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EXECUTIVE SUMMARY 

Rapidly changing climatic conditions across the globe are having an impact on key climate 

variables and the hydrologic cycle. Changes in magnitude and frequency of peak flow patterns 

have been noted in the rivers worldwide from past few decades. The associated risk is projected to 

increase many folds during the 21st century. Therefore, it is necessary to quantify these impacts 

for effective water resource planning and management in future. Methodology chosen to do so 

should be able to capture variations in climate variables at fine temporal, spatial and distributional 

scales.  Also, it should be able to cover uncertainties associated with future climatic, socio-

economic and physiographic projections. In this study, a discussion of the same has been started 

with a focus to estimate changes in occurrence probability of flow extremes in future. Based on 

the discussion, a methodology has been developed to estimate changes in flood hazard. It is 

proposed that all future projections made by climate models should be considered in the analysis. 

Model data should be pre-processed to improve its spatial, temporal and distributional resolution 

keeping in mind that the changes projected by them shouldn’t be significantly altered. Pre-

processed climatic data can be used to generate flows. Independent extreme flow events are 

identified and their reoccurrence probabilities are compared with that of historical flow data 

extremes to get an estimate of the range of projections plausible in future.     

Investigation of practical utility of the developed methodology has been tested using the 

Grand River basin, Ontario, Canada as a case study. A huge array of projections is obtained for 

future. It is suggested that the band of interest should be extracted wisely out of them depending 

on the usage of results.  
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1. INTRODUCTION 

This chapter presents literature review followed by layout of the report. In the literature review 

section, climate change and its impact on key climate variables, for example temperature and 

precipitation, and on flow patterns are discussed on a global scale. Further, observed and projected 

impacts of climate change are discussed for the region of Canada with a focus on South-Western 

Ontario.  

1.1 Literature review 

According to IPCC, (2012) any detectable change in the state of climate which persists over a 

considerable period of time (more than a decade) can be referred to as climate change. Both natural 

(such as periodic changes in solar irradiance) and man-made (such as GHG emissions, changes in 

land-use patterns etc.) sources can be responsible for it. However, role of anthropogenic factors 

towards climate change has been found to be significant as compared to other sources (Huber & 

Knutti, 2011; IPCC,2007).     

Carbon-di-oxide (CO2) is an important greenhouse gas, whose concentration in the 

atmosphere has increased significantly since the industrial revolution, primarily due to increased 

consumption of fossil fuels and rapid land use change. According to IPCC, (2007) atmospheric 

concentration of CO2 in 2005 was higher than that experienced in the past 6,50,000 years and 

annual CO2 growth rate continues to increase each passing year. Similar trends have also been 

recorded for other greenhouse gases such as methane and nitrous oxide. Due to the changes in 

environmental chemistry, changes in the mean, standard deviation and extremes of key climate 

variables are being observed. There has been an unprecedented increase in global mean 

temperatures in the last 25 years. Changes in precipitation patterns have also been noted 
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worldwide. A change in climate variables other than precipitation and temperature have also been 

reported (IPCC, 2007).  

Since hydrologic behaviour of a catchment is governed by feedbacks from various climatic 

and ecologic variables, relationships between them are difficult to formulate. An extensive 

Canada-wide study highlighting this relationship has been performed by Whitfield & Cannon, 

(2000). They grouped changes observed in precipitation, temperature and streamflow between the 

decades 1976-1985 and 1986-1995 into different classes or clusters. After analysing the spatial 

distribution of these climatic and hydrologic clusters obtained from 210 temperature, 271 

precipitation and 642 hydrology stations, they noted distinct linkages between climate variables, 

hydrologic responses of streams and ecozones within Canada. The study also highlights that even 

small changes in climate variables may result in significant changes in a region’s hydrologic 

characteristics.  

By reconstructing monthly discharges of the largest worldwide rivers, Labat, Godd, Probst, 

& Guyot, (2004) estimated a 4% increase in global runoff every 1ºC rise in global temperatures 

over the last century. Further, IPCC, (2007) projects a range of 1.8ºC (low emission scenario) to 

4ºC (high emission scenario) in global mean temperature change (relative to temperatures observed 

during 1980-1999) for the 21st century.  It is anticipated that this change in global mean 

temperature will produce unprecedented changes in hydrologic regimes across the globe. 

The impact of climate change has been identified on precipitation and temperature 

extremes. According to IPCC (2012) there is a strong likelihood that since 1950, the number of 

cold days and nights has decreased, whereas the number of hot days and nights has increased 

globally. An increase in anthropogenic emissions has been identified as the most likely cause for 
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this change. Further, it is projected that following SRES A2 and A1B scenarios, by the end of 21st 

century, a 1 in 20 year return period annual hottest day event may become 1 in 2 year return period 

event (except for high latitudes of Northern America where it will become a 1 in 5 year event). 

Changes in precipitation extremes have also been detected worldwide. Most consistent increases 

in precipitation extremes have been noted across the North American sub-continent. It has been 

projected that towards the end of 21st century, a 1 in 20 year return period annual maximum 24-

hour precipitation rate event will change to 1 in 5 to 1 in 15 year return period event.  

Change in frequency of flood and drought events has also been reported. Since 1950, 

droughts have become more frequent and intense in southern Europe and western Africa, while 

they have become less frequent and intense in central North America and northwestern Australia 

(IPCC, 2012). In the case of flooding, precise identification of changes in historical flooding trends 

and their attribution to climate change has not been possible as of yet. However, there is evidence 

suggesting a shift in the timing of spring peak flows. Due to excessive warming and subsequent 

melting of winter snow accumulations, spring peak flows of the past have been detected to occur 

during winters or early springs. Further, global (Hirabayashi et al., 2013; Hirabayashi et.al. 2009) 

and continental scale (Dankers & Feyen, 2009) studies project an increase in flood hazard..    

Changing climate has induced changes in temperature and precipitation patterns across 

Canada. These changes vary spatially, with frequency, duration and intensity of cold spells 

decreasing around western and increasing around eastern regions of Canada (Groisman et al., 

2002; Shabbar & Bonsal, 2003). Winter warm spells are increasing in both frequency and duration 

across all of Canada, with one exception in the extreme north-eastern regions where warm spells 

are becoming shorter and less frequent (Shabbar & Bonsal, 2003). Precipitation has increased in 

almost all parts of Canada during the last 50 years. An average increase of 5% has been observed 
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in annual total precipitation for the entire country, while an increment of 12% has been observed 

in southern Canada indicating that the changes in precipitation are not uniform spatially. Further, 

precipitation has been found to increase during spring, summer and autumn while the ratio of 

snowfall to total rainfall has been decreasing in winter and spring especially along the western part 

of the country (Barrow, Maxwell, & Gachon, 2004). This observation is consistent with the 

warming trends observed along the western regions of Canada.  

Changes in major climatic variables such as temperature and precipitation also affect the 

flow patterns of Canadian rivers. Annual maximum and mean daily flows are significantly 

increasing in northern British Columbia, Yukon Territory and southern Ontario. On the other hand, 

a decreasing trend is observed in the southern regions of British Columbia (Environment Canada, 

2004). Studies also estimate a decrease of approximately 10% in annual river discharge in the 

period 1967 to 2003 for rivers situated in the northern regions of Canada (Déry, 2005). More 

recently, an extensive study analysing present and projected future flows of ten rivers with varying 

geography, ecosystem and drainage basins situated across Canada (Figure 4). They projected a 

steady and decreasing flow trends across all the selected rivers except River Nipigon ( WWF-

Canada, 2009).       

The number of flooding events has increased over the last 50 years, with 70% of flooding 

events occurring after 1959. It has also been estimated that 62% of these flood disasters have been 

caused by snowmelt runoff, storm rainfall or their combinations (Brooks et al., 2001). A detailed 

study of the 168 flood disasters between 1990 and 1997 revealed that most of these occurred in 

densely populated areas. For example, it is found that 62% of these disasters occurred in four 

intensely populated provinces: Ontario (37 events), New Brunswick (26 events), Québec (23 

events) and Manitoba (18 events) while relatively few disasters are observed in sparsely populated 
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provinces of Northwest Territories (5 events), and Yukon (3 events) (Shrubsole, Lacroix, & 

Simonovic, 2003). This suggests that the amount of flood risk (defined as the product of flood 

probability or hazard, and exposure of capital and population to that hazard) is gradually increasing 

across Canada.  

Historical records suggest a shift towards milder winter and warmer summers in the south-

western regions of Ontario. This region experiences frequent precipitation extremes due to large 

amounts of water vapour in the atmosphere because of close proximity of the Great Lakes. 

Between 1979 to 2004, south-western Ontario experienced the greatest number of heavy rainfall 

events within the province of Ontario (Report of the Expert Panel on Climate Change Adaptation, 

2009). Temperature and precipitation means and extremes are projected to further increase in 

future across south-western Ontario. A decreased annual runoff, increased winter and spring flows, 

lower summer and fall flows, and increased frequency of high flows is projected for the 21st 

century in this region (Lemmen et. al., 2008). Due to high population density and high 

industrialisation in the region, south-western Ontario is considered to be at highest degree flood 

risk in the entire province. This has prompted several climate change studies in the region 

(Cunderlik and Simonovic, 2005; Cunderlik and Simonovic, 2007; Prodanovic and Simonovic, 

2007; Solaiman et.al. 2010; Eum and Simonovic, 2012; King et.al., 2012; Solaiman et.al., 2012; 

Das and Simonovic, 2012) and highlights the importance of an extensive climate change impact 

study for this region. 

1.2 Layout of the report 

In this report, chapter 2 describes the methodology adopted while performing climate change 

impact analysis on Grand River at Brantford catchment. Application of the selected methodology 
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on Grand River basin is provided in chapter 3, results and discussions are provided in Chapter 4. 

Conclusions are summarised in Chapter 5, which is followed by references and appendices. 

2. METHODOLOGY 

Global Climate Models which have daily precipitation, tmean, tmax and tmin datasets available 

for historical (1961-2000) and future timelines (2050s and 2090s) from the Coupled Model 

Intercomparison Project-Phase 3 (CMIP3) ensemble are selected for analysis. Scenarios A2, B1 

and A1B are used to cover the uncertainty projected by future greenhouse gas emission scenarios.  

