should not exceed that of the input files.   

https://github.com/FIDS-UWO/climate/tree/master/downscaling/br
https://github.com/FIDS-UWO/climate/tree/master/downscaling/br
https://github.com/FIDS-UWO/climate/tree/master/downscaling/br
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Figure 0.1 BR: Timeframe input window 

After pressing “OK” another window will appear requesting the historical observed data set 

(Figure 0.2). Select a historical observed precipitation data set. When the file is being read, a 

“Reading the data!!” message will appear in the command window (Figure 0.3). 

 

Figure 0.2 BR: Input window for historical data set 

Next window will prompt the user for historical GCM data (Figure 0.4). Finally, the last input 

window is for future GCM data which can be selected here (Figure 0.5). If all the inputs are 

validated a message, “Code is running! Please wait” will be displayed in the Matlab command 

window (Figure 0.6). After completion a message will appear “Downscaling Completed”.   

 

Figure 0.3 BR: Message during input file reading 
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Figure 0.4 BR: Input window for historical GCM data set 

 

Figure 0.5 BR: Input window for future GCM data set 

 

Figure 0.6 BR: Message during compilation 

The input data files for this sample run are prepared from the GCMs stored in netCDF format, 

using the IDW interpolation method discussed in Section 0. There are multiple tools available to 

read netCDF files such as those found here. It is recommended for the user to inspect the metadata 

of these files before proceeding with the analysis. This Excel extension for reading netCDF files 

can be a useful tool for this. Details code of BR downscaling model also provided in Appendix E. 

https://www.esrl.noaa.gov/psd/data/gridded/read-our-files.html
https://github.com/NetCDF4Excel/project
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7 Physical Scaling Model for Downscaling Climate Variables 

It has been highlighted in previous sections that statistical downscaling methods used currently 

don’t explicitly account for geophysical characteristics of the region of study. This is one of the 

major drawbacks of statistical downscaling because of which geophysical changes in a region can’t 

be modelled using statistical downscaling methods. In physical scaling (SP) method (Gaur and 

Simonovic, 2016a, 2016b),  this is achieved by including additional geophysical covariates 

representing land-cover and elevation distribution of the region. The predictand (observed local 

scale climate) and predictor (large scale climate and geophysical covariate) variables are linked 

using a Generalized Additive Model (GAM) regression relationship. In GAM regression, the 

predictand variable is connected to smoothed predictor variables using a link function. The 

smoothing is generally performed using non-parametric algorithms. The regression function is 

totally non-parametric in nature and hence is suitable modelling a range of climate variables 

including precipitation and temperature. A more detailed description of SP model and its 

extensions is provided below.   

7.1 Physical Scaling (SP) Method 

SP method approach to downscaling temperature (surface or air) can be mathematically expressed 

as: 

                             0 1 mod 2 3( ) ( ) ( ) ( )obs p pg T B f T f E f LC                                                  (7.1) 

Where T denotes temperature, E denotes elevation (masl) of the reference pixel, LC denotes 

categorical land-cover variable associated with the reference pixel and B denotes regression 

parameters. Subscript obs and mod denote if the climatic data is observed or model based 

respectively. Tmod denotes large scale “background” climate data obtained by bilinear interpolation 
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of GCM temperature data at the reference pixel. Subscript p indicates that the data used is a pixel 

scale data. Variables g and f represent the link and smoothing functions respectively. In this study, 

smooth functions are fit using penalized likelihood maximization algorithm. The penalized 

likelihood maximization algorithm is a variant of maximum likelihood estimation algorithm and 

applies a tradeoff between model fit wiggliness and goodness of fit by incorporating a penalty 

function(Wood, 2000). 

In the case of precipitation, method involves a two-step process of predicting precipitation 

occurrence using a logistic regression model and a wet day precipitation amounts model using a 

GAM regression model. SP method approach to downscale precipitation(Gaur and Simonovic, 

2017) can be mathematically expressed as: 

                                0 1 mod 2 3ln
1

obs
p p

obs

P
B B P B E B LC

P

 
    

 
                                                 (7.2) 

                   , 0 1 mod, 2 3( ) ( ) ( ) ( )obs wet wet p pg P B f P f E f LC                                            (7.3) 

Where, notations have previously defined meanings. Additionally, subscript wet denotes values on 

wet days only (i.e. days with more than 0.1 mm of precipitation).  

7.2 Physical Scaling With Surrounding Pixel Information (SPS) 

Method  

SPS method is an extension to SP method where land-cover and elevation properties of the 

reference as well as neighborhood pixels are incorporated into the method formulation (Gaur and 

Simonovic, 2016a). SPS method for downscaling air temperature can be mathematically expressed 

as: 

0 1 mod 2 3 4 , 17 , 18 ,( ) ( ) ( ) ( ) ( ) .... ( ) (R )obs p p W s BSV s E sg T B f T f E f LC f Fr f Fr f                      (7.4) 
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where, symbols have similar meanings as explained above. Predictors FrW,s , …..FrBSV,s represent 

the fraction of total area surrounding the reference pixel that is occupied by Water,….Barren and 

Sparsely Vegetated land-cover classes respectively. The value of predictors: FrW,s , …..FrBSV,s is 

between 0 and 1 and they add up across all neighbourhood land-cover classes to give a value of 1. 

Neighbourhood elevation information is incorporated by including a predictor RE,s which 

represents the ratio between reference pixel elevation and mean elevation of pixels surrounding 

the reference pixel at a specific neighbourhood scale, s. 

For precipitation, SPS downscaling method involves two steps of forming a precipitation 

occurrence and wet day precipitation amounts model (Gaur and Simonovic, 2017a). The two steps 

involved in SPS method can be mathematically expressed as: 

0 1 mod 2 3 4 , 17 , 18 ,ln .... R
1

obs
p p W s BSV s E s

obs

P
B B P B E B LC B Fr B Fr B

P

 
        

 
                       (7.5) 

, 0 1 mod, 2 3 4 , 17 , 18 ,( ) ( ) ( ) ( ) ( ) .... ( ) (R )obs wet wet p p W s BSV s E sg P B f P f E f LC f Fr f Fr f                     (7.6) 

where, symbols have the same meanings as explained before.  

The choice of spatial scale within which neighbourhood geophysical characteristics are analysed 

is critical to SPS method application and performance. Four neighbourhood scales (represented as 

s in equations 4, 5 and 6): 3x3, 5x5, 7x7 and 9x9 have been chosen before to define neighbourhood 

characteristics (Gaur and Simonovic, 2016a). The selected neighbourhood scales are shown in 

Error! Reference source not found. in darker shades of grey for neighbourhood scales: 3x3, 5x5, 

7x7 and 9x9 respectively, while the reference pixel is shown in black. Larger neighbourhood scales 

are considered to be inclusive of smaller spatial scales for instance neighbourhood scale: 5x5 

encompasses pixels corresponding to neighbourhood scale: 3x3 and additional darker shaded 

pixels specific to 5x5 neighbourhood scale.  
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Figure 0.1 Neighbourhood scales considered in this study. Increasing neighbourhood scales are 

shown in progressively darker shades of grey. The reference pixel is shown in black. 

 

7.3 Working Example of SP and SPS Methods in the R 

Programming Language 

In this section, we demonstrate how SP and SPS methods can be applied to downscale GCM 

projections in the R programming language. First, we provide a gentle introduction to the R 

programming language, and then present a step by step demonstration of SP and SPS model 

downscaling using it. 

7.3.1 Basics of R Programming Language  

R is a programming language and software environment for statistical analysis, graphics 

representation, and reporting. R was created by Ross Ihaka and Robert Gentleman at the University 

of Auckland, New Zealand, and is currently developed by the R Development Core Team (Team, 
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2008). R implements many common statistical procedures as well as provides excellent graphics 

functionalities through its libraries and packages. It is an open source language which means that 

the users are able to acquire it free of cost as well as can contribute towards its research and 

development. In this sub-section, basic features of R programming language have been reviewed 

with an intention that this can help the readers to get started with R.   

7.3.2 Downloading and Installing R 

R programming language for windows operating system can be downloaded from: https://cran.r-

project.org/bin/windows/base/. R for Linux and Mac operating systems can also be downloaded 

from the R project for statistical computing website: https://www.r-project.org/. It is also common 

to use R Studio to run and edit R codes as this software provides enhanced code editing, debugging, 

and visualizing capabilities to the R users. R Studio for Windows, Linux, and Mac operating 

systems can be downloaded from: https://www.rstudio.com/products/rstudio/download/. R and R 

Studio software can then be installed on the computer by running the executables obtained from 

above sources. 

7.3.3 Common Data-types in R  

Some of the most common data-types used in R programming language are: vector, data frame, 

and list. A vector can be a sequence of numbers, logical values, or character strings. A vector with 

three numeric values can be defined as follows in the R Studio command-line.  Below the user 

commands are provided in lines commencing with the symbol: “>” while output from the R (if 

any) is provided in lines commencing with the symbol: “[1]”. 

C1 > c(3, 4, 7)  

[1] 3 4 7 

A vector with three logical values can be defined as follows: 

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/
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C2 > c(TRUE, FALSE, FALSE)  

[1] TRUE FALSE FALSE 

A vector with three character values can be defined as follows. The resulting vector has also been 

saved into a variable named: vec.char. 

C3 > vec.char = c(“a”, “b”, “c”)  

A vector element can be extracted using the “[]” brackets with the index of the element to be 

extracted as shown below. 

C4 > vec.char[1] 

[1] a 

A data frame is used to store vectors of equal length in the form of tables. Below is the command 

to create a data frame “df” with three columns and four rows representing the marks obtained by 

four students named: “A”, “B”, “C”, “D” in two subjects: maths and physics.   

C5 > df = data.frame (name = c(“A”, “B”, “C”, “D”), maths = c(85, 90, 97, 76), physics = c(88, 66, 76, 98))  

 

Data-frame element(s) can be extracted using the “[]” brackets with the row number and column 

number indices of the element to be extracted. The entire row or column can be extracted by 

specifying the same in the command. An entire column can also be extracted by specifying the 

column name together with the “$” operator as shown below. 

C6 > df[1,2] 

[1] 85 

C7 > df[1,] 

[1] A 85 88 

C8 > df[,1] 

[1] A B C D 

C9 > df$name 
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[1] A B C D 

 

A list can be used to store vectors of equal or unequal lengths. Below is a R command to create a 

list with 3 numeric, 4 logical, and 5 character elements stored in the first, second, and third 

elements. The list is stored as a variable named “lst”. 

C10 > lst = list (c(1, 5, 7), c(TRUE, TRUE, FALSE, FALSE), c(“a”, “b”, “c”, “d”, “e”))  

 

List elements can be extracted by using the “[[]]” brackets along with the list element number that 

needs to be extracted. Further, sub-elements within a list element can also be accessed using “[]” 

brackets with the index of the sub-element number as demonstrated below. 

