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EXECUTIVE SUMMARY 

 

This report introduces a tool for the delineation of precipitation regions known as Cluster-FCM. 

The tool employs the fuzzy c-means clustering algorithm and the L-moment regional 

heterogeneity test to form and validate the regions. The user is able to select from several 

subjective input parameters including: (i) the number of regions to which the sites are assigned; 

(ii) the site attributes and (iii) the temporal resolution of the precipitation data so that the outputs 

are best suited to the problem under investigation. The document explains the methodology used 

to develop the model. It also provides instructions for installing and operating the tool and 

presents sample outputs.  The formation of homogeneous precipitation regions is an important 

component of the regional frequency analysis procedure that is used to obtain reliable estimates 

of local precipitation events for applications in water resources engineering.  
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1. INTRODUCTION 

1.1 General 

 

Water resources engineers are responsible for developing plans, designs and operational 

procedures to manage uncertain hydrologic/precipitation events while balancing the needs of the 

natural and socio-economic environments. Precipitation is considered to be a random event and 

therefore, its occurrence is estimated using probabilistic (stochastic) methods. The accepted 

stochastic approach to estimating precipitation magnitudes is known as frequency analysis. 

Frequency analysis involves fitting a statistical probability distribution to the local precipitation 

record for a given duration. Precipitation estimates are extracted from the distribution and used 

in a variety of applications including the derivation of climate design values for water 

infrastructure design, the development of downscaling and forecasting models and the generation 

of input to hydrologic models, among others. It is important to obtain reliable estimates of the 

local precipitation to achieve social, environmental and economic objectives (overestimations 

can be costly and underestimations can lead to the failure of water infrastructure that can 

devastate the natural and built environments).  

In the field of water resources engineering, plans and structures are designed to accommodate 

precipitation events that correspond to a certain return period. The return period is defined as the 

average number of years between precipitation events of a certain magnitude. For example, 

highway roads and related infrastructure are designed for return periods of 25 to 100 years. 

Bridge piers can be designed for return periods up to 500 years; meaning that they must be 

designed to accommodate rare, extreme precipitation events that have a probability of 

exceedance of 1 in 500 years. A major limitation of the traditional approach to frequency 
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analysis is the lack of complete, sufficiently long precipitation records in Canada and around the 

world. Frequency distributions that are derived from records that are shorter than the return 

period required for design are unable to capture the true statistics of the local precipitation; 

therefore leading to deficient designs. To address this issue the regional frequency analysis 

(RFA) approach can be employed. RFA involves the combination of data from several sites that 

exhibit similar precipitation statistics into a single frequency distribution from which 

precipitation occurrence is more reliably estimated. RFA follows the identical distribution 

assumption that is also known as the rule of homogeneity; the at-site precipitation records must 

fit to approximately the same frequency distributions. To achieve spatial homogeneity, sites with 

statistically similar records can be grouped into precipitation regions in a process called 

regionalization; thus introducing the fundamental topic of the presented work.  

The regionalization procedure involves the employment of a tool to partition the climate sites of 

a study area into homogeneous precipitation regions according to the similarity of their site 

attributes. Similarity is measured using correlation coefficients or distance metrics and attributes 

are typically the drivers of the local precipitation including atmospheric variables, location and 

topographic parameters. The resultant precipitation regions are subsequently validated for spatial 

homogeneity. Formations of precipitation regions are dependent upon several subjective 

selection criteria.  

This document introduces a regionalization tool known as Cluster-FCM that allows the user to 

select certain subjective parameters: (i) the number of regions to which the climate sites are 

assigned; (ii) the site attributes; and (iii) the temporal resolution of the precipitation data. The 

tool employs the fuzzy c-means algorithm to delineate the precipitation regions (Bezdek, 1981). 

The spatial homogeneity of the regions is validated using the L-moment regional heterogeneity 
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test developed by Hosking and Wallis (1997). The regionalization and validation methods are 

chosen based on the results of the literature review presented in Section 2. The document 

provides a manual for operating the Cluster-FCM tool. The model has been applied in previous 

studies by Irwin and Simonovic (2015) and Irwin et al. (under review) for assessments in the 

Prairie and Great Lakes-St. Lawrence lowlands climate regions of Canada. Results from these 

studies are presented in Section 4 to demonstrate the model output.  

 

1.2 Organization of the Report 

 

The remainder of the document is organized as follows: A literature review of the various 

regionalization components is provided in Section 2. The methodology used for model 

development is described in Section 3. Section 4 provides information for operating Cluster-

FCM including: (i) a description for tool use; (ii) detailed instructions for running the tool; and 

(iii) a demonstration of the model for several different input choices. Finally, a summary of the 

results and concluding remarks are found in Section 5.  

 

2. LITERATURE REVIEW 

 

A review of the literature pertaining to the available regionalization methods, the choice of the 

number of precipitation regions, the site attributes and the temporal resolution of the 

precipitation data required for regional analysis is presented. 
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2.1 Regionalization Method 

 

Many methods are available for the delineation of precipitation regions including: (i) correlation 

analysis (Cavadias, 1990; 2001; Unal, 2003); (ii) principal component analysis (Mills, 1995); 

(iii) site-focused pooling schemes (region-of-influence) (Burn, 1990; Burn and Goel, 2000; Gaal, 

2008); and  (iv) cluster analysis (Rao, 2006; Satyanarayana and Srinivas 2008; 2011; Srinivas 

2013; Asong et al., 2015), among others. Of the available methods clustering algorithms are 

preferred for their inherent ability to identify underlying patterns in complex datasets and as 

such, they are the most commonly used regionalization methods in climate literature. In general, 

clustering algorithms work by assigning sites to regions according to their similarity that is 

measured using a distance metric (Euclidean or Mahalanobis) in the attribute space. A summary 

of the various clustering algorithms is provided: 

Clustering algorithms are categorized as hierarchical and partitional; and hierarchical algorithms 

are further divided into agglomerative and divisive classifications. Agglomerative algorithms 

merge individual sites into larger clusters and conversely, divisive algorithms divide one large 

cluster (that is composed of all sites in the study area) into smaller regions. Divisive algorithms 

are uncommon in regionalization literature; however several types of agglomerative algorithms 

have been used including single linkage, complete linkage, average linkage and Ward’s 

algorithm. The fundamental difference between most agglomerative algorithms is the means by 

which the distance metric is used to measure the similarity between sites and clusters (Kalkstein, 

1978; Rao and Srinivas, 2005). 