Historical and future GCM data, corresponding to selected GCM-scenario combinations is 

bias-corrected using statistical bias correction approach. Statistical downscaling is performed on 

bias-corrected GCM data by following a change factor approach and using a weather generator. A 

set of 20 plausible future precipitation and mean temperature timeseries are generated 

corresponding to each GCM scenario combination for future timelines 2050s and 2090s using a 

non-parametric weather generator M3EB (Srivastav and Simonovic, 2013). Simulated future 

precipitation and temperature combinations most likely to produce hydrological extremes are 

selected for streamflow generation.  

Hourly precipitation and temperature timeseries corresponding to selected combinations 

are used as inputs into a semi-distributed hydrologic model and future flow series are generated 

by performing continuous hydrological simulation. Statistical analysis is performed on historical 

observed and future simulated flowseries. Flow peaks are selected using Peak Over Threshold 

(POT) method and a Generalised Pareto Distribution (GPD) is used to fit the selected flood peaks. 

Flood frequency analysis is performed and results for 2, 5, 10, 25 and 100-year return period floods 
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are compared for historical and future time-periods to estimate the impact of climate change on 

flow peaks across the catchment.   

2.1 Key features of selected methodology  

Modelling climate change impact on water resources is a complex task. Steps involved in 

a typical climate change impact analysis process are outlined in Figure 1. Uncertainties exist at 

each step of the process. Six major sources of uncertainty involved have been identified in the 

literature. Uncertainties may arise from Global Climate Model structure, future greenhouse gas 

emission scenarios, downscaling of GCM outputs, hydrological model structure, hydrological 

model parameters and the internal variability of the climate system (Kay, Davies, Bell, & Jones, 

2009). However, uncertainties may also exist outside the paradigm of these six primary sources. 

Chen, Haerter, Hagemann, & Piani, (2011) considered the decade used for deriving bias correction 

parameters as one of the three major sources of uncertainties associated. Hagemann et al., (2011) 

notes that uncertainty associated with bias correction step may be of an order equal to that 

associated with climate model projections. Climate model initial conditions, land-use change, 

natural variability of climate, choice of appropriate change factor methodology, choice of flood 

frequency analysis methodology are only some of many other uncertainties associated with the 

climate change impact analysis process. 
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Figure 1 Steps and uncertainties involved in the climate change impact analysis process 

 

Since it seems impossible to capture all the uncertainties associated with the process, 

identification and accounting for primary sources of uncertainty becomes important. Several 

studies have been performed to quantify relative contributions of different sources of uncertainty 

towards the total uncertainty. To this end, Jung, Chang, & Moradkhani, (2011) compared five 

sources of uncertainty viz. those related to GCM structures, future GHG emission scenarios, land-

use change scenarios, natural variability and hydrologic model parameters to estimate their relative 

impact on flood frequencies across two catchments with different extents of urbanisation. Kay et 

al., (2009) analysed uncertainties contributed by GCM structure, downscaling methodologies, 

hydrological model structure, hydrological model parameters and internal variability of climate 

system and compared their impacts on flood frequency across two catchments in England. 
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Kingston & Taylor, (2010) compared uncertainties associated with GCM structures, climate 

variability and hydrologic parameterisation to quantify the impact of climate change on freshwater 

resources in the upper Nile basin in Uganda. Wilby & Harris, (2006) simulated future low flow 

scenarios for Thames River (UK) by using four GCMs, two GHG scenarios, two statistical 

downscaling techniques, two hydrological model structures and two sets of hydrological model 

parameters. In almost all such studies, uncertainty associated with future climate projections has 

been identified as the most significant component of total uncertainty. Therefore, the major focus 

of this study is towards encompassing future climate projection uncertainty i.e. uncertainties 

contributed by GCM structure and future greenhouse gas scenarios, while other sources of 

uncertainty are left to be addressed in future work. 

Changes in climate extremes have been projected to be many folds higher than climate normals 

in future (IPCC, 2012). An increase in the intensity and frequency of climate extremes is projected 

to have significant socio-economic and environmental impacts on society in future. For the same 

reason, IPCC, (2012) emphasises the need for accurate prediction of future climate extremes. 

Therefore, another region of focus of this study is to be able to capture changes associated with 

entire distributions of climate variables. Different bias correction methodologies correcting entire 

distributions of climate model data have been proposed and are found to perform better than 

traditional methods correcting data means (Piani et al., 2010). Further, multiple change factors 

associated with specific percentiles of whole distribution have been found to be more effective in 

transferring changes projected by climate models than a single mean change factor (Anandhi et 

al., 2011). These methods and others available from literature are employed in this study for the 

synthesis of future climate variable distributions in the best possible manner. 
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An appropriate temporal scale has been selected for this study. Although majority of climate 

change studies have been performed on monthly or yearly timescales, the importance of evaluation 

of climate models on a daily temporal scale is highlighted in Perkins et al., (2007). Similar 

recommendations supporting the use of daily change factors over monthly change factors is made 

in King, (2012). Therefore, a daily temporal scale is adopted for use in the present study. 

2.2 Climate change impact analysis process 

 A detailed explanation of three major steps followed while performing this study: (i) 

generation of future climate projections, (ii) pre-processing of GCM data and (iii) generation and 

analysis of future streamflow projections. 

2.2.1 Generation of future climate projections 

In this section, steps performed to generate future climate data at the area of interest have been 

described. These include selection of Global Climate Models (GCMs) and future emission 

scenarios for analysis, spatial interpolation of climate model data at the gauging stations of interest 

and filling-in of the historical observed data using spatially interpolated reanalysis data.   

Selection of Global Climate Models (GCMs) and emission scenarios  

Atmosphere Ocean Global Climate Models (AOGCMs) are the approximate mathematical 

representations of physical processes occurring within the climate system. They provide us with 

the best possible estimates of historical and future climate data worldwide. A group of climate 

models have been identified and outlined in IPCC, 2007 and their number, complexity and 

effectiveness in simulating climate is increasing gradually. Till date, none of them has been found 

to be able to predict earth’s climate accurately. Three major reasons have been identified to be 
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responsible for it: a) limited theoretical knowledge about the processes occurring within the 

climate system, b) structural model uncertainty i.e. missing or approximated processes included in 

the models and c) parameter model uncertainty i.e. inability to depict complex natural processes 

perfectly using a set of parameter values (Knutti et al ,  2010).  

A total of forty scenarios were proposed in the Third Assessment Report (TAR) to 

encompass future emission uncertainty. Out of them, the SRES scenarios A2, A1B and B1 have 

been employed in the CMIP3 to prepare “WCRP CMIP3 multi-model datasets” for future (Meehl 

et al., 2007). They represent “high”, “medium” and “low” scenarios with regards to full range of 

emission forcings projected by the SRES scenarios. More recently, CMIP5 data results are based 

on Representative Concentration Pathways (RCPs), in which four representative paths RCP8.5, 

RCP6.0, RCP4.5 and RCP2.6, leading to a 2100 radiative forcing level of 8.5 W/m2, 6 W/m2, 4.5 

W/m2 and 2.6 W/m2 respectively have been introduced. In both the SRES as well as RCP scenarios, 

attempt has been made to capture the variability in future emissions as effectively as possible. 

Future climate data is generated following one of these plausible future emission scenarios.      

To account for the uncertainty associated with climate model outputs, an ensemble of their 

results or Multiple Model Ensembles approach, MMEs has been recommended for usage over a 

single or selected set of model output (IPCC, 2007). The selection of climate models is generally 

restricted by the unavailability of climate data for the climate variable of interest within the time-

period of interest. Climate variables that are generally considered while performing future flow 

projection analysis are precipitation (ppt), mean temperature (tmean), maximum temperature (tmax) 

and minimum temperature (tmin). Availability of climate data varies across these climate variables 

and models with consistent climate data across all four climate variables, in both future timelines, 

can only be selected for analysis. 
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Table 1 Summary of CMIP3 precipitation, mean temperature (tmean), maximum temperature (tmax), 

minimum temperature (tmin) datasets for historical and future (2045-2065 and 2081-2100) timelines  

Climate 

Variables 
Historical 

Future 

A1B A2 B1 

ppt 22, 1910 21, 1550 21, 1240 21, 1480 

tmean 22, 1920 21, 1560 21, 1240 21, 1440 

tmax 21, 1640 19, 1240 19, 960 19, 1200 

tmin 21, 1640 19, 1240 19, 960 19, 1220 

 

After analysing the data available from the CMIP3 project mentioned in Table 1, it is found 

that only sixteen models (listed in Appendix A) have complete set of daily ppt, tmean, tmax and tmin 

data available, for one or more future scenarios, corresponding to one or more runs in both 

historical and future timelines. This highlights the need for consistent data across climate variables 

for the entire period necessary to be considered in the analysis. Need for data consistency across 

climate models has been identified and has been considered while preparing the new climate model 

intercomparison project CMIP5 results (Taylor et al , 2007).  

As discussed before, a large number of climate models as well as emission scenarios have 

been outlined to capture uncertainty associated with future climate. New (or updated) models and 

scenarios are being proposed continuously, which are adding further towards already vast 

uncertainty in climate projections. Since each realisation result of every proposed model and 

scenario combination is equally plausible in the future, none of them can be ignored from the 

analysis. Accounting for all such projections is a herculean task and demands enormous amount 

of time and computation resources for performing even a single climate change study in the area 

of interest.    
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To reduce the workload, model-scenario combinations encompassing the entire range of 

changes projected by climate models can be selected for analysis. A workshop conducted by 

Environment Canada (EC) in Quebec (Mortsch, 2011) recommended two methods for the same. 

They are referred to as scatter plot method and percentile method. Similar recommendations and 

conclusions are drawn by the Ministry of Natural Resources, Ontario at the Conservation Ontario 

Climate Change Workshop (Garraway, 2011).   