C11 > lst[[1]] 

[1] 1 5 7 

C12 > lst[[1]][3] 

[1] 7 

7.3.4 Relevant R Packages 

R packages are a collection of R codes, functions, data, and compiled code in a well-defined 

format. R comes with a standard set of packages. Other packages can be downloaded and installed 

separately by the users based on their needs. Here we provide a brief introduction of a few R 

packages (apart from the standard packages) that are very useful in performing downscaling of 

GCM data by SP and SPS methods in R. These packages are: 

 MODIS and MODISTools: The intended purpose of these packages is to facilitate acquisition 

and processing of MODIS data-products. MODIS package contains functions to gain 

automated access to the global online data archives and processing capabilities such as file 

conversion, mosaicking, sub-setting, and time-series filtering (Mattiuzzi, 2016). The package 
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can be downloaded from Comprehensive R Archive Network (CRAN) by running the 

following command on the command line: install.packages ("MODIS", repos="http://R-

Forge.R-project.org"). MODISTools package also allows users to extract MODIS data time-

series at one or more than one locations without downloading the image rasters. The package 

can be downloaded from Comprehensive R Archive Network (CRAN) by running the 

following command on the command line: install.packages("MODISTools", repos="http://R-

Forge.R-project.org").  

 ncdf4:  This package is designed to work with NetCDF libraries version 4 in R, which is the 

most commonly used NetCDF version currently. Another package: “ncdf” can be used to 

access NetCDF version 3 libraries. In “ncdf4” package utilities like chunking and compression 

have also been included. The package can be downloaded from Comprehensive R Archive 

Network (CRAN) by running the following command on the command line: 

install.packages("ncdf4", repos="http://R-Forge.R-project.org"). 

 raster: This package is intended to facilitate raster processing in R. Among other functions, 

the package contains functions that can read and write rasters, perform raster operations such 

as reprojection, resampling, filtering, merging etc., perform raster calculations, and visualize 

raster data (Hijmans et al., 2016). The package can be downloaded from Comprehensive R 

Archive Network (CRAN) by running the following command on the command line: 

install.packages("raster", repos="http://R-Forge.R-project.org"). 

 lubridate: The lubridate package is intended to facilitate easy handling of date-time data in R. 

Among others, it contains functions that can be used to extract components of a date-time such 

as year, month, day, hour, minute, and seconds, and perform algebraic manipulation on the 

date-time objects (Grolemund et al., 2016). The package can be downloaded from 
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Comprehensive R Archive Network (CRAN) by running the following command on the 

command line: install.packages("lubridate", repos="http://R-Forge.R-project.org").   

 reshape2: This R package is extremely useful to transform data between wide and long 

formats. A wide format has a column for each variable while a long format has a column for 

possible variable types and another column for the values of these variables (Wickham, 2016). 

The package can be downloaded from Comprehensive R Archive Network (CRAN) by running 

the following command on the command line: install.packages("reshape2", repos="http://R-

Forge.R-project.org"). 

 ggplot2: This package is meant for “declaratively” creating graphic by telling ggplot2 how to 

map variables to aesthetics and what graphical primitives to use. It produces plots following 

the grammar of graphics (Wilkinson, 2005) where essential building blocks of a graph i.e. data, 

aesthetic mapping, geometric object, statistical transformations, scales, coordinate system, 

position adjustments, and faceting are specified by the user (Wickham and Chang, 2016). The 

package can be downloaded from Comprehensive R Archive Network (CRAN) by running the 

following command on the command line: install.packages("ggplot2", repos="http://R-

Forge.R-project.org"). 

 mgcv: This package is very helpful in performing Generalised Additive Modelling regression. 

It includes several methods for estimating regression parameters, smoothing functions, and 

link functions in GAMs in computationally efficient manner (Wood, 2017). The package can 

be downloaded from Comprehensive R Archive Network (CRAN) by running the following 

command on the command line: install.packages("ggplot2", repos="http://R-Forge.R-

project.org").  
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7.3.5 Other Relevant R Functions 

Apart from the functions available in aforementioned packages, plenty of useful functions are 

available in R base library. They have been used extensively while downscaling GCM projections 

using SP and SPS models. A description of some of those functions that have been most 

extensively used is provided below. A more detailed description of any of these functions (or any 

other function) can be obtained by running “?”function-name command in R.  

 which(): This function is used to know the position of elements of a logical vector that are 

TRUE.  

 subset(): This function is used to extract section of a data-frame with rows that meet a particular 

criteria. For instance in a data-frame that stores monthly discharge data time-series, this 

function can be used to select part of the time-series that correspond to January or have month 

values equal to 1.      

 sapply/lapply: The sapply() and other similar functions are an alternate for looping in R. Their 

usage is recommended as their usage can make the R codes run much faster than when for 

instance for() loops are used. The “apply” family of functions have many variants like sapply() 

which stands for simplify and apply, lapply() which stands for list and apply, vapply(), tapply(), 

etc.      

 rbind/cbind(): Both rbind() and cbind() are used to combine two data-frames or matrices. It is 

essential that data-frames (or matrices) have the same number of columns when rbind() is used 

to combine them. Similarly data-frames (or matrices) should have equal number of rows when 

cbind() is used.    
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 do.call(): The do.call() function executes a function call over all list elements passed to it. This 

function is commonly used in conjunction with lapply() function where “list” output obtained 

from lapply() are further analysed or manipulated using do.call() function.      

7.3.6 Application of SP and SPS Methods Downscaling in R 

In this section a demonstration of how R programming language can be used to downscale climate 

model projections using SP and SPS methods is presented. A discussion on how to extract, 

organize and prepare remotely sensed and climate model datasets in R is provided first. This is 

followed by a working example where SP and SPS models are applied to downscale a sample 

future temperature projection dataset. 

Climate model datasets from GCMs or reanalysis products are generally available in Network 

Common Data from (NetCDF) format. NetCDF is a self-describing, machine independent data 

format that supports the creation, access, and sharing of array oriented data. By self-describing, it 

means that information about specifications of the file, the data it stores, and its layout is stored 

within the file. In R NetCDF format files can be accessed using “ncdf4” package. All packages 

need to be downloaded and loaded in the R session prior to their usage. Packages can be loaded 

by using command “library”(package-name) in the R session. Following commands can be used 

to access and extract data from NetCDF files in R: 

C13 > file.read = nc_open(file.name) 

 

Above function nc_open reads a NetCDF file. The location of .nc file should be specified in the 

argument file.name of the function. The details of the .nc file are stored in the variable file.read. 

C14 > file.read$dim$names 
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The variable file.read can be used to extract import file characteristics such as file dimensions, 

which conveys the layout of data stored in the .nc file. Above command prints out detailed 

description of all dimensions associated with the file.read variable. 

C15 > file.read$var$names 

Variables convey information about the data stored in the .nc files. Above command prints out 

detailed description of all dimensions associated with the file.read variable. 

C16 > ncvar_get(file.read, var.name) 

C17 > ncvar_get(file.read, varid=var.name, start=c(1,1,1), count=c(dim1,dim2,1)) 

C18 > sapply(1:10, function(x) ncvar_get(file.read, varid=var.name, start=c(1,1,x), count=c(dim1,dim2,1))) 

The function “ncvar_get” is used to extract data stored in a particular variable in the .nc file. 

Command C16 will extract the values of a variable with name “var.name” stored in the .nc file. 

Sometimes due to data volume it is not possible or desirable to import and save all of the data in 

one variable in one go. In those cases, “ncvar_get” command can also be specified other attributes 

so that the data is read in manageable chunks. For instance command C17 provided above reads 

only the first array element of the variable: “var.name”. Variables “dim1” and “dim2” denote the 

x and y dimensions of the data array. Command C18 performs the same operation iteratively for 

array elements 1 to 10 using the “sapply” function.  The indices for which the data needs to be 

extracted is ascertained by examining the time-indices for which data is provided in the .nc file 

and then finding indices that contain data for the user defined time-period of interest. 

Above discussion provides a brief introduction on how R programming language can be used to 

access GCM and reanalysis climate data that is typically available in the .nc format using the ncdf4 

package.  
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Next, we discuss how MODIS data can be extracted using R programming language.  MODIS 

based climatic and land-cover data are very useful for performing SP and SPS model based 

downscaling and they can be easily extracted and managed using R programming language. We 

demonstrate the use of two packages: “MODISTools” and “MODIS” towards downloading and 

analysing MODIS data in R. The first package MODISTools can be used to download spatio-

temporal MODIS data using “MODISSubsets” function provided below: 

C19 > MODISSubsets(LoadDat, Products, Bands, Size) 

In “MODISSubsets” function, argument “LoadDat” reads in a data-frame with details about 

coordinates and IDs of all locations where data needs to be extracted, as well as the start and end 

dates of the data to be downloaded. The argument “Products” reads in the product code, which can 

be obtained from the function: GetProducts(). The argument “Bands” is supplied the band names 

to be downloaded. For a particular product, a list of bands can be obtained using the Getbands() 

command. The argument “Size” is supplied with the spatial scale at which the data should be 

extracted. A value of c(0,0) is supplied if only data at the location of interest needs to be extracted. 

Other values such as c(1,1) provide values spatially averaged over an area of 2km2 from the 

location of interest. Following command C20 will extract the day-time and night-time surface 

temperature data sensed by Terra satellite over the London (Ontario) city (lon = -81.25, lat=42.98) 

for the year: 2012.  

C20>MODISSubsets(LoadDat=data.frame(lat=42.98,long=-81.25,start.date=2012,end.date=2012,id=1), 

Products = “MOD11A1”,  

Bands = c(“LST_Day_1km”, “LST_Night_1km”),  

Size = c(0,0)) 
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Downloading MODIS data using “MODISTools” is most advantageous when the data needs to be 

extracted at a limited number of locations. However, if data needs to be extracted over a region or 

a country, it is beneficial to extract a raster image encompassing the region of interest for analysis. 

The runGdal function provided in the MODIS package is extremely useful in such cases. 

Following is a description of the function: 

C21 > runGdal(product, begin, end, extent) 

In the “runGdal” function, the argument “product” needs to be supplied with the MODIS product 

ID, beginning and end dates for data extraction are supplied in the arguments: “begin” and “end” 

respectively. The area for which the data needs to be extracted is supplied through the “extent” 

argument. The area to be supplied can be selected interactively, by supplying a shapefile or a raster 

file, by specifying the country name, or an extent object. Other important arguments such as 

“outProj” which supplies the output raster projection, “pixelSize” which can be supplied with the 

output data spatial resolution, and “dataFormat” which can be used to specify the data-format of 

output raster image. The following command can be used to extract surface temperature data 

sensed by Terra satellite over Canada for the year: 2012. 