Partitional clustering algorithms partition/divide sites of a study area into regions. They work to 

minimize the value of an objective function that measures the sum of the distances between 
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climate sites belonging to the same regions in the attribute space; thus, maximizing the within 

cluster similarity and likewise, the between cluster separation (Zalik and Zalik, 2011). The k-

means clustering algorithm is a very common partitional algorithm (MacQueen, 1967) that 

calculates similarity as the distance between sites and the cluster centroids (the average attribute 

value of the member sites of a cluster) in the attribute space (Burn and Goel, 2000; Pelchzer, 

2008; Satyanarayana and Srinivas, 2008; Dikbas, 2013). At each step in the iterative process a 

climate site is assigned to the region to which it is most similar and the value of the cluster 

centroid is updated to incorporate its new member. Following recalculation of the cluster 

centroid, it is possible for its member sites to be more similar to other clusters and therefore, site 

memberships may be reassigned. Other partitional algorithms include: (i) the k-mediods 

approach where similarity is measured between a climate site and median value of the member 

site attributes (Kaufman, 1987); and (ii) the k-modes algorithm where similarity is measured 

between the climate sites and mode of the member site attributes (Huang, 1998). The ability of 

the algorithms to update site membership at each iteration is considered to be a major advantage 

of all partitional algorithms over the hierarchical approaches. A disadvantage of partitional 

algorithms is their sensitivity to the initial selection of cluster centres; however, to address this 

limitation the algorithm is evaluated several times until the objective function yields a global 

minimum value. Gong and Richman (1995) compared hierarchical (single linkage, complete 

linkage, average linkage, Ward’s method) and non-hierarchical (k-means, principal component 

analysis) methods and determined that the non-hierarchical algorithms provided more accurate 

results.  

The aforementioned clustering algorithms form hard clusters such that each site belongs to only 

one region (Zalik and Zalik, 2011); therefore, implying that members of the same region fully 
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resemble one another, which is not a valid assumption (Srinivas, 2013). To address this 

limitation the fuzzy c-means algorithm was developed (Bezdek, 1981). The fuzzy c-means 

algorithm performs very similarly to the k-means method. The greatest distinction between the 

methods is that the former employs a membership function that computes the degree to which a 

site belongs to each cluster on a scale of 0 to 1 where a value of 1 represents full membership. As 

such, each climate site can partially belong to several clusters theoretically providing a more 

accurate partitioning of the sites. The outcomes of the regionalization procedure often require 

subjective and manual adjustments to site membership in order to improve the regional 

homogeneity of precipitation variability to an acceptable level. The membership function of the 

fuzzy c-means algorithm provides useful information for removing or relocating discordant sites, 

offering another advantage of the fuzzy clustering technique over the traditional clustering 

methods (Srinivas, 2013). Rao and Srinivas (2006) and Goyal and Gupta (2014) have conducted 

comparative analyses between the fuzzy c-means and k-means algorithms for regional flood 

frequency analysis. They each concluded that the former achieved a higher level of performance 

as it consistently delineated a greater number of homogeneous hydrologic regions. Although the 

analyses were conducted for the regionalization of flood quantiles, the findings can also apply to 

the formation of precipitation regions.  

Evidently the fuzzy c-means algorithm has several advantages over the traditional hard clustering 

algorithms; however it does have certain limitations. A major drawback is its requirement for 

subjective input parameters; namely, the fuzzifier (the parameter that controls the fuzziness of 

the membership function) and the c-value (the number of regions to which the climate sites are 

assigned). The requirement for the total number of clusters to be determined a priori is a 

disadvantage of all clustering algorithms; they are all incapable of establishing the number of 
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clusters that provide for the natural partitioning of the sites in the attribute/precipitation space. 

Despite certain disadvantages the fuzzy c-means algorithm is gaining popularity as a 

regionalization method in climate literature because it produces a more accurate partitioning of 

the sites into clusters and therefore, it is elected as the most appropriate option for 

implementation in Cluster-FCM.  

 

2.2 Number of Precipitation Regions 

 

Clustering algorithms are recognized as preferred regionalization methods in climate literature. 

They are limited, however, by their inability to identify the number of clusters that provide for 

the natural partitioning of the climate sites in the attribute/precipitation space. Consequently, the 

number of clusters must be solved for prior to the employment of the algorithm (Gurrutxaga, 

2013).  

Cluster validity indices (CVIs) can be used to solve for the optimal number of clusters for the 

sites to be assigned to. CVIs are used to evaluate a partitioning of sites into precipitation regions 

for their compactness (similarity between site attributes belonging to the same region) and 

separation (distinction between clusters that is measured as the distance between cluster centres 

in the attribute space) for a range of different input parameters (Kim and Ramakrishna, 2005). 

Many different CVIs are available and together they produce a variety of outcomes. Currently, a 

single, universally accepted measure has not been identified. Satyanarayana and Srinivas (2011) 

employed five CVIs to determine input parameter values to the fuzzy c-means algorithm for a 

regional frequency analysis application. The following CVIs were considered: (i) the fuzzy 

partition coefficient; (ii) the fuzzy partition entropy; (iii) the fuzziness performance index; (iv) 
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the normalized classification entropy; and (v) the extended Xie-Beni index. Of these indices, the 

first four demonstrated trends that increased or decreased monotonically and as such, they were 

deemed unsuitable to solve for input parameter values. They found that the extended Xie-Beni 

index performed relatively well.   