Both methods mentioned above have been used to encompass climate projection 

uncertainty in numerous studies across Canada. While analysing future temperature and 

precipitation trends in Alberta (Barrow & Yu, 2005), five model-scenario combinations, i.e. 

coldest and wettest (NCARPCM-A1B), coolest and driest (CGCM2-B2), warmest and wettest 

(HadCM3-A2), warmest and driest (CCSR-A1FI) and the median conditions (HadCM3-B2) were 

chosen to capture uncertainty associated with future projections. In a similar study performed in 

the province of Saskatchewan (Lapp et al, 2008), model-scenario combinations projecting 

warmest-wettest, warmest-driest, coolest-wettest, and coolest-driest future climates around the 

South Saskatchewan river were selected for analysis.  

Scatter-plot method 

In the scatter-plot method, GCM-scenario combinations most likely to produce hydro-

climatic weather extremes in future are selected for the analysis. Percent mean changes in 

precipitation and absolute temperature as projected in future by each GCM-scenario combination 

are plotted and scenarios corresponding to extreme future precipitation-temperature scenarios are 

selected  (Mortsch, 2011). Figure 2 illustrates the selection of model-scenario combinations for 

2050s from all scenarios associated with sixteen climate models selected for analysis. Selected 
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extreme scenarios (in green/red) correspond to wet-hot, wet-cold, dry-hot and dry-cold 

precipitation-temperature combinations.  

 

Percentile method 

In percentile method, selection is made to capture the whole range of changes projected by 

GCMs. Percent changes in precipitation are plotted against absolute changes in temperature. 

Future GCM-scenario combinations corresponding to 5th, 25th, 50th, 75th and 95th percentiles of 

changes in both climate variables are selected (Mortsch, 2011). Figure 3 illustrates the selection of 

model-scenario combinations for 2050s from all scenarios associated with sixteen climate models 

selected for analysis.  

An important area of discussion associated with the application of these plotting 

methodologies is to ascertain an appropriate spatial, temporal and distributional scale at which the 

changes (projected by GCMs) should be calculated. In Figure 2, GCM-scenario combination 

selection is made using scatter plot method for data projected by the sixteen GCMs selected before. 

Scenarios in red have been selected using changes projected in mean and scenarios in green have 

been selected using changes projected in mean of data lying above 99th percentile value. Any 

common selection is plotted in both the colours. Similarly, in Figure 3, selection is made using 

percentile method using mean and mean above the 99th percentile changes. A clear difference 

between the selected scenarios is visible in both the cases. It indicates that the selection does 

depend on the distributional scale selected for analysis. Therefore, it is important to select for a 

suitable distributional scale based on which the selections should be made. We recommend that 

the scale should be selected depending on the kind of analysis being performed. For example, in a 
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study focussing on the quantification of climate change impact on flood frequency  scenarios in 

green will be preferable to those in red. 

 

 

Figure 2 GCM-scenario combination selection using scatter-plot method. Scenarios highlighted in red are 

selected based on mean change while those in green are selected based on mean above 99th percentile 

change 
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Figure 3 GCM-scenario combination selection using percentile method. Scenarios highlighted in red are 

selected based on mean change while those in green are selected based on mean above 99th percentile 

change 

 

Further, spatial extents of a single GCM grid are very large as compared to that of a typical 

catchment. Small or medium size catchments, like the one used in our study are generally engulfed 

within one grid cell of the GCM data. To associate changes within one or few grid cells completely 

or partially encompassing the area of interest, can give misleading information about the changes 

projected there because GCM data within one grid cell has been found to be influenced by the 

surrounding grid cells as well (Masson & Knutti, 2011). Plots shown in Figures 2 and 3 have been 

created by dividing the Province of Ontario into three sections based on historical climate trends 

across the province (process involved in formation of the three sections is explained in Appendix 

A). Distinctly different sets of scenario have been obtained for all three sections. This reiterates 

the need for choosing an appropriate spatial scale before making GCM-scenario combination 

selections.  
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Selected scenarios also vary with the time-period considered for analysis. For the plots 

shown in Figure 2 and 3, data corresponding to period 1961-2000 has been used as the baseline 

data and 2045-2065 has been used as future data. Different plots, and hence selections are obtained 

if different period for baseline or future data are considered.  

In summary, it is important to take into consideration climate projections made by each 

GCM while performing climate change impact studies. Although the choice of GCMs is limited 

by shortage of consistent data across climate variables, there are still a huge number of GCM-

scenario combinations to be considered for analysis. The entire range of changes projected by them 

can be encompassed by selecting a few combinations out of them using plotting methodologies 

like scatter-plot and percentile method. Selected scenarios, however, depend on the spatial, 

temporal and distributional scale selected for analysis.    

 

Preparation of continuous, point location climate data 

 Gridded climate model data can be spatially interpolated at a location of interest 

using interpolation methods like inverse distance square method. According to this method, data 

at a particular location is inversely proportional to the square of its distance from the nearest model 

grid point. The distance of point of interpolation is found out from four nearest reanalysis data grid 

points surrounding it. A simple formula, shown in Equation 2.1 is then used to calculate weight 

associated with each grid point. Interpolated value at a particular location (𝑣𝑖) is calculated by 

finding the sum of weighted means of climate data at all four grid points (𝑣𝑗) using Equation 2.2. 

                                       𝑤𝑗 =

1
𝑑𝑗

2⁄

1
𝑑1

2⁄ +1
𝑑2

2⁄ +1
𝑑3

2⁄ +1
𝑑4

2⁄
                                                  (2.1) 
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                                             𝑣𝑖(𝑡) = ∑ 𝑤𝑗
4
𝑗=1 ∗ 𝑣𝑗(𝑡)                                                  (2.2)                              

where d1, d2, d3 and d4 are the distances of the location of interpolation from four nearest grid 

points and 𝑤𝑗 is the weight calculated for jth grid point. 

  Historically observed precipitation and temperature datasets are often found incomplete or 

intermittent over the baseline period. These can be filled-in using spatially interpolated National 

Centres for Environmental Protection (NCEP)/National Centre for Atmospheric Research 

(NCAR) or North-American Regional Reanalysis (NARR) data. Interpolation of reanalysis data at 

a particular climate gauging station location can be done using the inverse distance square method 

as explained before. 

2.2.2 Pre-processing of GCM data 

Climate model datasets are associated with low spatial, temporal and distributional resolution. 

They have typical horizontal spatial resolutions of 2° x 2° which is close to 220 km x 220 km. This 

means that physiographic characteristics of such a huge area are approximated into one grid cell 

of the climate model data. Spatial extents of grid points exceed the catchment scales at which 

climate change studies are typically performed. Similarly, datasets are available in yearly, monthly 

and more recently in daily time steps. However, most hydrologic models typically require hourly 

datasets for generating streamflows. Further, climate data obtained from GCMs are associated with 

some time-independent component of model errors called biases (Ehret et al,  2012). These biases 

are evident when simulated climate model data for baseline are compared with historical observed 

data at the same location. To make the raw climate data usable for catchment scale hydrological 

analysis, methods such as bias-correction, downscaling and temporal disaggregation are 

employed.  
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Bias correction of gridded GCM climate data 

While performing climate change impact studies, bias associated with climate model data 

can be roughly but safely, defined as the time independent component of model error or the 

component of model error which remains constant throughout the length of datasets (Ehret et al. 

2012, Chen et al. 2011). The need for bias-correction step while performing climate change impact 

studies has been advocated by many researchers (for example, Muerth et al. 2012) and on the other 

hand, has been criticised by some (for example, Vannitsem 2011). A major argument against the 

application of bias-correction is that most methods employed to do so are purely statistical in 

nature and lack a sound physical basis i.e. they are not governed by the laws of physics (Haerter 

et al,  2011). Therefore, it is argued if they should be used to bias-correct GCM outputs, which are 

prepared taking into consideration complex hydro-meteorological, atmospheric and land-surface 

interactions prevalent within Earth’s climate system. 

Importance of this particular step and the methodology chosen to do so, can be realised by 

analysing the impact of bias-correction on projected future streamflow patterns. Sharma et al. 

(2007) applied bias-correction to spatially interpolated daily precipitation data in the Ping river 

basin (Thailand) and analysed its impact on the simulated discharge output. They found that the 

root mean square error (RMSE) between observed and simulated discharge series changed from 

172 m3/s to 93 m3/s. In another study, after bias-correction of gridded datasets from three GCMs 

for two scenarios and noting the changes in hydrological output from two Global Hydrologic 

Models (GHMs), Hagemann et al. (2011) concluded that bias correction step improves the 

simulated runoff patterns in most catchments considered in the analysis. It has also been pointed 

out that the uncertainty associated with bias-correction step can be of an order similar to that of 



27 
 

GCM projections. These findings highlight the need for, and caution required, while selecting and 

applying a bias-correction methodology.  

The purpose of bias correction step is to modify the climate model data in a way the 

correlation of model baseline data with observed data improves. Methods employed to do so range 

from those correcting just the means (Fowler and Kilsby, 2007; Schmidli et al,  2006) to those 

correcting entire distributions of climate data (Ines & Hansen, 2006; Piani et al., 2010). Most recent 

efforts are towards including changes in bias correction parameter statistics between present and 

future (Watanabe et al., 2012), effects of multiple timescales (Haerter et al., 2011), correlation 

between multiple variables being corrected (Piani & Haerter, 2012).  

Correction of probability distribution functions (PDFs) of climate variables has been 

advocated in recent research (Haerter et al., 2011; Piani et al., 2010; Piani et  al.,  2009). Methods 

used to do so are generally referred to as “quantile mapping”, “histogram equalisation” or “rank 

matching” methods for correcting the GCM bias (Maraun et.al. 2010). Several studies comparing 

effectiveness of multiple bias correction methodologies towards bias correction of climate model 

data have been performed. By comparing seven downscaling and bias correction methodologies, 

Jakob Themeßl et al.,  2011 recommends the usage of quantile mapping methodology for bias 

correction, especially while analysing climate extremes. Teutschbein & Seibert, 2012 test six bias 

correction methodologies of varying complexity in a non-stationary climate setting and concluded 

that distribution based methodologies perform best under a changing climate.  