C22 > runGdal(product="MOD11A1",begin="2012001",end = "2012366",extent="canada") 

So far the discussion provided in this section dealt with the preparation of geophysical and climatic 

data required for the application of SP and SPS method downscaling models. Once the climatic 

and geophysical data are prepared, the downscaling models can be used to downscale GCM 

projections. We demonstrate this by downscaling future temperature and precipitation projections 

obtained from a GCM: MRI-CGCM3 under RCP2.6 using SP and SPS models. The data for 

downscaling model calibration and for making future projections can be downloaded from 

downscaling/sp. The datasets are provided in .rds format which is a format to save and load R 

https://github.com/FIDS-UWO/climate/tree/master/downscaling/sp
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objects as files in the system. File named: “Model calibration data.rds” contains data needed to 

calibrate SP and SPS models and file named: “Future prediction data.rds” contains data needed for 

making downscaled future climatic projections. 

Once the folder is placed in a directory (termed as “Fakepath” below), the data can be imported 

into R using following commands: 

C23 > cal.data=readRDS("Fakepath/Model calibration data.rds") 

C24 > pred.data=readRDS("Fakepath/Future prediction data.rds") 

The function “readRDS” used above reads in any R object with .rds extension. Here model 

calibration data are imported into an R data-frame object “cal.data” and prediction data are 

imported into a R object “pred.data”. The datasets can be examined using two very useful R 

functions: “summary” and “head”/ “tail” as shown below.  

C25 > summary(cal.data) 

C26 > head(cal.data, 50) 

The former function provides a summary of the data stored in each column of the data-frame. The 

latter functions: “head” or “tail” show user requested number (which in above case is 50) of first 

or last few lines in a data-frame respectively.  

 

 

 

 

 

 

 provides a description of different columns in data-frames: “cal.data” and “val.data”.  

SP method calibration can be performed using “gam” function available in the package “mgcv”. 

This can be performed with either of the following commands: 
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C28 > SP.mod.T = gam(T.obs ~ s(T.NARR) + LC+ s(elev), data = cal.data) 

C29 > SP.mod.T.jan = gam(T.obs ~ s(T.NARR) + LC+ s(elev), data = subset(cal.data, month(date) %in% 1)) 

The command C28 fits a GAM function on the observations provided in the “cal.data” object and 

the resulting model is stored in another R object: “SP.mod”. If the calibration needs to be 

performed using data belonging to all days in the month of January, this can be done using 

command C29. The code subsets only the data belonging to January month by using “subset” 

function and checking which months corresponding to the “dates” column equal to 1. The model 

can be calibrated for other months in a similar fashion. 

SPS model for downscaling temperature can be calibrated in a similar way. Command C30 

calibrates SPS3x3 model using entire “cal.data” series and stores the calibrated model in an R 

object named: “SPS3x3.mod.T”. Appropriate modifications in predictor variables can be made 

when calibrating SPS models for other neighbourhood scales.     

C30 > SPS3x3.mod.T = gam(T.obs ~ s(T.NARR) + s(LC) + s(elev) + s(C.3x3) + s(G.3x3) + s(BSV.3x3) + 

s(OS.3x3) + s(W.3x3) + s(ENF.3x3) + s(UB.3x3) + s(DBF.3x3) + s(DNF.3x3) + 

s(MF.3x3) + s(S.3x3) + s(WS.3x3) + s(CS.3x3) + s(EBF.3x3) + s(ef.elev.3x3), data = 

cal.data) 

 

 

 

 

 

 

 

Column name Description 

elev Elevation of the gauging stations 

P.obs Precipitation recorded at the gauging stations  

T.obs Temperature recorded at the gauging stations 

C.3x3/C.5x5/C.7x7/C.9x9 Cropland fraction in 3x3/5x5/7x7/9x9 neighborhood scale 

G.3x3/G.5x5/G.7x7/G.9x9 Grassland fraction in 3x3/5x5/7x7/9x9 neighborhood scale 
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Table 0.1 Descriptions of columns present in the calibration and prediction data 

Performing downscaling using the calibrated models is also very straightforward and intuitive. For 

instance, following commands can be used to predict downscaled temperature data using above 

calibrated SP and SPS3x3 models: 

C31 > colnames(pred.data)[which(colnames(pred.data) %in% "GCM.tas")]="T.NARR" 

BSV.3x3/BSV.5x5/BSV.7

x7/BSV.9x9 

Barren or Sparsely Vegetated fraction in 3x3/5x5/7x7/9x9 

neighborhood scale 

OS.3x3/OS.5x5/OS.7x7/O

S.9x9 

Open Shrublands in 3x3/5x5/7x7/9x9 neighborhood scale 

W.3x3/W.5x5/W.7x7/W.9

x9 

Water fraction in 3x3/5x5/7x7/9x9 neighborhood scale 

ENF.3x3/ENF.5x5/ENF.7

x7/ENF.9x9 

Evergreen Needleleaf Forest fraction in 3x3/5x5/7x7/9x9 

neighborhood scale 

UB.3x3/UB.5x5/UB.7x7/

UB.9x9 

Urban fraction in 3x3/5x5/7x7/9x9 neighborhood scale 

DBF.3x3/DBF.5x5/DBF.7

x7/DBF.9x9 

Deciduous Broadleaf Forest fraction in 3x3/5x5/7x7/9x9 

neighborhood scale 

DNF.3x3/DNF.5x5/DNF.

7x7/DNF.9x9 

Deciduous Needleleaf Forest fraction in 3x3/5x5/7x7/9x9 

neighborhood scale 

MF.3x3/MF.5x5/MF.7x7/

MF.9x9 

Mixed Forest fraction in 3x3/5x5/7x7/9x9 neighborhood scale 

S.3x3/S.5x5/S.7x7/S.9x9 Savannas fraction in 3x3/5x5/7x7/9x9 neighborhood scale 

WS.3x3/WS.5x5/WS.7x7/

WS.9x9 

Woody Savannas fraction in 3x3/5x5/7x7/9x9 neighborhood 

scale 

CS.3x3/CS.5x5/CS.7x7/C

S.9x9 

Closed Shrublands fraction in 3x3/5x5/7x7/9x9 neighborhood 

scale 

EBF.3x3/EBF.5x5/EBF.7

x7/EBF.9x9 

Evergreen Broadleaf Forest fraction in 3x3/5x5/7x7/9x9 

neighborhood scale 

ef.elev.3x3/ ef.elev.5x5/ 

ef.elev.7x7/ ef.elev.9x9 

Relative elevation fraction in 3x3/5x5/7x7/9x9 neighborhood 

scale  

T.NARR NARR temperature interpolated at the gauging station location 

P.NARR NARR precipitation interpolated at the gauging station location 

LC Land-cover at the gauging station 

GCM.ppt GCM precipitation interpolated at the gauging station location 

GCM.tas GCM temperature interpolated at the gauging station location 

date Date associated with the data 
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C32 > pred.data$SP.pred.T = predict(SP.mod.T, newdata = pred.data) 

C33 > pred.data$SPS3x3.pred.T = predict(SPS3x3.mod.T, newdata = pred.data) 

For making predictions using the calibrated GAM model, the predictor variables present in the 

calibration data should also be present in the validation data. Therefore the column “GCM.tas” 

which contains interpolated GCM data is renamed as “T.NARR” which contained NARR derived 

model data in the calibration dataset. This is performed by command C31 presented above. 

Following this, the calibrated models: “SP.mod” and “SPS3x3.mod” are used to downscale 

prediction dataset: “pred.data” using commands provided in the commands C32 and C33 above. 

Precipitation downscaling by SP and SPS models involves two steps as discussed in section 1. 

First, dry and wet day sequences are predicted using a logistic regression model and then, wet day 

precipitation intensity is predicted using a GAM model. The calibration of logistic regression 

model and GAM models can be performed in R using following set of commands: 

C34 > cal.data$r.switch=0 

C35 > cal.data$r.switch[which(cal.data$P.obs>0.1)]=1 

C36 > occ.mod.SP.P=glm(r.switch~P.NARR+elev+LC,data=cal.data,family="binomial") 

C37 > int.mod.SP.P=gam(P.obs~s(P.NARR)+s(elev)+s(LC),data=subset(cal.data,r.switch==1)) 

C38 > occ.mod.SPS3x3.P = glm(r.switch ~ P.NARR + elev + LC + C.3x3 + G.3x3 + BSV.3x3 + OS.3x3 + W.3x3 

+ ENF.3x3 + UB.3x3 + DBF.3x3 + DNF.3x3 + MF.3x3 + S.3x3 + WS.3x3 + 

CS.3x3 + EBF.3x3 + ef.elev.3x3, data=cal.data, family="binomial") 

C39 > int.mod.SPS3x3.P = gam(P.obs ~ s(P.NARR) + s(elev) + s(LC) + s(C.3x3) + s(G.3x3) + s(BSV.3x3) + 

s(OS.3x3) + s(W.3x3) + s(ENF.3x3) + s(UB.3x3) + s(DBF.3x3) + s(DNF.3x3) + 

s(MF.3x3) + s(S.3x3) + s(WS.3x3) + s(CS.3x3) + s(EBF.3x3) + s(ef.elev.3x3), 

data=subset(cal.data, r.switch==1)) 
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In command C34 and C35 a new column with a rainfall switch defining rainfall (1) or no-rainfall 

(0) state is added to the calibration data-frame: “cal.data”. All days with daily precipitation 

magnitude greater than 0.1 mm is allotted a value of 1 in the column “r.switch” whereas all days 

with precipitation magnitudes less than or equal to 0.1 mm are allotted a value of 0. Command 

C36 calibrates the logistic regression model for SP model using “r.switch” as the predictant 

variable and columns: “P.NARR”, “elev” and “LC” columns as predictor variables. In R, logistic 

regression can be performed within the Generalised Linear Modelling (glm) framework. A glm 

framework in R can model regression functions of many families including: gaussian, binomial, 

poisson, gamma, inverse.gaussian, quasi. For defining a logistic regression, we specify the family 

of the regression function as: “binomial” and link function as: “logit” (not specified above as it is 

the default link function for binomial family in R). Command C37 calibrates a GAM model on 

rainfall intensities only using data for days when the value of “r.switch” is equal to 1 (in other 

words only using data for wet days). Commands C38 and C39 perform similar calibration of 

logistic regression and GAM models for the SPS3x3 downscaling model. The only difference is 

that in this case all neighbourhood predictors corresponding to the scale 3x3 are also used in 

defining the regression models. 