Besides the lack of consistency between their outputs, a major drawback of the CVIs for their 

applications in the regionalization of precipitation is the disconnect between the natural grouping 

of climate sites in the attribute space (that is solved for using CVIs) and the inherent partitioning 

of the precipitation data (that is desired for regional frequency analysis). Since climate site 

attributes (that are drivers of the local precipitation) are used as input to the clustering algorithm 

and precipitation is reserved as an independent dataset for validation, the natural grouping of the 

site attributes is unlikely to directly correspond to that of the precipitation data. 

A more reliable method is required for determining the optimal number of clusters for the sites to 

be assigned to in the precipitation space. At this time it is believed that trial and error is the only 

appropriate technique. Parameter values are varied for a range of magnitudes and used as input to 

the algorithm. The resultant cluster sets are validated for regional homogeneity and the number 

of clusters that achieves the desired outcome is retained and used in regional frequency analysis. 

The desired outcome depends on user preference that typically takes into account two criteria: (i) 

the numbers of sites assigned to the regions; and (ii) the percentage of homogeneous 

precipitation regions. Cluster-FCM employs the trial and error method where the fuzzy c-means 

algorithm can be employed for a range of numbers of clusters. The user can then select the 

preferred partitioning of sites according to these criteria or other factors.  
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2.3 Climate Site Attributes 

 

Clustering algorithms partition sites into precipitation regions according to the similarity of their 

characteristics/attributes that are typical drivers of the local precipitation. The choice of the site 

attributes is a subjective one and the only requirement is that they are independent of the 

precipitation statistics that are used to test for regional homogeneity. 

Site attributes should be selected such that they are physically meaningful to the problem under 

investigation. Common choices include the geographical site parameters such as latitude, 

longitude (Burn, 2014); topography including distance to major water bodies and elevation that 

contributes to orographic precipitation (Johnson and Hanson, 1995); large scale atmospheric 

variables recorded at several pressure levels (Satyanarayana and Srinivas, 2011); and seasonality 

that is defined as the timing of extreme precipitation events within the year (Comrie and Glenn, 

1998).  

Statistical analyses can be used to assess the significance of the relationship between the 

potential attributes and the local precipitation to reduce the computational time and improve 

regional homogeneity (Wagener, 2004; Jafaar, 2011). Asong et al. (2015) formed precipitation 

regions in the Canadian Prairie provinces; they considered geographical site parameters and suite 

of 21 atmospheric variables as potential attributes. A combination of principle component 

analysis and canonical correlation analysis were used to select the statistically significant 

attributes to be used in the regionalization procedure. 

 

2.4 Temporal Resolution of Precipitation 
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Certain applications require precipitation estimates to be derived from regional frequency 

distributions of specific temporal scales. Several examples are provided below: 

Climate forecasting applications form relationships between precipitation derived from regional 

frequency distributions and atmospheric variables to project weather patterns. Long-term 

precipitation (annual, seasonal, monthly resolutions) is projected for planning applications 

including the development of water budget (Johnson and Hanson, 1995; Saikranthi et al., 2012) 

Short-term precipitation projections (hourly and sub-hourly resolutions) are used in hydrologic 

model calibration and agricultural applications including the estimation of soil erosion and 

infiltration rates (Jebari, 2007). Analyses involving extreme hydrologic events including flooding 

and drought require a multi-temporal scale assessment to enhance the predictability of the 

hydrologic models (Jiang et al., 2013). Precipitation regions are delineated for extreme values 

such as the maximum annual series for the derivation of climate design values to be used in 

water infrastructure design (Burn, 2014). 

3. METHODOLOGY 

 

The methodology for the formation and validation of precipitation regions is explained in this 

section. 

 

3.1 Delineation of Precipitation Regions  

 

This section explains the fuzzy c-means clustering process. There are N sites that are to be 

assigned to c clusters. Each site has one feature vector that contains M attributes (of an attribute 
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set) that are a combination of atmospheric variables and location parameters. The procedure is as 

follows: 

 

1) Rescale the attributes of the feature vectors in order to standardize their variance and 

magnitude, otherwise variables that are larger in magnitude will have a greater influence 

on the resultant clusters (Satyanarayana and Srinivas, 2011).   

 

 𝑧𝑗𝑖  =  
(𝑦𝑗𝑖 − 𝑦𝑗̅̅ ̅)

𝜎𝑗
  𝑖 ∈ {1, … , 𝑁}; 𝑗 ∈ {1, … , 𝑀}                                                         (1)        

                                            

 where zji is the rescaled value of yji for attribute j and site i; 𝑦�̅� and 𝜎𝑗 are the mean 

 and standard deviation of attribute j  for all sites, respectively.  

 

2) Initialize the c cluster centroids and assign each site to the closest centre that is measured 

using the squared Euclidean distance metric. At each step the cluster centroids are 

updated and the sites may be re-assigned in order to minimize the objective function 

presented in [Eq. 2], [Eq. 3] and [Eq. 4]:  

 

 𝐽 =  ∑ ∑ 𝑢𝑖𝑘
𝑚||𝑧𝑖  −  𝐶𝑘||2 𝑀

𝑖=1
𝑐
𝑘=1                                                                               (2)  

 

𝑢𝑖𝑘 =
1

∑
|𝑧𝑖− 𝐶𝑘|

|𝑧𝑖−𝐶𝑖|

2
(𝑚−1)⁄

𝑐
𝑙=1

                                                                                               (3) 

 

𝐶𝑘 =  ∑
𝑢𝑖𝑘 

𝑚 𝑧𝑖

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑖=1

𝑁
𝑖=1                                                                                                      (4) 
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where J is the value of the objective function; zi is the feature vector (attribute set) of site 

i; Ck is the centroid of cluster k; uik is the degree of membership of site zi in cluster k; and 

m is a weight exponent of fuzzy membership (the fuzzifier) that is equal to 2.   