One such methodology is statistical bias correction method explained in Piani et al., (2010). 

In this method, climate model data (Xmod) is transformed so that the intensity histogram of corrected 

model baseline data (Xcor) matches with the intensity histogram of observed data (Xobs) using 
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transfer functions. Transfer functions for a particular climate variable are estimated by first 

calculating the cumulative distribution function (CDF) of modelled and observed historical data 

and then, by finding correlation between them such that for each point in the distribution CDFmod 

(Xmod) = CDFobs(Xobs).  

There are a few clear advantages of applying statistical bias correction methodology over 

traditional methods. The methodology can be used to correct a) mean only (when only additive 

transfer functions are used), b) mean and standard deviation only (when linear transfer functions 

are used) c) entire distributions (when exponential transfer functions are used) of model data. In 

other words, an appropriate level of complexity can be selected in transfer functions, to obtain the 

desired level of accuracy in results.     

Estimation of monthly bias correction parameters for precipitation data  

The transfer functions chosen for bias-correction should have minimal degrees of freedom 

so that they are robust and constantly valid over the period of analysis. Piani et al., (2010) 

suggested three transfer functions for bias-correcting daily precipitation data. Out of them, linear 

and exponential transfer functions (Equation 2.3 and 2.4) have been used in this study.  

                                                   xcor = a+bx                                                                   (2.3) 

                                     xcor= (a+bx) (1 − 𝑒
(−(𝑥−𝑥0))

𝜏⁄
)                                                   (2.4) 

 

where, a is the additive correction factor, b is the multiplicative correction factor, τ is the rate of 

approach of attaining the asymptote, and  x0 is the dry day correction factor. It represents the 

maximum precipitation below which modelled precipitation is assumed to be zero. Also, x0=-a/b. 
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It is suggested in Piani et al., (2010) that transfer functions are well approximated by linear 

functions (Equation 2.3) at higher precipitation intensities. However, to accommodate for a 

systematic change of slope at lower intensities, an exponential form of transfer function is also 

suggested (Equation 2.4). This function has an exponential tendency to the asymptote (a+bx), 

where the rate of approach to the asymptote is τ and dry day correction factor is x0. A combination 

of these two transfer functions is found to produce reasonable results in a global analysis performed 

in Piani et al., (2010). Similar results have been found by (Rojas et al.,  2011) while correcting 

daily Regional Climate Model (RCM) precipitation and temperature time series over a pan-

European scale.  Therefore, a combination of linear and exponential transfer functions is used in 

this work to bias-correct daily precipitation following these steps: 

1) Data falling under each month is extracted from the daily observed and model climate data.  

2) Observed and modelled data is sorted in ascending order of intensities. 

3) It is checked if at least 10% of the length of the observed record are contributed by wet 

days (>1mm of rainfall) and daily mean precipitation value is more than 0.01 mm/day. If 

any of these conditions are not met, a simple additive transfer function (equal to difference 

in means) is used to modify the modelled data.  

4) If both the above conditions are met, for all wet days in observed record, linear transfer 

function (Equation 2.4) parameters are estimated by minimising the Root Mean Square 

Error (RMSE) of the fit obtained between model and observed climate data. 

5) If fitted parameters a<0 and 1/5<b<5, transfer function obtained from linear fit is used to 

modify climate model precipitation. 

6) If above conditions on parameters are not fulfilled, minimisation of RMSE is performed to 

estimate four parameters a, b, τ and x0 of exponential transfer function (Equation 2.4).  
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Estimating monthly bias correction parameters for temperature data 

It has been explained in Piani et al., (2010) that bias-correction of maximum temperature 

(tmax), minimum temperature (tmin) and mean temperature (tmean) data directly results in large 

relative errors in temperature skewness (tsk) and temperature range (tr). Therefore, it is proposed 

that bias correction of tmax, tmin and tmean values should be performed indirectly by correcting tmean, 

tsk and tr values first and then calculating tmax and tmin values using equations 2.9 and 2.10 

respectively. Usage of linear transfer functions (Equation 2.3) is recommended while correcting 

tmean, tsk and tr time-series (Piani et al., 2010) and are used in this study for bias correcting climate 

model temperature data.  

Disaggregation of monthly bias correction parameters to daily timescale 

Monthly bias correction parameters estimated before are disaggregated into daily timesteps 

using methodology explained in Piani et al., (2010). If interpolation is being done for adjacent 

months with similar transfer functions (for example, both fitted with either linear or exponential 

transfer functions), Equation 2.5 is used to calculate transfer function parameters for a particular 

day d within the two months. The equation calculates transfer function parameters for each day by 

finding weighted average of parameters obtained at the middle days of surrounding months. 

Weight assigned to transfer function of a particular month varies inversely with the time difference 

between the day in consideration and middle day of that particular month. 

                                                           𝑇𝐹𝑑 =∝ 𝑇𝐹𝑚−1 + (1−∝)𝑇𝐹𝑚                                          (2.5) 

where, α is the weight assigned to month m-1. It depends on the distance of day d (in units of 

month) from middle day of month m, TFd represents transfer function for day d, and TFm-1 and 

TFm represent transfer functions at middle days of months adjacent to day d. 
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The process of disaggregation with dissimilar transfer functions in adjacent months (for example, 

with linear and exponential transfer functions) is a bit complex since it involves transition between 

different functional forms. An approximate solution for disaggregation of mixed transfer functions 

has been proposed in Piani et al., (2010) (Equation 2.6 to 2.8)  

                                                              𝑥𝑐𝑜𝑟,𝑙 = 𝑎𝑙 + 𝑏𝑙𝑥                                                         (2.6) 

                                           𝑥𝑐𝑜𝑟,𝑒 = (𝑎𝑒 + 𝑏𝑒(𝑥 − 𝑥0))(1 − 𝑒
(𝑥−𝑥0)

𝜏⁄ )                                   (2.7) 

                                      𝑥𝑐𝑜𝑟
∕

= (𝑎/ + 𝑏/(𝑥 − 𝑥0
/
))(1 − 𝑒

(
(𝑥−𝑥0

/
)

𝜏/
⁄ )

)                                     (2.8) 

In the above equations, 

𝑎/ = (1 − 𝛼)𝑎𝑒 

𝑏/ = (1 − 𝛼)𝑏𝑒 + 𝛼𝑏𝑙 

𝑥0
/

= (1 − 𝛼)𝑥0 + 𝛼(−
𝑎𝑙

𝑏𝑙
) 

𝑙𝑛 𝜏/ = (1 − 𝛼)ℓ𝑛𝜏 + 𝛼ln (0.5) 

where, 𝑎l, bl denotes the additive and multiplicative correction factor for linear transfer function, 

ae,be,x0,τ denote the additive, multiplicative, dry day correction factor and  correction factor for 

exponential transfer function, 

a/,b/, 𝑥0
/
, 𝜏/denotes the additive, multiplicative, dry day correction factor and  correction 

factor for interpolated transfer function, and α is the parameter which assumes 

values from 0 to 1. It is 0 when day in question falls in the middle of the month 

with exponential transfer function and is 1 when it falls in the middle of the month 

with linear transfer function. 
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Bias-correction of GCM climate data using daily transfer functions 

The disaggregated daily transfer functions are used to bias-correct historical and future 

daily temperature and precipitation time series. Appropriate additive, linear or exponential transfer 

functions are applied on each day to correct model precipitation data. In the case of temperature, 

estimated daily linear transfer functions are used to bias-correct daily tmean, tsk and tr timeseries. 

Timeseries of tmax and tmin is subsequently calculated using Equations 2.9 & 2.10, 

                                          𝑡𝑚𝑖𝑛
𝑏𝑐 = 𝑡𝑚𝑒𝑎𝑛

𝑏𝑐 − (𝑡𝑠𝑘
𝑏𝑐 × 𝑡𝑟

𝑏𝑐)                                                    (2.9) 

                                      𝑡𝑚𝑎𝑥
𝑏𝑐 = 𝑡𝑚𝑒𝑎𝑛

𝑏𝑐 + 𝑡𝑟
𝑏𝑐 × (1 − 𝑡𝑠𝑘

𝑏𝑐)                                             (2.10) 

 

Statistical downscaling 

Downscaling is a method for improving the spatial resolution of Global Climate Model 

(GCM) outputs. Two distinct groups of approaches can be followed for doing so. First group is 

known as the dynamic downscaling approach in which local physiographic information along with 

GCM boundary conditions are used to generate higher resolution Regional Climate Model (RCM) 

datasets. The dynamic downscaling process is highly computationally extensive. Further, 

dynamically downscaled results are governed significantly by associated GCMs (Raisanen et al., 

2004) and so, they too are uncertain. Efforts are being placed currently to generate projections 

from multiple RCMs using boundary conditions from multiple GCMs to account for the associated 

uncertainty.  

  Another less computationally demanding approach for downscaling GCM data is known 

as statistical downscaling. It is based on the principal that regional data is dependent on large scale 
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climate state as well as local physiographic features (IPCC, 2001). Information regarding large 

scale climate state is generally extracted from the GCMs while several parametric, semi-parametric 

and non-parametric methods are employed to transfer this large scale information to regional 

scales. The process of statistical downscaling using weather generators can be sub-divided into 

two parts: i) calculation of future scaled climate variables and, ii) generation of future climate 

variable timeseries using a weather generator.  

Historically observed climate variables are modified to include changes projected by climate 

models in future. These changes are incorporated into the observed data by using change factors 

(CFs) calculated from bias-corrected historical and future GCM data. CFs can be applied on 

different temporal scales (daily, monthly, seasonally or annually), can have different mathematical 

formulations (additive or multiplicative) and can vary in numbers (same or unique for different 

percentiles of a climate variable). Anandhi et al., 2011 gives a comprehensive overview of different 

change factor methodologies used in climate change impact studies. After performing a 

comparative analysis of different CFs, usage of multiple CFs over single CF, and of additive CFs 

over multiplicative CFs (unless the variable is bounded, in which case multiplicative CFs are to be 

used) has been recommended. This is because multiplicative change factors can give 

unrealistically high or low values in cases where the variable’s value is very low. However, they 

found that usage of large number of bins (>=25) eliminates this difference (Anandhi et al., 2011). 