Prediction of downscaled precipitation using SP and SPS models involves first predicting dry and 

wet day sequences and secondly predicting wet precipitation magnitudes. This can be performed 

in R using passing following set of commands:  

C40 > colnames(pred.data)[which(colnames(pred.data) %in% "GCM.ppt")]="P.NARR" 

C41 > pred.data$r.switch=as.numeric(predict(occ.mod.SP.P,newdata=pred.data,type="response")) 

C42 > pred.data$r.switch[which(pred.data$r.switch>=0.5)]=1 
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C43 > pred.data$r.switch[which(pred.data$r.switch<0.5)]=0 

C44 > pred.data$SP.pred.P=0 

C45> pred.data$SP.pred.P[which(pred.data$r.switch>=0.5)] = as.numeric(predict(int.mod.SP.P, newdata = 

subset(pred.data, r.switch> = 0.5))) 

C46 > pred.data$r.switch=as.numeric(predict(occ.mod.SPS3x3.P,newdata=pred.data,type="response")) 

C47 > pred.data$r.switch[which(pred.data$r.switch>=0.5)]=1 

C48 > pred.data$r.switch[which(pred.data$r.switch<0.5)]=0 

C49 > pred.data$SPS3x3.pred.P=0 

C50> pred.data$SPS3x3.pred.P[which(pred.data$r.switch>=0.5)] = as.numeric(predict(int.mod.SPS3x3.P, 

newdata = subset(pred.data, r.switch> = 0.5))) 

The command C40 again renames the column “GCM.ppt” to “P.NARR” for prediction to ensure 

that the predictors chosen to calibrate the occurrence and precipitation intensity models are also 

present in the prediction dataset “pred.data”. The command C41 predicts the probabilities of a 

particular day to be rainy given the values of predictors: “P.NARR”, “LC”, and “elev” for each 

day. Next in lines C42 and C43 we choose a probability threshold that can be used to decide on 

the predictant state given the predicted probabilities. In Gaur and Simonovic (2017)  this has been 

calibrated for different models. For this demonstration a value of 0.5 is chosen as the probability 

threshold value above which the predictant i.e. “r.switch” is considered as having a rainy (1) state 

or else it is considered to have a non-rainy (0) state. In lines C44 and C45 the values of precipitation 

for days with “r.switch” values equals to zero are taken to be zero. For days with “r.switch” equals 

to 1 (or for rainy or wet days) the precipitation magnitude is predicted using the model: 

“int.mod.SP.P”. Commands C46 to C50 perform precipitation downscaling using SPS3x3 model 
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using a similar process but using the logistic regression model: “occ.mod.SPS3x3.P” and wet day 

precipitation magnitude prediction GAM model: “int.mod.SPS3x3.P”. 

Finally, the results can be visualised effectively using several useful functions available in the 

“ggplot2” package. The function: “melt” in package “reshape2” is also extremely useful for 

preparing data to be used in “ggplot2” package. A small example is presented here where yearly 

maximums of GCM and downscaled precipitation data (from models: SP and SPS3x3) stored in 

the “pred.data” data-frame are plotted using “ggplot2” package. 

C51 > ymax.P.GCM = sapply(2014:2100, function(x) max(subset(pred.data, year(date) %in% x)$P.NARR, 

na.rm=T)) 

C52 > ymax.P.SP = sapply(2014:2100, function(x) max(subset(pred.data, year(date) %in% x)$SP.pred.P, 

na.rm=T)) 

C53 > ymax.P.SPS3x3 = sapply(2014:2100, function(x) max(subset(pred.data, year(date) %in% 

x)$SPS3x3.pred.P, na.rm=T)) 

C54 > ymax.P=data.frame(year=2014:2100, GCM=ymax.P.GCM, SP=ymax.P.SP, SPS3x3=ymax.P.SPS3x3) 

C55 > data.plot = melt(ymax.P, id="year") 

C56 > ggplot()+geom_line(data=data.plot,aes(x=year,y=value,group=variable),size=1)+ 

                         geom_point(data=data.plot,aes(x=year,y=value),size=3)+ 

                         facet_wrap(~variable,scales="free")+theme_bw()+ 

                         xlab("Year")+ylab("Precipitation(mm)")+ 

                         theme(legend.title = element_text(size=22,face = "italic"),legend.position="bottom")+ 

                         theme(axis.title.y=element_text(face="bold",size=22), 

                                    axis.title.x=element_text(face="bold",size=22), 

                                    text=element_text(size=22))+ 
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                        theme(axis.text.x=element_text(size=18),axis.text.y=element_text(size=18))+   

theme(legend.key.width = unit(3,"cm")) 

C57 > ggsave("Fakepath/Sample_plot.png",width=14,height=10) 

The extraction of yearly maximum precipitation as simulated by GCMs and downscaling models: 

SP and SPS3x3 is performed in commands C51, C52 and C53 respectively. Next the yearly 

maximum results are aggregated into one data-frame: “ymax.P”. Thereafter the wide-format data-

frame with 4 columns is converted into a long-format data-frame “ymax.P” with 3 columns using 

a function: “melt” from “reshape2” package. The long-format data-frame “data.plot” has three 

columns named: “year”, “variable”, and “value”. These three columns store the year values i.e. 

2014 to 2100, variable values i.e. GCM, SP, and SPS3x3, and value of precipitation maximums 

(in mm) corresponding to each combination of year and variable name. The function ggplot() 

which we are using to plot the graphs needs an input data-frame in the long-format in order to do 

the plotting. 

The data-frame “data.plot” is used to plot yearly maximum precipitation from GCMs, and SP, 

SPS3x3 downscaling models using the ggplot() function. As explained before, ggplot2 package is 

built on the grammar of graphics. It can be noted from command C56 that and data, aesthetic 

mapping, geometric object, statistical transformations, scales, coordinate system, position 

adjustments, and faceting arguments are passed along with the ggplot() function. The output 

generated from this command is shown in Figure 2. In the plot, the three panels show annual 

precipitation maximum values for GCM, SP, and SPS3x3 based precipitation projections. The 

generated plot can be saved by using the ggsave() function in C57 where among other arguments, 

the location where file needs to be saved, file-type, plot dimensions etc. are specified to save the 

plot in the system.         
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Figure 0.2 Annual precipitation maximum magnitudes (in mm) as plotted by the ggplot() 

function in R. 

 

8 Summary 

In this report we have discussed computational details of downscaling methods developed by the 

Facility for Intelligent Decision Support, Department of Civil and Environmental Engineering, 

The University of Western Ontario under the supervision of Prof. Slobodan P. Simonovic. In this 

manual, we have explained the implementation details of each method. The source code is also 

provided for each method in the Appendices to the manual.  

Issues and bug reports should can be filed to our climate repository: https://github.com/FIDS-

UWO/climate. Pull requests are also welcome to help improve or update these methods and their 

https://github.com/FIDS-UWO/climate
https://github.com/FIDS-UWO/climate
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implementations. The KNN-CAD, MEBWG and BR model were tested for ten different climate 

stations in British Columbia, Canada (Table 0.1). 

Table 0.1: Downscaling testing locations in the Campbell River basin, BC, Canada 

 

           

 

 

 

 

 

 

Station Elevation (m) Latitude (oN) Longitude (oW) 

Elk R ab Campbell Lk 270 49.85 125.8 

Eric Creek 280 49.6 125.3 

Gold R below Ucona R 10 49.7 126.1 

Heber River near Gold 

River 
215 49.82 125.98 

John Hart Substation 15 50.05 125.31 

Quinsam R at Argonaut Br 280 49.93 125.51 

Quinsam R nr Campbell R 15 50.03 125.3 

Salmon R ab Campbell Div 215 50.09 125.67 

Strathcona Dam 249 49.98 125.58 

Wolf River Upper 1490 49.68 125.74 
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Appendices 

Appendix A: Inverse Distance Interpolation Source Code 

 The Python source code for the inverse distance weighting interpolation method used in this 

manual is given below. It defines all of the relevant functions used to load the netCDF data 

(load_data), and perform the inverse distance weighting method (inv_dist). These two steps are 

combined in a single function (idw), which includes options for specifying the spatial extend, time 

bounds, alpha distance-decay parameter, and number of closest points to use for the interpolation. 

from netCDF4 import num2date, date2num 

from datetime import datetime 

import xarray as xr 

import pandas as pd 

import numpy as np 

 

 

def idw(file, varname, stations, extent=None, period=None, 

        alpha=2, k=4, **kwargs): 

    """ 

    Extract inverse distance weighting interpolated time series from netcdf 

    file for a list of stations. 

 

    Parameters 

    ---------- 

    file : str or list 

        file path to netcdf file. A list can be used to load multiple files 

        that are to be combined. 

    varname : str 

        Name of the variable in the netcdf file to be used. 

    stations : dict 

        A python dictionary containing key : value pairs, where the key is the 

        station name, and the value is a tuple containing (lat, lon) , where 

        lat is measured in degrees north and lon is measured in 0 to + 

        360 degrees from Greenwich. 

    extent : list, optional 

        A list describing the spatial domain for which the 

        interpolation will take place. This should look like 

        `[north, east, south, west]`. This can greatly reduce the amount of 

        resources required for interpolation. 

    period : tuple, optional 

        The time period for which the interpolation will take place. For 

        example, `[(1950, 1, 1), (1975, 1, 1)]')` will first extract the data 

        for this time period. Date formats must be in yyyy-mm-dd. This can also 

        greatly reduce interpolation time and RAM usage. 

    alpha : float, default 2 

        The coefficient with which to calculate the inverse distance of the 

        neighboring points of a given station. 

    k : int, default 4 

        Number of closest data points to use in the interpolation. 

 

    Returns 

    ------- 
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    result : pandas.DataFrame 

        A pandas data frame containing columns for each station with 

        interpolated data along the rows. Index labels are Year, Month, Day. 

 

    Notes 

    ----- 

    1. Ensure that the spatial extent is large enough to encapsulate all 

       stations of interest. 

    """ 

    # Load the data 

    data, lat, lon, dates = load_data(file, varname, extent, period, **kwargs) 

 

    # Convert points tuple to array 

    points = np.array(list(stations.values())) 

 

    # Do the interpolation 

    interpolated = inv_dist(data, lat, lon, points, k=k, alpha=alpha) 

 

    # Put together index and columns for output DataFrame 

    idx = pd.MultiIndex.from_tuples([(d.year, d.month, d.day) for d in dates]) 

    col = pd.MultiIndex.from_tuples([(varname, s) for s in stations]) 

 

    result = pd.DataFrame(interpolated, index=idx, columns=col) 

    result.index.names = ['Y', 'M', 'D'] 

    result.columns.names = ['Variable', 'Station'] 

 

    return result.sort_index(axis=1) 

 

 

def load_data(file, varname, extent=None, period=None, **kwargs): 

    """ 

    Loads netCDF files and extracts data given a spatial extend and time period 

    of interest. 

    """ 

    # Open either single or multi-file data set depending if list of wildcard 

    if "*" in file or isinstance(file, list): 

        ds = xr.open_mfdataset(file, decode_times=False) 

    else: 

        ds = xr.open_dataset(file, decode_times=False) 

 

    # Construct condition based on spatial extents 

    if extent: 

        n, e, s, w = extent 

        ds = ds.sel(lat=(ds.lat >= s) & (ds.lat <= n)) 

        # Account for extent crossing Greenwich 

        if w > e: 

            ds = ds.sel(lon=(ds.lon >= w) | (ds.lon <= e)) 

        else: 

            ds = ds.sel(lon=(ds.lon >= w) & (ds.lon <= e)) 

 

    # Construct condition base on time period 

    if period: 

        t1 = date2num(datetime(*period[0]), ds.time.units, ds.time.calendar) 

        t2 = date2num(datetime(*period[1]), ds.time.units, ds.time.calendar) 

        ds = ds.sel(time=(ds.time >= t1) & (ds.time <= t2)) 

 

    # Extra keyword arguments to select from additional dimensions (e.g. plev) 

    if kwargs: 

        ds = ds.sel(**kwargs) 

 

    # Load in the data to a numpy array 

    dates = num2date(ds.time, ds.time.units, ds.time.calendar) 

    arr = ds[varname].values 
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    lat = ds.lat.values 

    lon = ds.lon.values 

 

    # Convert pr units to mm/day 

    if ds[varname].units == 'kg m-2 s-1': 

        arr *= 86400 

    # Convert tas units to degK 

    elif ds[varname].units == 'K': 

        arr -= 273.15 

 

    return arr, lat, lon, dates 

 

 

def inv_dist(data, lat, lon, points, k=4, alpha=2): 

    """ 

    Inverse distance point interpolation function from grid. 