 

Repeat the previous step for the same value of c until the objective function converges to 

a minimum value, known as the global minimum. 

 

3) The fuzzy c-means algorithm produces a matrix that contains the climate site membership 

values; that is, the degree that the climate sites belong to each cluster. Climate sites are 

assigned to the cluster in which their membership value exceeds the defined threshold 

criteria, thereby hardening the fuzzy clusters; see [Eq. 5] (Satyanarayana and Srinivas 

2011): 

  

 𝑇𝑖 = max {
1

𝑐
,

1

2
[𝑚𝑎𝑥1≤𝑘≤𝑐(𝑢𝑖𝑘)]}                                                                              (5) 

 

 where Ti is the defined threshold value.             

 

3.2 Validation of Regional Homogeneity  

 

A test based on L-moment statistics is used to validate the regional homogeneity of precipitation. 

L-moments describe the probability distribution of the dataset from which they are calculated.  
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The site to site variability of the sample L-moment ratios (L-moment ratio of scale (L-Cv), L-

Skewness, L-Kurtosis) that are calculated from the observed precipitation records provide three 

separate measures of regional heterogeneity. The metric utilizing the variability of L-Cv has 

proven to be the most useful indicator of heterogeneity. Its value is denoted by H1 and the 

procedure for its computation is presented below. The methodology and equations are adopted 

from Hosking and Wallis (1997). 

 

1) Rank the climate data for each member site in ascending order, then compute L-moment 

ratios  for  scale (𝑡), skewness (𝑡3 ) and kurtosis (𝑡4 ) as follows: 

 

 𝑡 =  
𝑙2

𝑙1
  = 

(2𝑏1 − 𝑏₀)

𝑏₀
                                                                                                       (6) 

 

 𝑡3  =  
𝑙3

𝑙2
 =  

(6𝑏2  − 6𝑏1 + 𝑏₀) 

(2𝑏1 − 𝑏₀)
                                                                                          (7) 

 

 𝑡4  =  
𝑙4

𝑙2
 =  

(20𝑏3  − 30𝑏2+ 12𝑏1 − 𝑏₀) 

(2𝑏1 − 𝑏₀)
                                                                          (8) 

 

where,  

 

 𝑏₀  = 𝑙 =  𝑛−1 ∑ 𝑥𝑗
𝑛
𝑗=1                                                                                                              

 𝑏1  =  𝑛−1 ∑ 𝑥𝑗[
(𝑗−1)

(𝑛−1)
]𝑛

𝑗=2   

 𝑏2  =  𝑛−1 ∑ 𝑥𝑗[
(𝑗−1)(𝑗−2)

(𝑛−1)(𝑛−2)
]𝑛

𝑗=3   
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 𝑏3  =  𝑛−1 ∑ 𝑥𝑗[
(𝑗−1)(𝑗−2)(𝑗−3)

(𝑛−1)(𝑛−2)(𝑛−3)
]𝑛

𝑗=4   

  

 where x is precipitation measured at a single site and n is the record length.  

 

2) To measure heterogeneity of a cluster, compare the observed between site dispersion to 

the between site dispersion that would be expected from a homogeneous cluster. Between 

site dispersion is measured as the standard deviation of L-Cv for all sites in the cluster, 

which is represented by 𝑉1.  

 

 𝑉1  =  {
∑ 𝑛𝑖(𝑡𝑖 − 𝑡𝑅)2𝑁𝑐

𝑖=1

∑ 𝑛𝑖
𝑁𝑐
𝑖=1

}1/2                                                                                                (9)  

 

where Nc is the number of sites in a cluster; n is the site record length; ti is L-Cv for site i; 

and t
R
 is the regionally averaged L-moment ratio of scale.       

                                                                                  

3) Establish a homogeneous region for comparison. Compute the regional average L-

moment ratios for the cluster, and fit the average ratios to a kappa distribution. The 

regional L-moment ratios are weighted based on the sites' record lengths and are 

calculated as follows: 

 

 𝑡𝑅  =  
∑ 𝑛𝑖(𝑡𝑖)

𝑁𝑐
𝑖=1

∑ 𝑛𝑖
𝑁𝑐
𝑖=1

                                                                                                                (10) 
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 𝑡3
𝑅  =  

∑ 𝑛𝑖(𝑡3𝑖)
𝑁𝑐
𝑖=1

∑ 𝑛𝑖
𝑁𝑐
𝑖=1

                                                                                                               (11) 

 

 𝑡4
𝑅  =  

∑ 𝑛𝑖(𝑡4𝑖)
𝑁𝑐
𝑖=1

∑ 𝑛𝑖
𝑁𝑐
𝑖=1

                                                                                                               (12) 

 

4) Simulate 𝑁𝑠𝑖𝑚 realizations of the observed region from the kappa distribution. 𝑁𝑠𝑖𝑚 is 

typically a large number; i.e. 500. Compute the between site dispersion (𝑉1) for each set 

of the simulated sites that together are considered to be homogeneous. 

  

5) Evaluate the homogeneity of the cluster using the homogeneity measure (𝐻1 ) where µ𝑉 

and 𝜎𝑣 are the mean and standard deviation of the 𝑁𝑠𝑖𝑚values of 𝑉1: 

 𝐻1  =  
(𝑉1 − µ𝑉)

𝜎𝑣
                                                                                                                 (13) 

 

6)  Apply the corrective measure proposed by Castellarin et al., (2008) to account for the 

effect of inter-site cross-correlations on the outcomes of the L-moment regional 

heterogeneity test. 

 

𝐻1,𝑎𝑑𝑗 = 𝐻1 + 0.122 𝑥 𝑝2̅̅ ̅(𝑁𝑐 −  1)                                                                                         (14) 

 

where, 𝑝2̅̅ ̅ is the mean of squares of the cross-correlations of the precipitation records that 

is computed for all Nc climate sites. 
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7) Accept the cluster as homogeneous if 𝐻1,𝑎𝑑𝑗  <  1;  reject the cluster as heterogeneous 

if 𝐻1,𝑎𝑑𝑗  ≥  2. When 1 ≤ 𝐻1,𝑎𝑑𝑗 < 2 the cluster is considered to be possibly 

heterogeneous. For this analysis all clusters with corresponding 𝐻1,𝑎𝑑𝑗values equal to or 

greater than 1 are considered to be heterogeneous.  