Keeping above factors in mind, following steps are followed in this study for generating future 

scaled climate variable data for precipitation and temperature: 

1) Number of bins and distribution of variable percentiles across the bins is decided. Number 

of bins is kept >25. The distribution of variables can be uniform as well as non-uniform 

across selected bins. 
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2) Monthly empirical cumulative distribution functions (ECDFs) are calculated for bias-

corrected historical and future GCM data. 

3) For each month, means of the historical and future values falling within each bin is 

calculated. 

4) Additive and multiplicative CFs are calculated for temperature and precipitation 

respectively for each month, at each bin, using equations 2.11 and 2.12. 

                                                         𝐶𝐹𝑎𝑑𝑑,𝑏 = 𝐺𝐶𝑀𝑓,𝑏 − 𝐺𝐶𝑀ℎ,𝑏                                        (2.11) 

                                                        𝐶𝐹𝑚𝑢𝑙𝑡,𝑏 = 𝐺𝐶𝑀𝑓,𝑏/𝐺𝐶𝑀ℎ,𝑏                                          (2.12) 

5) The historical observed data is distributed into an equal number of bins as the GCM data. 

CFs calculated for each bin are added or multiplied to the distributed observed values to 

obtain future scaled climate variable values. 

Weather generators (WGs) are tools that generate synthetic series of climate data having 

characteristics similar to input data. They can be classified into three basic types i.e. parametric, 

semi-parametric and non-parametric WGs. Parametric weather generators typically employ 

Markov chains to simulate the occurrence of dry and wet days, and use probability distributions to 

calculate the amount of precipitation, temperature and other climate variables. The problem with 

this kind of weather generator is that they are heavily reliant on the statistical properties of the 

input data and generate climate series based on it. Since the statistical properties of historical and 

future climate data are expected to be different from each other, usage of parametric WGs for 

generating synthetic future climate series is clearly arguable. Semi-parametric WGs have both 

empirical as well as parametric components, which are used together in different ways to produce 

synthetic climate variable time series (King, 2012). Most of these WGs are single-site, single-
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variable WGs, so the correlation between different climate stations as well as between different 

climate variables is lost in the generated future climate series.  

Multisite multivariate weather generator model (M3EB) developed at Western University 

(Srivastav and Simonovic, 2013) is a non-parametric weather generator which can be used to 

generate synthetic multiple climate variable series at multiple locations. M3EB first converts the 

climate data into independent components orthogonally, uses Maximum Entropy Bootstrap 

procedure to generate synthetic replicates, and then transforms data back into original space by 

applying inverse orthogonal transformation. This weather generator has been found to preserve 

spatial and temporal precipitation, Tmax and Tmin data statistics at 27 stations across the Upper 

Thames River Basin (UTRB).     

Multisite multivariate weather generator model (M3EB) 

Following section presents the multisite multivariate weather generator model (M3EB) (Srivastav 

and Simonovic, 2013). Let the observed weather variables be represented by W and denoted by  

1,1 2,1 ,1 1,2 2,2 ,2 1, 2, ,n n k k n k

t t t t t t t t tW W W W W W W W W W                   (2.13) 

where the superscript ‘n’ denotes the weather variable at site ‘k’ and ‘t’ is the index for time. In 

matrix form W can be expressed as 

1,1 2,1 ,

1 1 1

1,1 2,1 ,

2 2 2

1,1 2,1 ,

n k

n k

n k

t t t

W W W

W W W
W

W W W

 
 
 
 
 
  

         (2.14) 

The total number of columns in matrix (2) is equal to N (n times k) and the total number of rows 

is equal to M (total number of days). The modeling steps include (i) preprocessing, (ii) generating 

replicates and (iii) post processing. 
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Preprocessing 

1. Standardize the individual columns of matrix W following 

1,1 2,1 ,1 1,2 2,2 ,2 1, 2, ,n n k k n kw w w w w w w w w w         (2.15) 

where ,n kw is 
,

, ,
,

n k

n k n k
n k t

W

W W
w




         (2.16) 

in which, ,n kW  and ,n kW
 represent the mean and the standard deviation respectively for 

each of the weather variables at the kth site (i.e., each column of matrix W).   

2. Apply orthogonal transformation, such that the matrix ‘w’ is fully uncorrelated. This is 

achieved by finding out the eigenvalues and eigenvectors of the covariance matrix obtained 

from the standardized dataset 

r Pw            (2.17) 

where r is a scores matrix which is fully uncorrelated vector components also known as 

principal components (PC) and has a matrix size same as vector ‘W’, i.e.  M N    

1,1 2,1 ,

1 1 1

1,1 2,1 ,

2 2 2

1,1 2,1 ,

n k

n k

n k

t t t

r r r

r r r
r

r r r

 
 
 
 
 
 

        (2.18) 

P is the eigenvectors of the covariance matrix     and is given by 

  TCOV w           (2.19) 

where  is the orthonormal eigenvector matrix or loadings and   is the diagonal 

eigenvalue matrix of size  N N . The diagonal eigenvalue matrix ( ) is arranged in 
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descending order, i.e., the first element of the matrix has the highest eigenvalue then the 

second and so on.  

Generating Replicates –Bootstrap 

3. The column of the first principal component is sorted in ascending order to create a rank 

matrix 
tO .  

4. From the rank matrix, compute intermediate points (Pt) using 

1 1, , 1
2

t t
t

O O
P for t M 
   
 

       (2.20) 

5. For the lower and upper limit of the data use trimmed mean deviations (Tmean) from all 

consecutive observations as 

1mean t tT O O             (2.21) 

The lower limit is given as  

0 1 meanP O T            (2.22) 

and the upper limit is determined as 

M M meanP O T           (2.23) 

This ensures that the replicates generated are beyond the historical extremes. 

6. The density is constructed, such that the ergodic theorem (mean preserving constraint) is 

satisfied. The following equations are used to calculate the desired mean 

1 1 20.75 0.25m O O                                                                                                   

(2.24) 
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1 10.25 0.5 0.25 2,3, , 1k k k km O O O k t                  (2.25) 

10.25 0.75t t tm O O           (2.26) 

7. Uniform random numbers between 0 and 1 are generated and the sample quantiles of the 

density at those points are obtained and sorted accordingly. 

8. Using the rank matrix in step 3, the sample quantiles are reordered. The step ensures that 

the temporal dependence of the historical structure is replicated.  

9. Steps 4 to 8 are repeated, till the desired number of replicates of length ‘M’ are generated 

 

Post-Processing 

Assuming that the first component of the ‘r’ matrix (represented as 1,1

tr  ) is considered for 

generating the replicates in the transformed space (represented as 1,1

, 1, ,t repr rep numrep  , 

where numrep is the total number of replicates generated), the  post-processing continues through 

the implementation of the following steps .  

10. Replace each replicate with the first component in scores matrix. For example to obtain 

first set of replicates in transformed space, replace 1,1

,1tr  in place of 1,1

tr in matrix ‘r’ in Eq. 6 

as shown below to obtain 
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1,1 2,1 ,

1,1 1 1

1,1 2,1 ,

2,1 2 2

1

1,1 2,1 ,

,1

n k

n k

n k

t t t

r r r

r r r
r

r r r

 
 
  
 
 
  

        (2.27) 

11. Using the modified scores matrix perform inverse orthogonal transformation to obtain 

synthetic weather variables at all sites.  

12. Repeat steps 10 and 11, till the number of generated sequences are equal to total number 

of replicates to be generated. 

 

Disaggregation of daily climate model data into hourly  

As discussed before, climate model daily datasets need to be disaggregated to hourly 

timescale before they can be used for performing hydrological simulations. Capturing the hourly 

variability of climate variables accurately is important for simulating daily hydrological response 

of the catchment. Studies comparing different disaggregation methods, available in the literature, 

have been performed. For example, Debele et al.,  2007 tested the efficacies of multiple 

methodologies for disaggregating daily wind speed, relative humidity, temperature and 

precipitation data into hourly timesteps. They found that cosine formula is suitable for 

disaggregating daily temperature data into hourly data. Merit of this method is that it is simple, 

easy to use and is virtually devoid of any parameters to calibrate. This implies that the method can 

be used freely in the baseline as well as future climatic conditions and hence, doesn’t contradict 

with the principal of non-stationarity associated with climate change.  

To obtain hourly temperature series, daily Tmax and Tmin series are used as inputs in the 

cosine function formula. A generalized expression of cosine formulae is expressed as, 
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                                     𝑇𝑡 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

2
∗ cos (

𝜋(𝑡−14)

12
) + (

𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
)                                (2.28) 

where, t denotes hour of the day at which temperature is being calculated.  

Disaggregation of precipitation is much more complicated than temperature because of the 

unsystematic variability involved at a sub-daily scale. According to Debele et al., 2007, methods 

used currently for disaggregating daily precipitation either a) uniformly distribute daily rainfall 

across the day; b) stochastically perform temporal disaggregation of daily data; c) use detailed 

information from a nearby station to perform disaggregation; and d) perform a multivariate 

disaggregation by employing a combination of b) and c).  

Although observed rainfall is seldom uniform, many hydrologic models distribute daily 

rainfall uniformly while performing hydrologic simulations. For daily rainfall values (rd) < 24 mm, 

hourly precipitation values of 1mm are distributed across first rd hours and no precipitation is 

assumed for remaining hours of the day. However, if rd >=24 mm, rainfall is uniformly distributed 

across the day.   