 

    Parameters 

    ---------- 

    data : ndarray 

        array of data with shape (n, m, l). 

    lat : ndarray 

        latitude array of shape (l,). 

    lon : ndarray 

        longitude array of shape (m,). 

    points : ndarray 

        array consisting of lon,lat points with shape (q, 2). 

    k : int, default 4 

        p closest points to use in inverse distance calculation. 

    alpha : float, default 2 

        coefficient with which to calculate the inverse distance of the 

        neighboring points of a given station. 

 

    Returns 

    ------- 

    result : ndarray 

        interpolated result of shape (n, q). 

    """ 

    n, m, l = data.shape 

    # Pre-allocate memory to resulting array 

    result = np.zeros((n, points.shape[0])) 

 

    # Get lon, lat grid 

    xx, yy = np.meshgrid(lon, lat) 

 

    for q, (x0, y0) in enumerate(points): 

        # Calculate distance of each grid point 

        dist = np.sqrt((xx - x0)**2 + (yy - y0)**2) 

 

        # Rank distances for each point 

        rank = np.argsort(dist, axis=None).reshape(m, l) 

 

        # Mask for k closest points 

        ma = rank > (rank.max() - k) 

 

        # Calculate weighting of each of the grid points 

        weights = dist[ma]**-alpha / np.sum(dist[ma]**-alpha) 

 

        # Get the interpolated result 

        result[:, q] = data[:, ma] @ weights 

 

    return result 
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Appendix B: Change Factor Methodology Source Code 

The Python source code for implementation of the change factor methodology used in this report 

is given here. It includes a single function to calculate the additive or multiplicative change factors 

from historical and future GCM output files. These change factors are then applied to the observed 

data file for a number of evenly spaced bins across the distribution of the given climate variable. 

import pandas as pd 

import numpy as np 

 

 

def cfm(his, fut, obs, method, bins=25): 

    """ 

    Apply change factor methodology to scale hist data using fut and 

    hist climate models. 

 

    Parameters 

    ---------- 

    his : pandas.DataFrame 

        Historical GCM data 

    fut : pandas.DataFrame 

        Future GCM data 

    obs : pandas.DataFrame 

        Observed data 

    method : int 

        A 1d numpy array containing 0's and 1's to indicate the scaling method 

        to use. 

        * 0 - Apply additive scaling 

        * 1 - Apply multiplicative scaling 

    bins : int 

        The number of bins to apply scaling separately for. 

 

    Returns 

    ------- 

    obs : pandas.DataFrame 

       A future-scaled version of the observed dataset. 

    """ 

    # Copy the data to a new DataFrame 

    obs = obs.copy() 
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    # Define the bins 

    q = np.linspace(0, 1, bins) 

    # Define scaling functions 

    scale = [lambda x, d: x + d[x.name], 

             lambda x, d: x * d[x.name]] 

 

    his_month = his.index.get_level_values(1) 

    fut_month = fut.index.get_level_values(1) 

    obs_month = obs.index.get_level_values(1) 

 

    for c in obs.columns: 

        for m in range(1, 12 + 1): 

            # Find rows corresponding to month "m" 

            ai = his_month == m 

            bi = fut_month == m 

            ci = obs_month == m 

 

            if method == 1: 

                # Account for zero precipitation 

                ai &= his[c] > 0.01 

                bi &= fut[c] > 0.01 

                ci &= obs[c] > 0.01 

 

            # Extract values for calendar month "m" and column "c" 

            Am = his.loc[ai, c] 

            Bm = fut.loc[bi, c] 

            Cm = obs.loc[ci, c] 

 

            # Calculate bins for each percentile range 

            Ab = pd.cut(Am, Am.quantile(q), labels=False, include_lowest=True) 

            Bb = pd.cut(Bm, Bm.quantile(q), labels=False, include_lowest=True) 

            Cb = pd.cut(Cm, Cm.quantile(q), labels=False, include_lowest=True) 

 

            # Group data based on bins 

            Ag = Am.groupby(Ab) 

            Bg = Bm.groupby(Bb) 

            Cg = Cm.groupby(Cb) 

 

            # Apply scaling transformation 

            if method == 0: 

                delta = Bg.mean() - Ag.mean() 

            elif method == 1: 
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                delta = Bg.mean() / Ag.mean() 

 

            obs.loc[ci, c] = Cg.transform(scale[method], delta) 

 

    return obs 
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Appendix C: KNN-CAD Source Code 

The Python source code for implementing the modified KNN-CADv4 algorithm is shown here. 

The only modification to this algorithm is in the calculation of distance for ranking the similarity 

of the current day to the L nearest neighbors. Previously, the covariance matrix for the L nearest 

neighbors was calculated, for which the first principal component was taken. The Mahalanobis 

distance was then used to compute the distance along the first principal components to rank the L 

nearest neighbors. The motive for this approach was to reduce computation time when several 

different types of climate variables were used. However, when inspecting the performance of this 

approach, it was found that using the Euclidean distance was more computationally efficient for 

any practical number of climate variables used. The synthetic climate series generated using this 

modified approach were also found to replicate the original climate statistics well with a much 

lower computational time.  

For daily maximum and minimum temperature series this is demonstrated in Figures C.1 and C.2, 

which show that the monthly variation of mean and extremes are sufficiently well reproduced. In 

addition, the block sampling routine shows very little reduction in the temporal correlation of the 

historically observed climate. With regards to precipitation, Figure C.3 shows that the monthly 

total, daily mean, wet and dry spell lengths, and extremes are adequately reproduced. 
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Figure C.1. Maximum temperature monthly climate statistics for 1950-2012 of the ELK 

meteorological station within the Campbell River Basin, British Columbia. The solid line 

represents historically observed data, while the points are from 10 synthetic climate replications 

using KNN-CAD. 

 

Figure C.2. Minimum temperature monthly climate statistics for 1950-2012 of the ELK 

meteorological station within the Campbell River Basin, British Columbia. The solid line 

represents historically observed data, while the points are from 10 synthetic climate replications 

using KNN-CAD. 
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Figure C.3. Precipitation monthly climate statistics for 1950-2012 of the ELK meteorological 

station within the Campbell River Basin, British Columbia. The solid line represents historically 

observed data, while the points are from 10 synthetic climate replications using KNN-CAD. 

Included below are the main functions used to implement this algorithm. They consist of: 

(1) knn: This is the main function to run the algorithm, and includes options to specify the 

window and block sizes, as well as the perturbation type and lambda factor, and the 

number of replications to perform. These options were discussed in Section 4. 

(2) bootstrap: This function performs the bootstrapping in order to resample the original 

climate series and generate the synthetic one. 

(3) perturb: This function is used to perturb the resampled climate series using the 

perturbation method and factor specified. It was found previously to be a computational 
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bottleneck in the code, and has been JIT compiled to machine code to increase 

performance. 

(4) lnn_algorithm: This function is used to obtain the L+1 nearest neighbor indices for each 

day of the year. The current day is remove during the resampling process to obtain the 

L nearest neighbors. 

import pandas as pd 

import numpy as np 

 

from numba import njit 

 

 

def knn(X, P, w=14, B=10, interp=0.9, runs=1): 

    """ 

    Function to run the KNN Weather Generator algorithm. Adapted from 

    King et al. (2012) to use euclidean distance for L nearest neighbor 

    selection as opposed to mahalanobis distance along 1st principal 

    component. 

 

    Parameters 

    ---------- 

    X: pandas.DataFrame 

        Input data following prescribed formatting. 

    P: 1d array 

        Assigns the perturbation type for each column in `X`.\n 

        * 0 - No perturbation 

        * 1 - Normal perturbation 

        * 2 - Log-normal perturbation 

    w: int 

        Window size for the determination of the L and K nearest neighbors. 

    B: int 

        Block size for the block boostrap resampling. 

    interp: float 

        Level of influence of perturbation to be applied. 1 represents full 

        perturbation while 0 represents no perturbation. 

    runs: int 

        The number of runs to be made with length equal to `X`. 
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    Returns 

    ------- 

    result: pandas.DataFrame 

        `result` is returned as a DataFrame with the same number of columns as 

        `X` and length equal to `runs` multiplied by that of `X`. 

 

    """ 

    # Standardize columns of input data 

    Xn = (X - X.mean()) / X.std() 

    # Group columns of like variables 

    Xt = Xn.groupby(level=0, axis=1).mean() 

    # Get year, month, and day from index 

    year, mon, day = np.array(list(zip(*X.index.values)), dtype=np.uint32) 

 

    if mon[0] != 1 or day[0] != 1 or mon[-1] != 12 or day[-1] != 31: 

        raise ValueError("Data must start at Jan 1 and end at Dec 31") 

 

    # Get day of year for all days 

    doy = day_of_year(mon, day) 

    # Apply block bootstrap to input data for all runs 

    result = [] 

    for r in range(runs): 

        # Get the bootstrapped values into a dataframe 

        values = bootstrap(X.values, Xt.values, P, doy, w, B, interp) 

        # Construct dataframe 

        df = pd.DataFrame(values, X.index, Xn.columns) 

        # Append dataframe to results list 

        result.append(df) 

 

    if len(result) > 1: 

        return pd.concat(result, 

                         axis=0, 

                         keys=list(range(runs)), 

                         names=['Run', 'Year', 'Month', 'Day']) 

    else: 

        return result[0] 

 

 

def bootstrap(X, Xt, P, doy, w, B, interp): 

    n, m = X.shape 

    # Pre-allocate results array 

    Xsim = np.zeros((n, m)) 
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    # Determine K 

    N = np.sum(doy == doy[0]) 

    L = N * (w + 1) - 1 

    K = int(round(np.sqrt(L))) 

 

    # Get L nearest neighbors indices for each day of the year 

    lp1nn_idx = lnn_algorithm(doy, w, L) 

 

    # Generate cumulative probability distribution 

    pn = (np.ones(K) / np.arange(1, K + 1)).cumsum() 

    pn /= pn.max() 

 

    # Random selection of the first day 

    day1_idx, = np.where(doy == doy[0]) 

 

    start = np.random.choice(day1_idx) 

 