 

4. OPERATING CLUSTER-FCM 

 

In this section the application of Cluster-FCM is explained, instructions for the installation and 

operation of the tool are provided and finally, the tool is demonstrated in the Prairie and Great 

Lakes-St. Lawrence lowland climate regions of Canada.  

 

4.1 Application of Cluster-FCM 

 

Cluster-FCM allows the user to select certain input parameters to the fuzzy c-means algorithm 

including the number of regions for the sites to be partitioned into as well as site attributes and 

temporal resolutions of precipitation data from a depository of variables described below: 

Available site attributes include location parameters (latitude, longitude), topographic variables 

(distance to major water bodies, elevation) and a complete set of atmospheric variables (air 

temperature, geopotential height, humidity, Northward and Eastward wind components) for a 

range of pressure levels between 20 to 100 kPa. Seasonality is not an effective attribute choice 

for smaller study areas where the timing of precipitation events are spatially uniform and 

therefore, it is not included as an option in the tool. The tool also does not include a component 

for assessing the statistical significance of the relationship between precipitation and the 
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potential attributes; however the user may wish to perform such analyses independently. Options 

for the temporal resolutions include annual, seasonal, monthly resolutions as well as the 

maximum annual series of the precipitation data that is the maximum precipitation event 

recorded within the year.  

 

4.2 Instructions for Operating Cluster-FCM 

 

The procedures for installing and using the regionalization tool are presented in this section of 

the report. 

 

4.2.1 Preparing to use Cluster-FCM 

 

The Cluster-FCM requires the following programs to be installed on the computer system: 

 MATLAB (R2011; R2012) 

 R Statistical Software (R 3.1.0; R 3.1.1; R 3.1.2; download http://cran.r 

project.org/bin/windows/base/old/3.1.1/) 

 RStudio (download http://www.rstudio.com/products/rstudio/download/)  

 

The tool is requires the following scripts to be copied into its working directory: 

 cluster_fcmeans_ver1.m  

 fun_feavec_ver5.m 

 fun_validation_fcm_ver1.m 



18 
 

 RFA.R 

 

The regionalization tool also requires several input files to be stored into the working directory.  

 Location parameters: This file stores the latitude and longitude that correspond to the 

sites for a specified study area and spatial resolution. Sample data is currently available 

for an 18 x 18 km spatial resolution for application in the Great Lakes (glr) and Prairie 

(prairie) Canadian climate regions. 

o location_[study_area]_[spatial_resolution]km.csv 

o ex. location_glr_18km.csv 

 

 Topographic parameters: Site elevation and distance to major water body parameters are 

computed for each site. Sample files are stored in a topographic information file for each 

study area. The parameter values correspond to the climate sites that are listed in the 

same order as the location parameter file.  

o topography_[study_area]_[spatial_resolution]km.csv 

o ex. topography_prairie_18km.csv 

 

 Atmospheric variables: Six large scale atmospheric variables including relative humidity 

(hur), specific humidity (hus), air temperature (ta), geopotential height (zg), Northward 

wind component (va) and Eastward wind component (ua) recorded at nine pressure levels 

(20, 30, 40, 50, 60, 70, 85, 92.5 and 100kPa) can be accepted as input to the 

regionalization tool. The values of the atmospheric variables for each pressure level are 

interpolated to the list of climate sites that is consistent with all datasets. Rows of the 
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input file correspond to the site/grid point (in the same order as the location and 

topographic parameter files) and the columns correspond to the monthly time step. 

o [atm_var]_Amon_CanESM2_historical_r1i1p1_185001_200512_plevel_[plevel]_

[study_area][spatial_resolution].csv 

o ta_Amon_CanESM2_historical_r1i1p1_185001_200512_plevel_20000_prairie18

.csv 

 

 Precipitation data: All sample precipitation data is extracted from the ANUSPLIN 

gridded dataset. It is the other datasets (topographic parameters, atmospheric variables) 

that are calculated for and interpolated to the spatial grid of the precipitation data. 

Precipitation data is available for several temporal resolutions including monthly (Jan, 

Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec), seasonal (DJF-Dec, Jan, Feb; 

MAM-Mar, Apr, May; JJA-Jun, Jul, Aug; SON-Sep, Oct, Nov), annual and the 

maximum annual series of the data. Rows of the input file correspond to the site/grid 

point (in the same order as the location parameter file) and the columns correspond to the 

monthly, seasonal, annual and maximum annual series time steps. 

o [study_area]_precip_[temporal_resolution]_[spatial_resolution]km.csv 

o ex. glr_precip_jan_18km.csv (monthly resolution) 

o ex. glr_precip_djf_18km.csv (seasonal resolution) 

o ex. glr_precip_annual_18km.csv (annual resolution) 

o ex. glr_precip_mas_18km.csv (maximum annual series of the precipitation data) 
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Note that all scripts that are required to run Cluster-FCM may be downloaded from the FIDS 

website (http://www.eng.uwo.ca/research/iclr/fids/). Sample datasets are also available so that 

the user can reproduce the results presented in Section 4.3.  

 

4.2.2 Procedure for Running Cluster-FCM 

 

1) Install MATLAB, R-studio and R-statistical software to your personal computer. 