Performing bias-correction of climate data can change the statistical properties of baseline 

and future climate data. This also modifies the changes projected by a GCM. For instance, Table 

2 and 3 compare the changes projected by raw and bias-corrected GCM datasets for two extreme 

scenarios selected in Figure 2. It can be seen that the changes in mean as well as mean above 99th 

percentile are different for bias-corrected (BC-PPT and BC-TMEAN) and uncorrected (UC-PPT 

and UC-TMEAN) data. Therefore, the selection of extreme GCM-scenario combinations should 

either be done after the data has been corrected for bias or the methodology chosen for bias-

correction should be such that it doesn’t impact the changes projected by raw GCM data (Note: 

Changes projected by raw GCM data are considered accurate as per change factor based statistical 
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downscaling concept. Therefore, they shouldn’t be altered by bias-correction step). On the other 

hand, downscaling using change factors and weather generator doesn’t have significant impact on 

the changes projected by GCMs. However, the type of change factors used while downscaling 

GCM data should match with those used while selecting GCM-scenario combinations to ensure 

that the changes projected by raw GCM data are preserved.  

   Table 2 Changes in mean projected by raw and bias-corrected GCM scenarios for 2050s 

Model UC-PPT UC-TMEAN BC-PPT BC-TMEAN 

IPSL-CM4 (A2) 1.25 60.71 1.58 49.6 

CSIRO-MK3.0 (A1B) 2.9 30.21 2.81 21.14 

    

Table 3 Changes in mean above 99th percentile projected by raw and bias-corrected GCM scenarios for 

2050s 

Model UC-PPT UC-TMEAN BC-PPT BC-TMEAN 

IPSL-CM4 (A2) 0.093 13.66 13.24 15.22 

CSIRO-MK3.0 (A1B) 4.57 7.94 4.81 6.23 

 

Also, pre-processing methods are generally reliant on modifying baseline model data with 

respect to historical observed data, and using same set of transfer functions to modify future model 

data. In other words, it is assumed that these transfer function relationships will be equally 

applicable in future timelines as well. Robust methodologies need to be employed which are 

devoid of such assumptions since they are very unlikely to be true in future.          

2.2.3 Generation and analysis of future streamflow projections 

Pre-processed data from climate models is used as input in hydrologic models, which generate 

spatial and temporal distribution of runoff using catchment characteristics. Lumped hydrological 

models consider entire area under study as a single unit and represent state variables as averaged 
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values across it. Due to this, lumped models fail to represent catchment scale hydrological 

processes accurately especially for medium and large catchments (>100 km2 in area).  Distributed 

models divide the catchment into uniform grid cells and are much more complex than the lumped 

models. Lack of fine resolution climate data, as required by fully distributed models, makes their 

calibration process difficult. Defining initial values for hydrological parameters across the 

catchment grids is difficult for fully distributed hydrological models (Gosling et al.,  2011). Semi-

distributed models are less complex than distributed models and have a higher spatial resolution 

of hydrological processes than a lumped model. Here, catchment is distributed to a degree that 

hydrological properties of the catchment are satisfactorily, if not precisely, simulated in the model. 

They are generally divided into areas of similar hydrological responses. Hydrological processes 

within each of these areas are simulated as lumped processes within each sub-catchment and are 

routed downstream to get flow patterns at the catchment outlet. Semi-distributed and distributed 

hydrologic models have been found to perform better than the lumped models in simulating 

hydrological response to climate variables especially for large catchments (Khakbaz et al.,  2012).         

Continuous hydrological modelling is necessary while estimating peak runoff from a 

catchment. Unlike event based modelling, it accounts for the state of catchment prior to flood-

producing rainfall event, in the modelling procedure. Lack of this antecedent information has been 

found to produce significantly underestimated peak flows in 45 catchments across the Murray 

Darling basin (Pathiraja et al.,  2012). Similar results are noted when Berthet & Andr (2009) 

analysed peak flow response of 178 French catchments to event and continuous hydrologic 

simulations. In their study, Pathiraja et al., (2012)  also noted that usage of continuous simulation 

is even more important in catchments where there is a significant lag between rainfall and runoff 

peaks.  
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WATFLOOD hydrological model 

WATFLOOD hydrologic model is based on the concept of Grouped Response Units 

(GRUs), where units of similar hydrological response (or Hydrological Response Units) within 

the catchment are modelled together to calculate overland flow, interflow and baseflow within the 

area of study. The resolution of computational grids is chosen keeping in mind the resolution of 

available meteorological data (generally from numerical weather models or radars) as well as the 

size of smallest catchment to be modelled. Using remotely sensed land-cover data, these 

computational grids are sub-divided into sections of unique land-cover classes. The hydrological 

response from each individual land-cover section is calculated and routed downstream to calculate 

the runoff response of the catchment under study (Kouwen et al.,  1993). For instance, if land-

cover image has four classes: A, B, C and D. Hourly runoff is first calculated for each individual 

class and then, combined together to get total runoff at each grid. Runoff calculated at each grid is 

routed downstream using physiographic information of the catchment (Figure 4). Figure 5 shows 

the process by which precipitation and temperature data is utilised in WATFLOOD to generate 

flows.  

 

Figure 4 Flow calculation and routing concept used in WATFLOOD 
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In this setting, hydrological parameters are associated with individual land-cover classes 

and they remain constant regardless of the composition of different grids existing within the basin 

area. Therefore, same set of parameters can be used without recalibration in another catchment 

with similar physiographic characteristics. Also, model need not be recalibrated if land-use within 

the catchment changes over time. An updated land-use file for the catchment will be sufficient to 

include changes in the calibrated model making the model extremely suitable for climate change 

impact studies.  

 

Figure 5 Flowchart of processes involved for streamflow generation in WATFLOOD 

 

Table 4 Description of important input, outputs and subroutines in the WATFLOOD hydrological model 

Database Files Description 

Drainage input 

*.map 
Watershed map file: has information such as stream 

elevation, drainage direction, land-cover information etc. 

*.shd 
Basin file generated from the map file using programme 

bsn.exe 

*.par Parameter file 

*.str Contains stream gauge and reservoir locations 
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Meteorological 

input 

*.rag 
Contains precipitation gauging station locations and 

historical records 

*.tag 
Contains temperature gauging station locations and historical 

records 

Event input event.evt 
Contains information about the duration for which the 

simulation will run 

Output (imp) 

spl.txt 

Provides a summary of the modelling parameters, the initial 

soil moisture, the total precipitation on each element, the 

runoff at each streamflow gauge station and the errors 

spl.plt Provides hydrograph plots from the run 

stg.plt Provides stage plots from the run 

spl.csv 
Observed and simulated flow history in *.csv format for 

import to other programmes 

Useful 

subroutines 

radmet.exe Converts the radar data file into SPL compatible format 

ragmet.exe 
Distributes point precipitation data using distance weighting 

technique 

calmet.exe Fills-in missing radar data with point precipitation data 

snw.exe 
Distributes snow coarse data using distance weighting 

technique 

moist.exe 
Distributes soil moisture data using distance weighting 

technique 

tmp.exe 
Distributes point temperature data using distance weighting 

technique 

spld.exe 
Compiles the model in debug mode with maximum error 

diagnostics 

splx.exe 
Compiles the model with faster speed and lesser error 

diagnostics 

stats.exe Calculates a number of statistics for the run 

 

The model is aimed at flood forecasting and long-term hydrologic simulation. It include 

processes like interception, infiltration, evaporation, snow accumulation and ablation, interflow, 

recharge, baseflow, overland flow and channel routing (Kouwen et al., 1993). A flowchart 

depicting the role of these processes in generation of streamflow from climate variables is provided 

in Figure 5. Hourly precipitation and temperature data is used as input into a snow model and value 

of adjusted precipitation is obtained. Adjusted precipitation is reduced by losses from interception, 

infiltration and evaporation. A fraction of water is stored on the surface while some contribute 



46 
 

towards groundwater recharge and baseflow. Remaining water flows overland and combines with 

baseflow to form total runoff. Generated total runoff is routed downstream to generate streamflow 

patterns for the catchment under study. A description of major processes involved in WATFLOOD 

hydrologic model is provided below (Kouwen et al., 1993): 

 Interception is calculated using the approach suggested in Linsley et.al. (1949). According 

to it, total interception is equal to the sum of total canopy storage and the Interception 

Evaporation (IEP) occurring during a storm event.  

 Infiltration processes are accounted for in the model using the Philip formulae (Philip, 

1959), which also accounts for surface detention of water. Initially, infiltration rate is high 

due to large pressure gradient in the surrounding region. The same decreases with time as 

the gradient decreases.    

 Potential Evapo-Transpiration (PET) can be calculated using different methods in 

WATFLOOD. When radiation (shortwave and longwave) data is available, the Priestly-

Taylor equation can be used. When only temperature data is available, Hargreaves equation 

can be used. If both radiations as well as temperature data are unavailable, PET is estimated 

using published values from the literature. Estimation of AET involves consideration of 

water transpired from vegetation and water evaporated from open soils and open water. 

 The calculation of snow-melt is performed using degree day approach as described in 

National Weather Service River Flow Forecast system by Anderson (1973).    

 Interflow is the flow of infiltrated water (contributing towards Upper Zone Storage) in the 

surrounding space. Downward movement of water has been ignored in the model and total 

interflow is expressed as a linear function of water stored in the upper zone.   
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 Baseflow is estimated at each sub-division using measured hydrograph at the basin outlet. 

The magnitude of baseflow is made to recede with time using a recession constant. 

However, the contribution of baseflow has been found to be negligible with respect to 

overland flow during the flooding events. 

 Overland flow is the component of flow exceeding the depression storage. It is estimated 

in the model using a modified form of manning’s formula. Total runoff is calculated by 

adding up overland flow contributions from different land-use classes to the baseflow. 

 Routing of overland flow across the channel cross-section is carried out using simple 

storage-routing technique. Relationship between overland flow and channel storage is 

expressed using Manning’s formula.  

The WATFLOOD is a compilation of FORTRAN code subroutines and can be run on DOS 

and UNIX platforms. Its main advantage is that it is very fast, robust, can run with minimal 

(precipitation and temperature) inputs and its transferability to other watersheds without 

recalibration. Although model runs are performed on hourly temporal scale, meteorological inputs 

(except temperature) can be provided in daily time steps as well. If provided in daily timesteps, 

climate data is temporally disaggregated internally using standard climate variable disaggregating 

procedures and are used to generate streamflow response. Table 4 provides a list of major input 

files, output files and set of programmes that define WATFLOOD with their short descriptions. 