    Xsim[:B] = X[start: start+B] 

 

    # Loop through each block of size B 

    for i in range(B, n, B): 

        # Randomly select the day before or after leap day 

        if doy[i] < 0: 

            t = i + np.random.choice([-1, 1]) 

        else: 

            t = i 

 

        # Get L + 1 nearest neighbors for current day of the year 

        lp1nn_t = lp1nn_idx[doy[t]] 

 

        # Remove current day from L + 1 nearest neighbor indices 

        lnn_idx = lp1nn_t[lp1nn_t != t] 

 

        # Get euclidean distance of current day from L nearest neighbours 

        dist = np.linalg.norm(Xt[lnn_idx] - Xt[t], axis=1) 

 

        # Take the K nearest neighbours 

        knn_idx = lnn_idx[dist.argsort()][:K] 

 

        # Randomly draw K nearest neighbor from distribution 

        nn = (abs(pn - np.random.rand())).argmin() 
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        # Set starting index of sampled block 

        j = knn_idx[nn] 

 

        # Adjust block size if at end of input series 

        B = n - i if i + B > n else B 

        # Adjust selected block if at end of series 

        j = n - B if j + B > n else j 

 

        # Obtain K and L nearest neighbors for non-spatially averaged data 

        X_knn = X[knn_idx] 

        X_lnn = X[lnn_idx] 

 

        # Apply perturbation for each day in block for each variable 

        Xsim[i: i+B] = perturb(X[j: j+B].copy(), X_knn, X_lnn, P, interp) 

 

    return Xsim 

 

 

@njit 

def perturb(A, knn, lnn, P, interp): 

    n, m = A.shape 

    # Go through each day in block 

    for i in range(n): 

        z = np.random.randn() 

        # Go through each variable in day 

        for j in range(m): 

            # Calculate random variate 

            if P[j] == 0: 

                continue 

            elif P[j] == 1: 

                std_knn = np.sqrt(var_i(knn, j)) 

                z_j = np.random.normal(A[i, j], std_knn) 

            else: 

                if A[i, j] < 0.001: 

                    continue 

                else: 

                    var_lnn = var_i_nonzero(lnn, j) 

                    bm = np.sqrt(np.log10(var_lnn / A[i, j] + 1)) 

                    am = np.log10(A[i, j]) - 0.5 * bm 

                    z_j = np.exp(am + bm * z) 

            # Apply perturbation 
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            A[i, j] = interp * A[i, j] + (1 - interp) * z_j 

 

    return A 

 

 

def lnn_algorithm(doy, w, L): 

    """ 

    Function to obtain the indices of the L+1 (includes current day) nearest 

    neighbors given the day of year, window size, and value of L. 

 

    Parameters 

    ---------- 

    doy : ndarray 

        An array consisting of the day of year for all data points. February 

        29th should be marked as a negative number as it will not be considered 

        for the L nearest neighbors. 

    w : int 

        Window size for number of days surrounding current day in the L nearest 

        neighbors. This should be an even number. 

    L : int 

        The value of L. Calculated from L = N * (w + 1) - 1 where N is the 

        number of years in the historical data. 

 

    Returns 

    ------- 

    lnnp1 : ndarray 

        Output of shape (365, L + 1) corresponds to the indices of the L + 1 

        nearest neighbors for each day of the year. 

    """ 

 

    lnnp1 = np.zeros((365, L + 1), dtype=np.uint32) 

 

    for i in range(365): 

        # Set left and right bounds for window day of year (DOY) 

        w_l = i - w // 2 

        w_r = i + w // 2 

 

        # Adjust bounds for DOY less than 0 and greater than 364 

        if w_l < 0: 

            w_l += 365 

        if w_r > 364: 

            w_r -= 365 



68 

 

 

        # Obtain indices of days falling within window for current DOY 

        if (w_r - w_l) != w: 

            lnnp1[i], = np.where(((w_l <= doy) | (w_r >= doy)) & (doy >= 0)) 

        else: 

            lnnp1[i], = np.where((w_l <= doy) & (w_r >= doy)) 

 

    return lnnp1 

 

 

@njit 

def day_of_year(mon, day): 

    doy = np.zeros(day.size, dtype=np.int32) 

    count = 0 

    for i, d in enumerate(day): 

        if mon[i] == 2 and day[i] == 29: 

            doy[i] = -1 

        else: 

            doy[i] = count % 365 

            count += 1 

 

    return doy 

 

 

@njit 

def var_i(arr, j): 

    n = arr.shape[0] 

    sum_i = 0 

    for i in range(n): 

        sum_i += arr[i, j] 

    mean_i = sum_i / n 

    var = 0 

    for i in range(n): 

        var += (arr[i, j] - mean_i) ** 2 

 

    return var 

 

 

@njit 

def var_i_nonzero(arr, j): 

    n = arr.shape[0] 

    sum_i = 0 
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    for i in range(n): 

        if arr[i, j] >= 0.001: 

            sum_i += arr[i, j] 

    mean_i = sum_i / n 

    var = 0 

    for i in range(n): 

        if arr[i, j] >= 0.001: 

            var += (arr[i, j] - mean_i) ** 2 

 

    return var 
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Appendix D : MEBWG Source code 

MBE_input.m  

 
% PROGRAM TO GENERATE MULTI-VARIATE MULTI-SITE WEATHER DATA 
% ROSHAN K SRIVASTAVA 
% CREATED ON: JULY 25, 2013 
% Modified By: SOHOM MANDAL 
% Modification Date: March 1, 2017 

  
clear all 
close all 
clc 
% Number of Replicates: User specific; Use a Positive interger 
prompt = {'Please provide number of replicates (should be an integer):'}; 
dlg_title = 'Input'; 
num_lines = 1; 
defaultans = {'2'}; 
answer =(inputdlg(prompt,dlg_title,num_lines,defaultans)); 
numrep = str2num(answer{:});  
if isnan(numrep) || fix(numrep) ~= numrep 
  disp('Please enter a positive integer ') 
end 
disp('Code is running! Please wait'); 
%File name reading 
z=dir('*pr*.csv'); % Reading precipitation files name 
z1=dir('*tasmax*.csv'); %  Reading maximum temperature files name  
z2=dir('*tasmin*.csv'); % Reading minimum temperature files name 
% Working through the files 
for j=1:length(z) 
%     h = waitbar(length(z),'Downsacling'); 
    varname_pr=z(j).name;  
    varname_tmax=z1(j).name;  
    varname_tmin=z2(j).name;  
    expression = ('\_'); 
    splitStr_pr=regexp(varname_pr,expression,'split'); % split the Pr files 

name using '_' as regular expression 
    splitStr_tmax=regexp(varname_tmax,expression,'split'); % split the Tmax 

files name using '_' as regular expression 
    splitStr_tmin=regexp(varname_tmin,expression,'split'); % split the Tmin 

files name using '_' as regular expression 
    

m1=strcmp(strcat(splitStr_pr(5),splitStr_pr(6),splitStr_pr(7)),strcat(splitSt

r_tmax(5),splitStr_tmax(6),splitStr_tmax(7))); 
    

m2=strcmp(strcat(splitStr_tmax(5),splitStr_tmax(6),splitStr_tmax(7)),strcat(s

plitStr_tmin(5),splitStr_tmin(6),splitStr_tmin(7))); 
    if m1==1 && m2==1 % Compare files name 

  
% LOAD YOUR INPUT FILES 
% Each file contains data for a particular weather variable 
% NOTE: Rows and Colums represent time and stations respectively 
    [ppt header1]=xlsread(z(j).name); %Read Precipitation data 
    tmax=csvread(z1(j).name,1,3); %Read Maximum temperature data 
    tmin=csvread(z2(j).name,1,3); %Read Minimum temperature data 
    [r,c] = size(ppt); 
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    % Modify this depending on the number of variables added 
    data_all = [ppt(:,4:end)+0.1 tmax+273.15 tmin+273.15]; 

      
    % DO NOT MODIFY ANY THING FROM HERE IF YOU ARE NOT SURE 
    date=repmat(ppt(:,1:3),numrep,1); 
    numobs = length(data_all); 
    [m1,n1] = size(data_all); 
    [data_all_std,data_all_mu,data_all_sig] = zscore(data_all); 
    [loadings, scores, variances, tscores] = princomp(data_all_std); 
    rand('state',0); 
    cm = 1; 
    [sc_fit,debug] = MBE_RKS(scores(:,cm),numrep,[],[],1,1); 
    scores_fit = scores; 
    loadings_fit = loadings; 
    sds = data_all_sig; 
    means=data_all_mu; 
    c1 =[]; 
    for i = 1:numrep 
        scores_fit(:,cm) = sc_fit(:,i); 
        b1 = loadings_fit*scores_fit'; 
        d1 = (b1' .*  repmat(sds,numobs,1) + repmat(means,numobs,1)); 
        d1(d1(:,1:22)<0)=0; 
        c1 = [c1;d1]; 
        d1=[];b1=[]; 
    end 
    % WRITE OUTPUT FILE 
    newname=strcat('MBE','_',splitStr_pr(3),'_', 

splitStr_pr(5),'_',splitStr_pr(6)); % Create output file name; User can 

modify  
    c1=[date c1(:,1:10) c1(:,11:end)-273.15]; 
    %Pr= Precipitation; Tasmax=Maximum Temperature;  
    %Tasmin=Minimum Temperature; Header will look like:  "Pr_(Station Name)" 
    

mod_header=horzcat(header1(:,1:3),strcat('Pr_',header1(:,4:end)),strcat('Tasm

ax_',header1(:,4:end)),strcat('Tasmin_',header1(:,4:end))); % Change the 

header if more than three variables are used  
    filename= cell2mat(strcat(newname, '.csv')); 
    csvwrite_with_headers(filename,c1, mod_header);% Writes the output file 

into csv format 
    else  
        h=fprintf(2,'Error: GCM files are not matching!!\n'); % Error message 

for not matching the GCMs file 
    end 

     
end 
 if h==36 
     msgbox('Downscaling is not Completed'); % message box for not complete 

the work  
 else 
     msgbox('Downscaling Completed'); % message box for not complete the work  
 end 
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MBE_RKS.m 

function [synth,t3]  = MBE_RKS(a1,numrep,dummy1,dummy2,dummy3,dummy4) 
% MEB Beta 
% ROSHAN 
% CREATED ON: JULY 21, 2013 