2) Open R-Studio and install required packages: R.matlab, doParallel, lmomRFA (Hosking 

and Wallis, 2013) 

- Select Install Packages (bottom right window); input the names of the three required 

packages as listed above (one at a time); select Install 

3) Open fun_validation_fcm_ver1.m in MATLAB 

- Ensure the correct R-version and file location are written in Line 43 that currently reads: 

 eval(['!C:/PROGRA~1/R/R-3.1.1/bin/Rscript ' 

CurrentDirectory '/RFA.R']) 

 

4) Open the MATLAB command window 

- Set the working directory to the appropriate location 

- Type cluster_fcm_ver1 in the command window and select Enter 

 

5) Enter values to the command prompts: 
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i. Select the study area (data for the Great Lakes and Prairie region has been 

provided) 

 

 

ii. Select the set of climate site attributes: 

 

iii. Select the temporal resolution/period for precipitation data: 
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iv. Select the range of c-values (numbers of clusters into which the sites are 

partitioned): 
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6) The program stores the following output in the current directory: 

fcm_[study_area]_[temporal_resolution/period]_choice_[attribute_set].mat 

- The file saves two variables that are essential to the analysis: 

- idx contains the index values that represent the cluster to which each climate site 

belongs (climate sites are listed in rows, in the same order as the site list in the 

location file - location_[study_area]_18km.csv). 

- tableH provides the percentage of regions that are classified as homogeneous for 

each partitioning of the sites; this information is used directly in the figures and 

tables in the analysis. 

7) Precipitation region maps are created in ArcGIS 10.2 (http://resources.arcgis.com/ last 

accessed Nov, 2014) by plotting the climate site locations and colour coding them 

according to the index of the cluster to which they have the maximum membership. 

 

4.3 Demonstration of Cluster-FCM 

 

The current version of Cluster-FCM has been used in studies by Irwin and Simonovic (2015) and 

Irwin et al., (under review) where it was applied in two Canadian climate regions including the 

Prairie and the Great Lakes-St. Lawrence lowlands. First a description of the study area is 

provided, followed by an explanation of the data used as tool input. Results from the 

aforementioned studies for the Great Lakes region are then presented to demonstrate the use of 

the Cluster-FCM.  

 

4.3.1 Study Area  
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The Great Lakes-St. Lawrence lowlands region is located along the Southern provincial borders 

of Ontario and Quebec. It is bounded by Lake Huron and Georgian Bay to the West, and Lake 

Erie and Lake Ontario to the South and East. Its geographic position is approximately 42 to 48 

degrees latitude and -83 to -70 degrees longitude and it is shown as the south-most purple region 

in Figure 1.  The prevailing winds from the West, humid air from the Gulf of Mexico and cold, 

dry air from the North significantly influence the regional climate in addition to the presence of 

the Great Lakes and their interactions with the lower atmosphere (USEPA, 2012). Lake effect 

precipitation is common during the fall and winter seasons when the temperatures of the lake 

decrease at a slower rate than the surrounding air. This process occurs when a cold air mass 

passes over the relatively warm lakes and a significant amount of moisture is evaporated, held in 

the lower atmosphere and precipitated downwind of the lakeshore often in the form of snow 

(Lapen and Hayhoe, 2003; Sousounis, 2001). In the summer season convective rainfall and 

thunderstorms are typical in the Great Lakes region (Ashmore and Church, 2001). In the late 

spring and early summer season the relatively cool lake temperatures have a stabilizing effect on 

the lower atmosphere and reduce the magnitude of convective rainfall by approximately 10 – 

20% over and downwind of the lakes (Scott and Huff, 1996). 
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Figure 1: Map depicting the Canadian Climate Regions (Source: Statistics Canada, 2012). 

 

4.3.2 Data 

 

Four main datasets are used in this study: (i) atmospheric variables obtained from the Canadian 

CanESM2 Earth Systems model (http://www.cccma.ec.gc.ca/ last accessed Nov, 2014); (ii) 

ANUSPLIN precipitation data that has been interpolated to a high resolution grid (Hutchinson et 
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al., 2009; Hopkinson et al., 2011); (iii) elevation data extracted from digital elevation models 

(DEMs) in ArcGIS 10.2 (http://resources.arcgis.com/ last accessed Nov, 2014) and (iv) a shape-

file containing the geographical locations of major inland water bodies in Canada 

(http://geo2.scholarsportal.info/ last accessed Feb, 2015).  The atmospheric variables considered 

as potential attributes include air temperature, geopotential height, specific humidity, relative 

humidity, and the Northward and Eastward wind components. Most weather occurs in the 

troposphere that extends from the Earth’s surface to an altitude of approximately 12 km. The air 

pressure ranges from approximately 1000 – 200 mb (100 – 20 kPa) and therefore, the 

atmospheric variables considered in the analysis are obtained for pressure levels of 20, 30, 40 50, 

60, 70, 85, 92.5 and 100 kPa  

 

The ANUSPLIN high resolution gridded precipitation dataset is used in this investigation. 

Hutchinson et al., (2009) generated the dataset using a trivariate thin-plate smoothing spline 

technique to interpolate daily precipitation recorded at Canadian climate stations to a 10 by 10 

km grid that covers the country. The dataset was generated for a time period of 1961 to 2003. 

The dataset was further improved by reducing the residuals between the observed and 

interpolated gridded values (Hopkinson et al., 2011). This was achieved by correcting the 

alignment between the climatological days of the observed data recorded at different climate 

stations. The temporal window was also expanded to 1950 to 2011. Gridded datasets are 

preferred over other observed precipitation datasets because of their good spatial coverage and 

complete, consistently generated record lengths. For a comparative analysis between the 

ANUSPLIN dataset and other sources of gridded precipitation data for Canada such as the North 
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American Regional Reanalysis (NARR) dataset and the Canadian Precipitation Analysis (CaPA) 

dataset refer to Eum et al. (2014). 