Statistical analysis 

Flood frequency analysis is performed to develop relationships between flood magnitude 

and flood recurrence interval. The same is achieved by performing a statistical analysis on time-

series of peak flows. There are two methods of extracting peak flow data from a discharge series, 
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namely Annual Maximum (AM) and Peak Over Threshold (POT) method. In AM method, yearly 

maximum discharge values are selected while in POT method, discharge events larger than a 

specified threshold are considered for analysis. Major limitation of AM method is that the values 

extracted may not be representative of actual peaks in the entire discharge series. For example, the 

second largest discharge in a high-flow year may be higher than peaks of many other low-flow 

years in the discharge series, but will be ignored by the AM method since only one (maximum) 

value is selected per year.  Another limitation is that sample size of peak flows obtained from the 

AM method is small (equal to the number of years of discharge series data) and hence, reliable 

statistical inferences are hard to be drawn from it. POT method, on the other hand, overcomes 

these limitations and is extremely useful especially when the available discharge series is short.  

The flood magnitude-return period relationship for POT model is: 

                                                           1 − 𝐹(𝑄𝑇|𝑄𝑇 > 𝑞0) =
1

𝜆𝑇
                                             (2.29) 

where F() is the cumulative distribution of the discharges exceeding the threshold 𝑞0, and λ is the 

number of peaks selected per year. 

While selecting values for analysis using POT method, it should be ensured that they are 

independent and don’t belong to the recession curves of previous flow peaks. Further, selection of 

an appropriate threshold value is of utmost importance. Although no strict rules are existent for 

selection of this threshold, guidelines for doing so have been summarised in Lang & Bobe, 1999. 

They identified three criteria to be considered while selecting a threshold value. These are related 

to a) “mean number of over-threshold events”, b) “mean exceedence of threshold” and c) 

“dispersion index” obtained from the selected values. Mean exceedence over threshold criterion is 
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based on the objective of stabilisation of POT distribution parameters. It has been found that 

choosing a threshold value within an interval where a linear relationship between threshold value 

and mean exceedence is observed, increases the stability of distribution parameters. Hence, 

recommendations have been made to locate this range and then test different threshold values 

within this range for their dispersion characteristics. First and third criteria aim to select peaks 

following characteristics of a Poisson’s process or in other words, are randomly distributed over 

time.  To account for it, a value of λ>2 or 3 is recommended for usage.     

Flow peaks crossing a threshold can be fitted using a Generalised Pareto Distribution 

(GPD). The cumulative distribution function F(x) for the GPD can be given by the following 

equations: 

                                  𝐹(𝑥) = 1 − (1 − 𝑘
(𝑞−𝑞0)

𝛽
)1/k   if 𝑘 ≠ 0                      (2.30) 

                                   𝐹(𝑥) = 1 − 𝑒𝑥𝑝(−
(𝑞−𝑞0)

𝛽
)   if k=0                        (2.31) 

where, q0 is the threshold, β is a scale parameter and k is shape parameter. When k=0, it represents 

an exponential distribution. 

The inverse form of the GPD is: 

                                  𝑞(𝐹) =  𝑞0 +
𝛽

𝑘
[1 − (1 − 𝑓)𝑘]                if 𝑘 ≠ 0                       (2.32) 

                                         𝑞(𝐹) = 𝑞0 − 𝛽 ln[1 − 𝐹]                 if 𝑘 = 0                       (2.33) 

Method of L-moments is most frequently used for parameter estimation in hydrological 

studies. This parameter estimation method has been found to perform better than other traditional 

methods like method of moments and maximum likelihood, particularly when the sample size is 
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small (Chin, D.A., 2006). The method has also been found robust against outliers present in 

datasets (Hosking, 1989). In this method, L-moments are expressed as the linear combinations of 

Probability Weighted Moments (PWM). The expressions for calculating PWMs and L-moments 

are summarised in Table 5.  

As mentioned in Das and Simonovic, (2012), two different approaches can be taken while 

estimating parameters of GPD using L-moments. 

i. An initial value of threshold q0 is fixed and data values crossing it are picked from the data 

sample (say M nos.). In this case, only two parameters β and k need to be estimated.  

ii. An initial value of λ is fixed and a total (λ x N) number of values are picked from the entire 

timeseries. Peak M flows are then selected out of those values and parameters q0, β and k 

are estimated. 

For (i) parameters β and k are given by Hosking and Wallis, (1997) 

𝑘 = ((𝑙1 − 𝑞0)/𝑙2) − 2                                                (2.34) 

                                                           𝛽 = (1 + 𝑘)(𝑙1 − 𝑞0)                                                   (2.35) 

 

For (ii) parameters q0, β and k are given by Hosking and Wallis, (1997) 

                                                        𝑘 = (𝑙1 − 3𝑡3)/(1 + 𝑡3)                                                 (2.36) 

                                                        𝛽 = (1 + 𝑘)(2 + 𝑘)𝑙2                                                      (2.37) 

                                                         𝑞0 = 𝑙1 − (2 + 𝑘)𝑙2                                                        (2.38) 

where 𝑙1is the 1st L-moment, 𝑙2 is the 2nd L-moment and 𝑡3is L-skewness. 
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Table 5 Expressions for calculation of L-moments and L-moment ratios (Chin, D.A.,2006) 

Population quantile Sample estimates 

1st PWM (b0) 
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

2nd PWM (b1) 
1

𝑁(𝑁 − 1)
∑(𝑖 − 1)𝑥𝑖

𝑁

𝑖=2

 

3rd PWM (b2) 
1

𝑁(𝑁 − 1)(𝑁 − 2)
∑(𝑖 − 1)(𝑖 − 2)𝑥𝑖

𝑁

𝑖=3

 

4th PWM (b3) 
1

𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
∑(𝑖 − 1)(𝑖 − 2)(𝑖 − 3)𝑥𝑖

𝑁

𝑖=4

 

1st L-moment (L1) b0 

2nd L-moment (L2) 2b1-b0 

3rd L-moment (L3) 6b2-6b1+b0 

4th L-moment (L4) 20b3-30b2+12b1-b0 

L-Coefficient of Variation L2/L1 

L-Skewness L3/L2 

L-Kurtosis L4/L2 

(Note: Sampling data needs to be arranged in ascending order before calculating the values of 

PWMs). 
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3 CASE STUDY: GRAND RIVER AT BRANTFORD CATCHMENT 

Methodology discussed in Section 2 is applied to the Grand River catchment to estimate changes 

in the probability of occurrence of future flood extremes.  

3.1 Introduction of the basin 

Grand River has the largest drainage area among all southern Ontario rivers. It originates in 

Dundalk and Grand valley region (525 masl) and flows 128 km southwards to drain into Lake Erie 

(100 masl) at Port Maitland (Figure 6). It crosses urban centres of Kitchener, Waterloo, 

Cambridge, Guelph etc. on its way to the summit (Stadnyk-Falcone, 2008).  

 

Figure 6 Geographic settings of the Grand River at Brantford 
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 The Grand River watershed is home for more than 787,000 people, who depend on the 

river for fulfilling their needs of water for agriculture, transportation, drinking and power 

generation. A major section of the population resides in the central regions of the watershed with 

northern and southern regions generally used for agricultural purposes (Boyd etal., 2009).  

Based on the geologic setting, Grand River watershed can be roughly classified into three 

sections of upper Grand watershed (flat with poorly drained clayey soil), central Grand watershed 

(steep with well-drained soil) and lower Grand watershed (flat and low-lying with a mix of silty 

and clayey soil) (Grand River Conservation Authority,  2005). Catchment of Grand River at 

Brantford, with an area of 5,210 km2 roughly encompasses the upper and central Grand River 

catchments. There is a heterogeneous land-cover spread throughout the catchment. A major 

portion of the catchment is used for agricultural purposes. Northern regions are abundant with 

surface water and moraines due to the presence of clayey soil and thus, contribute heavily towards 

total surface-runoff from the catchment (Boyd et al., 2009).  Big urban centres Kitchener, 

Waterloo, Cambridge etc. are present in the central and south-eastern regions of the catchment 

promoting urban land-use in the area. Southern portion of the catchment is dominated by 

vegetation and forests (see Figure 7).  
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Figure 7 Land-use classification of the Grand River at Brantford 

 

Average annual precipitation across the catchment is approximately 900 mm though it 

shows significant spatial and temporal variations. For instance, average annual precipitation for 

gauging stations Monticello, Elmira and Falkland, located in the northern, central and southern 

regions of the catchment is 960 mm, 750 mm and 710 mm respectively. Significant temporal 

variations in precipitation patterns are observed as well. A major fraction of annual precipitation 

occurs in the summer months of April to August and relatively smaller precipitation is experienced 

in other months.  

The annual average flow at Brantford (for the duration 1960-2000) is 57.83 m3/s.  Monthly 

variations in flow patterns are also noted. As shown in Figure 8, peak discharges are observed in 

March and April and low flows are observed in the summer months. Further, relatively higher 

values of discharges are noted in all the winter months. These observations suggest higher 
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possibilities of snowmelt runoff, ice on flood or ice jam floods in the catchment than the storm 

rainfall floods.  

 

 

Figure 8 Monthly variability of average flows recorded at Brantford 

 

Flow is regulated at several locations along the Grand River to ensure continuous, 

necessary and sufficient supply of water for the communities living downstream. Luther dam, 

Damascus dam, Conestogo dam, Woolwich dam, Laurel dam, Shand dam, Guelph dam and 

Shade’s Mills dam are the major dams existing within the catchment. In addition to them, a series 

of dykes also protect parts of Kitchener, Cambridge and Brantford from high flows. However, with 

continued deforestation, growing urban population and changing climate, runoff patterns within 

the catchment are expected to change in the future. Authorities will face the challenge to frame 

appropriate water management policies for managing flow extremes within the catchment (Farwell 

et al.,  2008). 
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3.2 Data collection 

A suit of different climate datasets are collected from several sources for this study. 

Datasets and their respective sources are discussed below. 