  
% clear all 
% clc 
% close all 
%  
% load APPLE.dat 
% data = sum(APPLE,2); 
% a = [[1:length(data)]' data]; 
%a =[1 2 3 4 5; 4 12 36 20 8]'; 
% rand('state',99) 
dummy  =  dummy1; 
dummyx =  dummy2; 

  
a = [[1:length(a1)]' a1]; 
[y,i1] = sort(a); 
aa = [i1(:,2) y(:,2)]; 
t2 =[a aa]; 
aa1 = (aa(1:end-1,2)+aa(2:end,2))/2; 
aa2 = mean(abs(a(2:end,2)-a(1:end-1,2))); 
int_mid_points = [aa(1,2)-aa2; aa1; aa(end,2)+aa2]; 
dmean = zeros(length(a),1); 
for i = 1:length(a) 
    if i==1, dmean(i,1) = 0.75* aa(i,2) + 0.25*aa(i+1,2); 
    elseif i==length(a), dmean(i,1) = 0.25* aa(i-1,2) + 0.75*aa(i,2); 
    else dmean(i,1) = 0.25* aa(i-1,2) + 0.5*aa(i,2)+0.25* aa(i+1,2); 
    end 
end 
t3 =[t2 dmean]; 
% figure 
% plot(int_mid_points,'o-') 

  
interval = zeros(length(a),1); 
density = zeros(length(a),1); 
for i = 1:length(a) 
    interval(i,1)= abs(int_mid_points(i+1,1)-int_mid_points(i,1)); 
    density(i,1) = 1/(abs(int_mid_points(i+1,1)-

int_mid_points(i,1))*length(a)); 
end 
interval_den = [interval density]; 

  
denp=[]; 
for i = 1:length(aa) 
    denp =[denp; int_mid_points(i,1) density(i,1);int_mid_points(i+1,1) 

density(i,1)]; 
end 
% figure 
% plot(denp(:,1),denp(:,2)) 

  
cum_den = [0; cumsum(prod(interval_den,2))]; 
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% figure 

  
imp_points = [cum_den int_mid_points]; 

  
% numrep = 999; 
synth = []; 
for k=1:numrep 
    uni_draw = sort(rand(length(a),1)); 
    %uni_draw = sort([0.12 0.83 0.53 0.59 0.11])'; 

  
    inp_data = zeros(length(a),1); 
    for i = 1:length(a) 
        check = 1; 
        j=1; 
        while j<=length(a) 
            if uni_draw(i,1)>=cum_den(j,1) && uni_draw(i,1)<=cum_den(j+1,1) 
                checkp = j; 
                check =0; 
            else 
                check = 1; 
            end 
            if check == 0, break, end; 
            j=j+1; 
        end 
        aa = int_mid_points(checkp,1); 
        bb = int_mid_points(checkp+1,1); 
        x1 = cum_den(checkp,1); 
        x2 = cum_den(checkp+1,1); 

  
        inp_data(i,1) = aa + ((uni_draw(i,1)-x1)*(bb-aa)/(x2-x1)); 
    end 
    rep = zeros(length(a),1); 
    for i=1:length(a) 
        rep(i1(i,2),1)= inp_data(i,1); 
    end 
    synth = [synth rep]; 
end 
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csvwrite_with_headers.m 

% This function functions like the build in MATLAB function csvwrite but 
% allows a row of headers to be easily inserted 
% 
% known limitations 
%   The same limitation that apply to the data structure that exist with  
%   csvwrite apply in this function, notably: 
%       m must not be a cell array 
% 
% Inputs 
%    
%   filename    - Output filename 
%   m           - array of data 
%   headers     - a cell array of strings containing the column headers.  
%                 The length must be the same as the number of columns in m. 
%   r           - row offset of the data (optional parameter) 
%   c           - column offset of the data (optional parameter) 
% 
% 
% Outputs 
%   None 
function csvwrite_with_headers(filename,m,headers,r,c) 

  
%% initial checks on the inputs 
if ~ischar(filename) 
    error('FILENAME must be a string'); 
end 

  
% the r and c inputs are optional and need to be filled in if they are 
% missing 
if nargin < 4 
    r = 0; 
end 
if nargin < 5 
    c = 0; 
end 

  
if ~iscellstr(headers) 
    error('Header must be cell array of strings') 
end 

  

  
if length(headers) ~= size(m,2) 
    error('number of header entries must match the number of columns in the 

data') 
end 

  
%% write the header string to the file 

  
%turn the headers into a single comma seperated string if it is a cell 
%array,  
header_string = headers{1}; 
for i = 2:length(headers) 
    header_string = [header_string,',',headers{i}]; 
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end 
%if the data has an offset shifting it right then blank commas must 
%be inserted to match 
if r>0 
    for i=1:r 
        header_string = [',',header_string]; 
    end 
end 

  
%write the string to a file 
fid = fopen(filename,'w'); 
fprintf(fid,'%s\r\n',header_string); 
fclose(fid); 

  
%% write the append the data to the file 

  
% 
% Call dlmwrite with a comma as the delimiter 
% 
dlmwrite(filename, m,'-append','delimiter',',','roffset', r,'coffset',c); 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

Appendix E: Source Code for Beta Regression (BR) Based 

Downscaling Method 

Input BR.m 

% PROGRAM TO GENERATE MULTI-SITE PRECIPITATION DATA USING BETA REGRESSION 
% SOHOM MANDAL 
% CREATED ON: MARCH 05, 2017 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Run Beta Regression with GCM historical data predictors%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Run this file Beta regression 
clc 
clear 
% Number of Replicates: User specific; Use a Positive interger 
prompt = {'Starting Year e.g. 1984 (Historical):','Ending Year e.g. 2000 

(Historical):','Starting Year e.g. 2040 (Future):', 'Ending Year e.g. 2050 

(Future):'}; 
dlg_title = 'Input: Timeframe'; 
num_lines = 1; 
defaultans = {'1976','2005','2045','2055'}; 
answer =(inputdlg(prompt,dlg_title,num_lines,defaultans)); 
Histstart_time = str2num(answer{1}); 
Histend_time=str2num(answer{2}); 
Futstart_time = str2num(answer{3}); 
Futend_time=str2num(answer{4}); 

  
Pr_Obs = uigetfile({'*.csv'},'Pick a Observed Historical Precipitation 

File'); 
fprintf(1,'Reading the data!!\n') 
y=xlsread(Pr_Obs); 
GCM_Hist = uigetfile({'*.csv'},'GCM Predictor Variables (Historical)'); 
fprintf(1,'Reading the data!!\n') 
x=xlsread(GCM_Hist); 
GCM_Fut = uigetfile({'*.csv'},'GCM Predictor Variables (Future)'); 
fprintf(1,'Reading the data!!\n') 
z=xlsread(GCM_Fut); 
disp('Code is running! Please wait'); 
expression = ('\_'); 
splitStr1=regexp(GCM_Hist,expression,'split'); 
splitStr=regexp(GCM_Fut,expression,'split'); 
tf = strcmp(splitStr1(3),splitStr(3)); 
if tf==1; % Compare files name; making sure same GCMs data are using 
    y(y(:,2)==2 & y(:,3)==29,:)=[]; % Remove the leap year date 
    y=y((Histstart_time<=y(:,1) & y(:,1)<=Histend_time), :); % Slicing the 

data set according to input dataframe 
    x(x(:,2)==2 & x(:,3)==29,:)=[]; % Remove the leap year date 
    x=x((Histstart_time<=x(:,1) & x(:,1)<=Histend_time), :); % Slicing the 

data set according to input dataframe 
    z(z(:,2)==2 & z(:,3)==29,:)=[]; % Remove the leap year date 
    z=z((Futstart_time<=z(:,1) & z(:,1)<=Futend_time), :); % Slicing the data 

set according to input dataframe 
    Simulated_Precipitation=Beta_Regression(x,y,z); % Calling the beta 

regression and running files 
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   %## WRITE OUTPUT FILES 
 

filename=num2str(cell2mat(strcat('BR','_',splitStr(3),'_',splitStr(4),'_',spl

itStr(5),'_',splitStr(6)))); 
 col_header={'Year', 'Month', 'Day', 

'ELK','ERC','GLD','HEB','JHT','QIN','QSM','SAM','SCA','WOL'}; 
 xlswrite(filename,Simulated_Precipitation,'Sheet1','A2');     %Write data 
 xlswrite(filename,col_header,'Sheet1','A1');     %Write column header 
h = msgbox('Downscaling Completed'); % message box for complete the work  
else 
    fprintf(2,'Error: GCM files are not matching!!\n') 
end 
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Beta_Regression.m 

 
function [Simulated_Precipitation] = Beta_Regression(x,y,z) 
% THIS CODE IS FOR CART AND PCA 
%x=Training period Predictor Variables e.g. tasmax, tasmin,psl,mslp,ua,va 
%y=Training period Predictand Variable e.g. Precipitation 
%z=Testing period Predictor Variables (data points where regression value 
%will be calculated)   
% Length of Tranning predictor data and predictand should be same 
if length(x)~=length(y); 
    disp('Input Matrix length should be same for Predictor and Predictand ') 
end 

  
% Matrix dimension should be same for training period and testing period 

predictors 
if size(x,2)~=size(z,2) 
    disp('Training and Testing period predictors dimension is not same') 
end 

  
Traning_Predictor=x(:,4:end); 
Tranning_Predictand=y(:,4:end); 
Testing_Predictor=z(:,4:end);   
Testing_Predictor_Date=z(:,1:3); 
% Kmeans clustering for rainfall state 
rand('state',0); 
% Three clusters has taken for clustering, do cluster validation before 
% choose the no of clusters 
k=3; 
[IDX,C,sumd,D]= kmeans(Tranning_Predictand,k); % IDX is the rainfall state 

for observed data 

  
% Normaization of the Predictor variable (1960-1990) 
[Z,mu,sigma] = zscore(Traning_Predictor); 
%PCA  
[pc,score1,latent1] = princomp(Z); 
Var=(cumsum((latent1)./sum(latent1))*100); 
% Find the variance which is less or equal to 98% 
Ln_var_explained=length(find(Var<=98)); 
%Buliding classification Tree 
T=classregtree(score1(2:end,1:Ln_var_explained),IDX(1:end-1,:)); 
%sub_mean_data=bsxfun(@minus, Testing_Predictor, mu); % substraction from 

mean 
%Testing_Predictor=bsxfun(@rdivide,sub_mean_data,sigma);% %Standarization 

future predictor data 
Temp_val=zscore(Testing_Predictor)*pc; 
Rain_state_Prediction_Traning_Period=T(Temp_val(:,1:Ln_var_explained)); 

  
% Vector Space of observed data pr on the basis of rainfall state tranning 
% period 
Observed_data_pr_Rainfall_state=[Tranning_Predictand IDX]; 
observed_pr_data_state_1=(Observed_data_pr_Rainfall_state(Observed_data_pr_Ra

infall_state(:,end)==1, 1:end-1)); 
% Scaling the data in range (0,1) 
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Pr_tranning_1=bsxfun(@times,(bsxfun(@minus, observed_pr_data_state_1, 

min(observed_pr_data_state_1))), (1./(max(observed_pr_data_state_1)-

min(observed_pr_data_state_1)))); 
Tranning_Predictand_state1=((Pr_tranning_1*(length(Pr_tranning_1)-