 

Latitude and longitude are derived from the ANUSPLIN dataset while elevation values are 

extracted from DEM files that are obtained from the Canadian GeoBase website 

(http://www.geobase.ca/ last accessed Nov 2014). The DEM files are imported to an ArcGIS 

environment and mosaicked (merged) to form one continuous layer for each study area. The 

positions of the ANUSPLIN grid points are also imported to ArcGIS and the elevation data are 

assigned to the points according to their spatial relationship. The shape-file containing 

geographic information of Canadian water bodies is used to calculate the minimum distance 

between the grid points and major water bodies located upwind; that is the additional location 

attribute used for the Great Lakes study area. Distance to water bodies is included as a 

topographic parameter for the Great Lakes region because the presence of the lakes has a 

significant influence on the regional precipitation. Since the prevailing winds flow from the 

Northwest direction the significant water bodies located on the windward side of the study area 

are considered to be either Lake Huron or Georgian Bay. 

 

4.3.3 Sample Output – Site Attribute Selection 

 

First the sensitivity of the formations of the precipitation regions to the selection of site attributes 

is demonstrated. Figures 2 plots the relationships between the number of regions to which the 

sites are assigned and the percentage of regions that are classified as homogeneous on the x and 

y axes, respectively. (This information is stored in variable tableH of the output file). The 

coloured lines with the circular and upward, downward and left facing triangles represent the 

http://www.geobase.ca/
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output corresponding to different combinations of site attributes. The site attribute combinations 

considered in this analysis are: Attribute Set 1 (AS-1) that consists of location parameters 

(latitude, longitude); AS-2 includes location and topographic parameters (site elevation and 

distance to major water bodies); AS-3 is composed of the atmospheric variables that form 

significant linear correlations with the local precipitation; and AS-4 is comprised of a 

comprehensive set of atmospheric variables recorded at a range of pressure levels. AS-1, AS-2 

and AS-4 are standard site attribute combinations that may be selected from the Cluster-FCM. 

The variables that form AS-3 change according to the season and study area and therefore, they 

must be selected manually using the User Preference option of the attribute selection window. 

For the selection of atmospheric variables as site attributes, the temporal resolution of the 

precipitation data is automatically set to monthly and organized into four seasons (this is because 

the atmospheric data is available for a monthly temporal resolution). The model output for the 

December-January-February (DJF), March-April-May (MAM), June-July-August (JJA) and 

September-October-November (SON) seasons are plotted on the top left, top right, bottom left 

and bottom right, respectively.  

The black horizontal line indicates the number of regions required to achieve approximately 80% 

homogeneity. The location at which the coloured lines cross the black, threshold line is 

approximately at the plot elbow. The elbow represents a suitable tradeoff between the criteria for 

selecting a preferred number of regions for the sites to be partitioned into. It is the point at which 

further improvement (increase) in the percentage of homogeneous regions requires a relatively 

large increase in the number of regions to which the sites are assigned; effectively compromising 

the number of station-years in the regional precipitation record. More station-years that are used 

to fit the regional frequency distribution provides for more robust estimates of the true, local 
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precipitation. Alternatively, precipitation regions that are composed of fewer, similar sites (in 

terms of precipitation statistics) are more likely to be homogeneous thereby satisfying the 

identical distribution assumption.  For each season and combination of site attributes, the 

preferred number of regions is selected as the lowest number that achieves a minimum of 80% 

regional homogeneity. Table 1 summarizes the preferred numbers of regions/clusters (c 

parameter of the fuzzy c-means algorithm) for all scenarios. The regionalization tool is employed 

again using these c-values as model input. The idx variable of the output file is then used to plot 

the resultant precipitation regions. Note that c-values could not be derived for AS-3 in the JJA 

and SON seasons because no linear correlations were observed between the atmospheric 

variables and local precipitation.  

 

Table 1: The c-values for all combinations of attribute sets and seasons 

 AS-1 AS-2 AS-3 AS-4 

Great Lakes Great Lakes Great Lakes Great Lakes 

DJF 30 37 36 34 

MAM 15 19 17 15 

JJA 12 20 - 15 

SON 15 19 - 19 

 

Analysis of Figure 2 reveals that the number of regions required to achieve the 80% regional 

homogeneity criterion is similar between attribute sets for the same season. The seasonal 

difference between the c-values is more significant; for example the c-values range between 30 

to 37 for the DJF season and 12 to 19 for all other seasons.  
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Figure 2: Relationship between the number of clusters to which the climate sites are 

assigned (c-parameter) and the percentage of regions that are classified as homogeneous 

through the validation procedure for the Great Lakes study area. 

 

The site index values (that indicate the region to which the sites belong) are stored in variable 

idx of the output file. The idx variable consists of a list (column) of values that are in the same 

order as the site’s coordinates in the location input file; allowing the site index values to be 

copied beside their latitude/longitude and plotted directly in an ArcGIS environment. Figures 3-

6 are examples of precipitation regions delineated using different combinations of site attributes 

and seasons. 
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Figure 3: Precipitation regions formed by AS-1 for the MAM season in the Great Lakes 

region. 

 

 

Figure 4: Precipitation regions formed by AS-4 for the MAM season in the Great Lakes 

study area. 
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Figure 5: Precipitation regions formed by AS-4 for the SON season in the Great Lakes 

study area. 

 

 

Figure 6: Precipitation regions formed by AS-4 for the DJF season in the Great Lakes 

study area. 

 

 

Evidently, the shapes of the precipitation regions change between AS-1 (Figure 3) and AS-

3/AS-4 (Figure 4-5). The regions formed using the third and fourth attribute set are similar in 

shape and size for the same season; likely because they are formed using different combinations 
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of atmospheric variables. Additionally, the seasonal difference between precipitation regions is 

observed. Figure 6 presents the regions that are delineated using AS-4 in the DJF season and 

evidently, the climate sites of the study area are partitioned into a greater number of clusters that 

are smaller in size. 

 

4.3.4 Sample Output – Temporal Resolution Selection 

 

Here the sensitivity of the formations of the precipitation regions to the selection of the temporal 

resolution of the data is demonstrated. Figure 7 plots the relationships between the number of 

regions to which the sites are assigned and the percentage of regions that are classified as 

homogeneous on the x and y axes, respectively. Again output for the DJF, MAM, JJA and SON 

seasons are plotted on the top left, top right, bottom left and bottom right of the figure, 

respectively. The coloured lines, however, represent the outputs for individual months as well as 

for their respective season. The left-most plot of Figure 8 presents the results for the annual and 

maximum annual series of the data for the Great Lakes study area. 

It is observed that sometimes the seasonal resolution calls for fewer precipitation regions to 

attain 80% regional homogeneity; therefore outperforming the monthly temporal resolutions 

(fewer regions means more sites per region and more station-years of data to fit the regional 

frequency distribution). This is true for the DJF and MAM seasons; however for the JJA and 

SON seasons the monthly resolutions call for the lowest number of regions for the sites to be 

partitioned into. The plots reveal that there are moderate differences between the magnitudes of 

the c-values with the exception of the maximum annual series. For the annual, seasonal and 

monthly resolutions the values of c range from 10 to 29; however the sites are only required to be 
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assigned to 5 regions to attain 80% regional homogeneity for the employment of the maximum 

annual series of the data.  

Again Tables 2-3 summarize the preferred numbers of regions/clusters for the seasonal, annual 

and maximum annual series of the data (Table 2) and the monthly resolution (Table 3). Cluster-

FCM is employed once more using these c-values (that achieve the defined selection criteria) as 

input. The idx variable of the output file is used to plot the resultant precipitation regions. 

Figures 9-11 show the precipitation regions formed and validated using different temporal 

resolutions of the data. AS-1 (location) and AS-2 (location and topography) are the only options 

for site attributes for all temporal resolutions; therefore AS-2 is used to form the regions 

presented in these figures.   
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Figure 7: Relationship between the number of clusters to which the climate sites are 

assigned (c-parameter) and the percentage of regions that are classified as homogeneous 

through the validation procedure for the Great Lakes study area. 
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Figure 8: Relationship between the number of clusters to which the climate sites are 

assigned (c-parameter) and the percentage of regions that are classified as homogeneous 

through the validation procedure in the Great Lakes (left) and Prairie (right) study area 

 

 

Table 2: Final c-values for the annual, maximum annual series and seasonal temporal 

resolutions in the Great Lakes climate region. 

Region Annual MAS DJF MAM JJA SON 

GLR 13 5 15 10 19 27 

 

 

Table 3: Final c-values for the monthly temporal resolution in the Great Lakes climate 

region. 

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

GLR 20 29 10 16 13 11 15 17 13 17 12 15 
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Figure 9: Precipitation regions delineated for the month of February in the Great Lakes 

study area. 

 

 

Figure 10: Precipitation regions delineated for the month of September for the Great Lakes 

study area. 
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Figure 11: Precipitation regions delineated for the maximum annual series in the Great 

Lakes study area. 

 

It is evident that the choice of the temporal resolution of the data has a considerable effect on the 

formation of the precipitation regions in the Great Lakes study area. In this assessment location 

and topographic parameters are assigned as site attributes for the employment of all temporal 

resolutions. These parameters are temporally fixed and therefore, when the sites are partitioned 

into the same number of regions the regional patterns are identical. However, through the 

technique used to determine the preferred c-value (that provides for a suitable tradeoff between 

the maximization of regional homogeneity and the maximization of the regional precipitation 

record length) it is evident that the number of regions to which the sites are assigned changes 

according to the precipitation variability of the chosen temporal resolution. This is because 

precipitation variability is an important influencing factor in the classification of regional 

homogeneity that is used to determine the preferred number of regions.  
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5. CONCLUSION 

 

Regional frequency analysis is used to obtain reliable estimates of local precipitation events. The 

general procedure involves: (i) the partitioning of climate sites into statistically homogeneous 

precipitation regions; and (ii) the combination of precipitation data that is recorded within the 

same region into a single frequency distribution from which local precipitation is estimated. The 

focus of the presented research is on the first step of the procedure; that is the formation of 

precipitation regions (also referred to as regionalization). 

The compositions of the precipitation regions are sensitive to the selection of several subjective 

choices including the number of regions into which the sites are partitioned, the climate site 

attributes and the temporal resolution of the precipitation data (as is observed in Section 4.3). 

This report introduces a regionalization tool that employs the fuzzy c-means clustering algorithm 

(Bezdek, 1981) and the L-moment regional heterogeneity test (Hosking and Wallis, 1997) to 

delineate and validate precipitation regions for regional frequency analysis. The tool allows the 

user to choose from several subjective input parameters: (i) the number of regions to which the 

sites are assigned; (ii) the site attributes (atmospheric variables recorded at a range of pressure 

levels, location and topographic parameters); and (iii) the temporal resolution of the precipitation 

data (monthly, seasonal, annual and the maximum annual series of the data). The tool is 

developed for application in the Prairie and Great Lakes-St. Lawrence lowlands climate regions 

of Canada; however it may be applied in other locations. This document explains the 

methodology used in model development and it also provides instructions for installing and 

operating the tool, and sample outputs are presented.  
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Cluster-FCM performs successfully; however, it is restrictive to certain combinations of input 

parameters. There are several ways in which the model can be improved: 

(i) Integrate all combinations of site attributes and temporal resolutions into the model. 

Currently atmospheric variables can only be employed as site attributes for the monthly 

temporal resolution that is organized into four seasons. This also implies that only 

location and topographic parameters can be assigned as site parameters for all temporal 

resolutions; 

(ii) Adjust the model to include finer temporal scales (daily, sub-daily) that have significant 

applications in agriculture and water resources engineering; 

(iii)Incorporate a statistical analyses methods (principle component analysis; linear/non-

linear regression analyses) to the attribute selection component in order to reduce the 

computational time and to improve the quality of the output in terms of regional 

homogeneity and lengthy regional precipitation records; 

(iv) Add more options for site attributes including near and remote teleconnection indices; 

(v) Re-write the code for the regionalization tool in R-statistical software alone; currently the 

script passes information between R and MATLAB resulting in large computational 

demands. 
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