1))+0.5)/length(Pr_tranning_1); 
observed_pr_data_state_2=(Observed_data_pr_Rainfall_state(Observed_data_pr_Ra

infall_state(:,end)==2, 1:end-1)); 
% Scaling the data in range (0,1) 
Pr_tranning_2=bsxfun(@times,(bsxfun(@minus, observed_pr_data_state_2, 

min(observed_pr_data_state_2))), (1./(max(observed_pr_data_state_2)-

min(observed_pr_data_state_2)))); 
Tranning_Predictand_state2=((Pr_tranning_2*(length(Pr_tranning_2)-

1))+0.5)/length(Pr_tranning_2); 

  
observed_pr_data_state_3=(Observed_data_pr_Rainfall_state(Observed_data_pr_Ra

infall_state(:,end)==3, 1:end-1)); 
% Scaling the data in range (0,1) 
Pr_tranning_3=bsxfun(@times,(bsxfun(@minus, observed_pr_data_state_3, 

min(observed_pr_data_state_3))), (1./(max(observed_pr_data_state_3)-

min(observed_pr_data_state_3)))); 
Tranning_Predictand_state3=((Pr_tranning_3*(length(Pr_tranning_3)-

1))+0.5)/length(Pr_tranning_3); 

  
%Vector Space of observed data predictor(Temp) on the basis of rainfall 
%state tranning period 
Observed_data_predictor_Rainfall_state=[score1(:,1:Ln_var_explained) IDX]; 
Observed_predictor_data_state_1=(Observed_data_predictor_Rainfall_state(Obser

ved_data_predictor_Rainfall_state(:,end)==1, 1:end-1)); 
Observed_predictor_data_state_2=(Observed_data_predictor_Rainfall_state(Obser

ved_data_predictor_Rainfall_state(:,end)==2, 1:end-1)); 
Observed_predictor_data_state_3=(Observed_data_predictor_Rainfall_state(Obser

ved_data_predictor_Rainfall_state(:,end)==3, 1:end-1)); 
%Vector Space of testing data(Predictor:Temp)on the basis of rainfall state 
Testdata_predictor_Rainfall_state=[Testing_Predictor_Date 

Temp_val(:,1:Ln_var_explained) Rain_state_Prediction_Traning_Period]; 
Testdata_state_1= 

Testdata_predictor_Rainfall_state(Testdata_predictor_Rainfall_state(:,end)==1

, 1:end-1); 
Testdata_state_2= 

Testdata_predictor_Rainfall_state(1<Testdata_predictor_Rainfall_state(:,end) 

& Testdata_predictor_Rainfall_state(:,end)<=2, 1:end-1); 
Testdata_state_3= 

Testdata_predictor_Rainfall_state(Testdata_predictor_Rainfall_state(:,end)>2, 

1:end-1); 

  
for i=1:10 
 %Bulid regression for state I 
mX1=[ones(length(Observed_predictor_data_state_1),1) 

Observed_predictor_data_state_1]; 
vy1=Tranning_Predictand_state1(:,i); 
vP1=betareg_main(vy1,mX1); 
%Bulid regression for state II 
mX2=[ones(length(Observed_predictor_data_state_2),1) 

Observed_predictor_data_state_2]; 
vy2=Tranning_Predictand_state2(:,i); 
vP2=betareg_main(vy2,mX2); 
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%Bulid regression for state III 
mX3=[ones(length(Observed_predictor_data_state_3),1) 

Observed_predictor_data_state_3]; 
vy3=Tranning_Predictand_state3(:,i); 
vP3=betareg_main(vy3,mX3); 
% Calculate the precipitation for Testing period or Validation period 
Predicted_Rain_State1=[ones(length(Testdata_state_1),1) 

Testdata_state_1(:,4:end)]*vP1(2:end); 
Predicted_Rain_State2=[ones(length(Testdata_state_2),1) 

Testdata_state_2(:,4:end)]*vP2(2:end); 
Predicted_Rain_State3=[ones(length(Testdata_state_3),1) 

Testdata_state_3(:,4:end)]*vP3(2:end); 

  
Rain(:,i)=[Predicted_Rain_State1;Predicted_Rain_State2;Predicted_Rain_State3]

; 
Rain(Rain<0)=0; 
end 
% Arrange the Date for Validation or Testing period 
Date=[datenum(Testdata_state_1(:,1:3));datenum(Testdata_state_2(:,1:3));daten

um(Testdata_state_3(:,1:3))]; 
%combine the data (simulated precipiation with date) 
Predcited_Precipitation=[Date Rain]; 
%sort the data based date 
Precipitation=sortrows(Predcited_Precipitation,1); 
% Final bind of simulated precipitation data with time  
Simulated_Precipitation=[Testing_Predictor_Date Precipitation(:,2:end)]; 
end 
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betareg_main.m 
 

%IF YOU NOT SURE PLEASE DON'T CHNAGE ANYTHING HERE 
function [vP, muhat]= betareg(vy, mX) 
format short g; 
n = length(vy); 
p = size(mX,2); 

  
if(max(vy) >= 1 || min(vy) <= 0)  
    error(sprintf('\n\nERROR: DATA OUT OF RANGE (0,1)!\n\n'));  
end 

  
if(p >= n)  
     error(sprintf('\n\nERROR: NUMBER OF COVARIATES CANNOT EXCEED NUMBER OF 

OBSERVATIONS!\n\n')); 
end 

  
ynew = log( vy ./ (1-vy) ); 

  

  
if(p > 1)  
     betaols = (mX \ ynew);  
elseif(p==1)  
     betaols = (mean(ynew)); 
end 

  
olsfittednew = mX*betaols;  

  
olsfitted = exp(olsfittednew) ./ (1 + exp(olsfittednew));  
olserrorvar = sum((ynew-olsfittednew).^2)/(n-p);  

  
ybar = mean(vy);  
yvar = var(vy);    

  
% starting values 
vps = [betaols;(mean(((olsfitted .* (1-olsfitted))./olserrorvar)-1))]; 
options = optimset('Display','off'); 
vP = fminsearch(@(vP) betalik(vP, mX, vy), abs(vps),options); 
% k_OptimOptions = optimset('Display','off'); 
etahat = mX*vP(1:p);  
muhat = exp(etahat ) ./ (1+exp(etahat));  
phihat = vP(p+1);  
end 

 

 

 

 

 



82 

 

betalik.m 

 
function y = betalik(vP, mX, vy) 
k = length(vP); 
eta = mX*vP(1:k-1);  
mu = exp(eta) ./ (1+exp(eta));  

  
phi = vP(k); 
y = -sum( gammaln(phi) - gammaln(mu*phi)- gammaln(abs(1-mu)*phi) + ((mu*phi-

1) .* log(vy)) + ( (1-mu)*phi-1 ) .* log(1-vy) ); 
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Appendix F: List of Previous Reports in the Series 

 

ISSN: (Print) 1913-3200; (online) 1913-3219 

In addition to 78 previous reports (No. 01 – No. 78) prior to 2012 

 

Samiran Das and Slobodan P. Simonovic (2012). Assessment of Uncertainty in Flood Flows 

under Climate Change. Water Resources Research Report no. 079, Facility for Intelligent 

Decision Support, Department of Civil and Environmental Engineering, London, Ontario, 

Canada, 67 pages. ISBN: (print) 978-0-7714-2960-6; (online) 978-0-7714-2961-3. 

 

Rubaiya Sarwar, Sarah E. Irwin, Leanna King and Slobodan P. Simonovic (2012). Assessment of 

Climatic Vulnerability in the Upper Thames River basin: Downscaling with SDSM. Water 

Resources Research Report no. 080, Facility for Intelligent Decision Support, Department of 

Civil and Environmental Engineering, London, Ontario, Canada, 65 pages. ISBN: (print) 978-0-

7714-2962-0; (online) 978-0-7714-2963-7. 

 

Sarah E. Irwin, Rubaiya Sarwar, Leanna King and Slobodan P. Simonovic (2012). Assessment of 

Climatic Vulnerability in the Upper Thames River basin: Downscaling with LARS-WG. Water 

Resources Research Report no. 081, Facility for Intelligent Decision Support, Department of 

Civil and Environmental Engineering, London, Ontario, Canada, 80 pages. ISBN: (print) 978-0-

7714-2964-4; (online) 978-0-7714-2965-1. 

 

Samiran Das and Slobodan P. Simonovic (2012). Guidelines for Flood Frequency Estimation 

under Climate Change. Water Resources Research Report no. 082, Facility for Intelligent 

Decision Support, Department of Civil and Environmental Engineering, London, Ontario, 

Canada, 44 pages. ISBN: (print) 978-0-7714-2973-6; (online) 978-0-7714-2974-3. 

 

Angela Peck and Slobodan P. Simonovic (2013). Coastal Cities at Risk (CCaR): Generic System 

Dynamics Simulation Models for Use with City Resilience Simulator. Water Resources Research 

Report no. 083, Facility for Intelligent Decision Support, Department of Civil and Environmental 
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Engineering, London, Ontario, Canada, 55 pages. ISBN: (print) 978-0-7714-3024-4; (online) 

978-0-7714-3025-1. 

 

Roshan Srivastav and Slobodan P. Simonovic (2014). Generic Framework for Computation of 

Spatial Dynamic Resilience. Water Resources Research Report no. 085, Facility for Intelligent 

Decision Support, Department of Civil and Environmental Engineering, London, Ontario, 

Canada, 81 pages. ISBN: (print) 978-0-7714-3067-1; (online) 978-0-7714-3068-8. 

 

Angela Peck and Slobodan P. Simonovic (2014). Coupling System Dynamics with Geographic 

Information Systems: CCaR Project Report. Water Resources Research Report no. 086, Facility 

for Intelligent Decision Support, Department of Civil and Environmental Engineering, London, 

Ontario, Canada, 60 pages. ISBN: (print) 978-0-7714-3069-5; (online) 978-0-7714-3070-1. 

 

Sarah Irwin, Roshan Srivastav and Slobodan P. Simonovic (2014). Instruction for Watershed 

Delineation in an ArcGIS Environment for Regionalization Studies.Water Resources Research 

Report no. 087, Facility for Intelligent Decision Support, Department of Civil and Environmental 

Engineering, London, Ontario, Canada, 45 pages. ISBN: (print) 978-0-7714-3071-8; (online) 

978-0-7714-3072-5. 

 

Andre Schardong, Roshan K. Srivastav and Slobodan P. Simonovic (2014). Computerized Tool 

for the Development of Intensity-Duration-Frequency Curves under a Changing Climate: Users 

Manual v.1.  Water Resources Research Report no. 088, Facility for Intelligent Decision 

Support, Department of Civil and Environmental Engineering, London, Ontario, Canada, 68 

pages. ISBN: (print) 978-0-7714-3085-5; (online) 978-0-7714-3086-2. 

 

Roshan K. Srivastav, Andre Schardong and Slobodan P. Simonovic (2014). Computerized Tool 

for the Development of Intensity-Duration-Frequency Curves under a Changing Climate: 

Technical Manual v.1.  Water Resources Research Report no. 089, Facility for Intelligent 
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Canada, 62 pages. ISBN: (print) 978-0-7714-3087-9; (online) 978-0-7714-3088-6. 
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