3.2.1 Observed daily climate data 

Historical observed precipitation and temperature (maximum, minimum and mean) data 

for the period 1960-2000 is collected from the National Climate Data and Information Archive 

(NCDIA) using Canadian Daily Climate Data (CDCD) software at 52 precipitation and 

temperature gauging stations falling within the Grand river catchment and having data within the 

period 1961-2000. A list of gauging stations at which climate data is collected, is provided in 

Appendix B. The CDCD software can be used to download observed daily temperature, 

precipitation and snow-on-the-ground data, and is downloadable for free from the NCDIA website.   

3.2.2 Daily historical and future GCM data 

Programme for Climate Model Diagnosis and Inter-comparison (PCMDI) archive offers a 

collection of historical and future daily, monthly and yearly climate datasets for all climate models 

mentioned in IPCC, (2007) to facilitate diagnosis and inter-comparison between them (Meehl et 

al., 2007). These multi-model datasets are the product of the Coupled Model Inter-comparison 

Project phase 3 (CMIP3) of the World Climate Research Programme (WCRP).  

Gridded historical GCM data corresponding to Climate of the Twentieth Century 

simulations are downloaded for fifteen climate models mentioned in IPCC, (2007). A list of these 

fifteen climate models with specifications is provided in Appendix C. Future GCM data 

corresponding to selected model-scenario combinations is also downloaded from the PCMDI 
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archive. These datasets are available in NetCDF (*.nc) file format and are accessed and analysed 

using R statistical programming language (R Development Core Team, 2008).  

3.2.3 Historical observed hourly precipitation data 

Hourly precipitation datasets for the duration 1961-2000 are obtained from the Grand River 

Conservation Authority (GRCA) at 21 stations located across the Grand River catchment. A list 

of these stations has been attached in Appendix D. 

3.2.4 Historical observed daily streamflow data 

Historical observed stream-flow data is collected at four discharge stations: Brantford, 

Galt, West Montrose and Shand dams located within the Grand River basin. These discharge 

stations are spread out widely across the catchment and have historical discharge data available 

for the period 1993-2000 (period chosen for hydrological model validation). Figure 9 shows the 

spatial distribution of discharge stations across Grand River at Brantford. 

 

Figure 9 Spatial distribution of climate gauging and discharge stations across Grand River at Brantford. 

Grid data points are also plotted for a sample GCM (INGV-ECHAM4)   
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3.2.5 Historical reanalysis daily climate data 

Reanalysis datasets are produced by combining a numerical model, capable of simulating 

one or more aspects of the Earth’s system, with climate observations made from several sources 

as ships, satellites, ground stations, radiosonde databases (RAOBS) and radars. They provide 

reliable climate data that extends from Earth’s surface to the stratosphere. NCEP/NCAR I provides 

gridded reanalysis data throughout the world, from 1948 till present, on a 2.5ºx2.5º and 2ºx2º 

Gaussian spatial scale (Kalnay et al.,1996). NARR reanalysis is a relatively recent effort to produce 

high resolution reanalysis datasets (with a spatial resolution of 32 km) for North America 

(Mesinger et al., 2006). Inputs of both these reanalysis products are similar, but NARR output is 

obtained by using a lower resolution climate model and hence, is more accurate. Datasets from 

both the projects are used in this analysis. Wherever possible, NARR datasets are preferred over 

NCEP/NCAR I for their high accuracy. However, since NARR data is only available since 1979, 

NCEP/NCAR I datasets are used for period (1960-1979. 

3.2.6 Catchment boundary for Grand River at Brantford discharge station 

 Catchment boundary for Grand River at Brantford discharge gauging station is obtained 

from the Environment Canada (shown in Figure 9). 

3.2.7 Historical reservoir release data 

Daily historical reservoir release datasets for reservoirs at Conestoga, Luther, Shades, 

Guelph, Laurel, Woolwich and Shand dam for the duration 1984-present is provided by the Grand 

River Conservation Authority (GRCA).  Hourly release data for the year 2012 at these reservoirs 

is also provided by the GRCA. 
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3.3 Analysis 

Keeping in mind the availability of data, fifteen climate models and eighty-six scenarios 

associated with them are selected for analysis. Gridded daily historical climate model data 

corresponding to selected GCM-scenario combinations is spatially interpolated at 52 gauging 

stations lying within the Grand River catchment using Inverse Distance Square method. Further, 

intermittent historical observed data is filled-in using spatially interpolated reanalysis data to 

produce a continuous series of precipitation and temperature over the period of study (1961-2000). 

NCEP/NCAR daily precipitation data are available for the duration 1948-present while NARR 

precipitation data are available from 1979-present. Owing to their higher resolution, NARR 

datasets are preferred over their NCEP/NCAR counterparts. Maximum and minimum temperature 

data is available only for the NCEP/NCAR data product. Therefore, daily NCEP/NCAR gridded 

reanalysis datasets are used to fill in gaps in the observed tmean, tmax and tmin data for the entire 

period of study. For precipitation, interpolated daily NCEP/NCAR and NARR reanalysis 

precipitation datasets are used to fill-in the missing observed data for the period 1961 to 1978 and 

1979-2000 respectively.  

Using interpolated baseline GCM data and filled-in observed historical data (for the 

duration 1961-2000), monthly bias-correction transfer functions are established at each gauging 

station. Obtained transfer functions are used to bias-correct historical and future GCM data at all 

52 gauging stations using statistical bias correction approach. For bias-correction of GCM 

precipitation data, Piani et al., (2010) provided reasonable limits (a<0 and 1/5<b<5) for linear 

transfer function parameters ‘a’ and ‘b’. As explained before, exponential transfer functions are 

used in case these thresholds are exceeded.  
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Monthly bias correction transfer functions obtained at each gauging station are 

disaggregated into daily timesteps using methodology explained before. Daily transfer functions 

are used to modify historical and future GCM data to obtain bias-corrected historical and future 

precipitation and temperature data.  

Historically observed and bias-corrected historical and future GCM data are used together 

to downscale future climate projected by GCMs. Multiple additive and multiplicative CFs are used 

to generate future scaled temperature and precipitation data respectively. Total number of bins is 

chosen to be 100 and variable distribution is kept uniform across them. Generated future scaled 

data is imported in the M3EB weather generator to generate twenty different sets of future 

downscaled climate data for each GCM-scenario combination selected for analysis.  

Synthetic realisations corresponding to each model obtained from the weather generator 

are used to select variable combinations most likely to cause hydro-climatic extremes in the future. 

This is done by selecting extreme scenarios from scatter-plots prepared at each gauging station 

lying within the catchment. Figure 10 shows the selected cold-dry and hot-humid extreme 

scenarios at Apps Mills gauging station.   
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Figure 10 Extreme scenario cold-dry and hot-humid selected from twenty realisations obtained for csiro-

mk3.0(A1B), run1, 2050s at Apps Mills climate gauging station 

 

Since a significant portion of flooding in the Grand river basin occurs due to snow 

accumulation and melt (Boyd et al., 2000), continuous hydrological modelling is performed to 

generate streamflows from the selected extreme precipitation-temperature scenarios. A semi-

distributed model WATFLOOD is used and future streamflows are generated for 2050s and 2090s. 

This model has been found to simulate the hydrologic behaviour reasonably well for the catchment 

under study as well as for many other regions across the globe (Bingeman et al.,  2006; Kouwen 

et al., 1993).  

The model calibrated for Grand River basin for the period 2000-2005 is obtained from Dr. 

Nicholas Kouwen (Professor Emeritus, University of Waterloo). Provided model is validated on 

the Grand River at Brantford catchment for the period 1993-2000 and satisfactory validation 

results are obtained at four discharge stations Brantford, Galt, West Montrose and Shand dam. 
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Coefficient of determination (R-square) values for modeled and observed flow series obtained at 

four discharge stations lying within the catchment are listed in Table 6. Of note is that this 

discharge validation is obtained considering historical precipitation and temperature data filled-in 

using spatially interpolated reanalysis data. Also, land-use change which plays a crucial role in 

WATFLOOD model, has been ignored between calibration and validation time-periods. Once 

validated, the hydrologic model is used to generate flow series for future timelines. Land-use 

change is ignored (and will be addressed in future research) and releases at Shand, Conestogo, 

Shades, Luther, Laurel, Woolwich and Guelph reservoirs are held constant to the most recent 

releases (taken as 2012). 

Table 6 Coefficient of determination values for daily and monthly historical flow series simulated by the 

hydrologic model 

Discharge stations Daily series Monthly series 

Brantford 0.700 0.800 

Galt 0.767 0.900 

West Montrose 0.832 0.921 

Shand dam 0.952 0.995 

 

Historical observed and generated future flow-series are used to obtain flood magnitude and 

return period relationships. In this study, POT method is employed to select flow peaks. Selection 

of independent peak discharge values is made using the software WETSPRO (Willems, 2009). 

The selection of independent flow peaks in WETSPRO is made using the following three criteria: 

 Time between the two peaks should be greater than the recession constant k (time in which 

flow becomes lower than 37% of its peak value).  

 Minimum discharge between the two peaks should be less than a fraction f of the peak 

discharge. 
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 Peak discharge should be greater than the threshold discharge value qlim.  

 

Values of parameters “k” and “f” have been chosen as 10 and 0.37 respectively.  A 

reasonable estimate of threshold qlim is made for each flow-series following the guidelines 

mentioned before. Mean exceedence above threshold vs. threshold value plots are prepared for 

each flow-series to be analysed and the range of threshold domain is estimated. Plots generated to 

estimate the threshold domain for historically observed flows at Brantford is provided in Figure 

11. To prepare these plots, mean exceedence value of flowseries crossing a particular threshold 

value is calculated and plotted against the threshold values. The process is repeated for several 

threshold values selected within the variable range. Values obtained for mean exceedence above 

threshold are plotted against mean threshold and region where a linear relationship exists between 

them is identified. An appropriate value of threshold is then decided within the threshold domain, 

so that total number of POT selections are above 3N (here, N denotes the number of years of 

available data) to satisfy the Poisson process criterion or for selected values to be randomly 

distributed over distribution space.  
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Figure 11 Estimation of threshold domain for historically observed flows at Brantford 

 

Selected flow peaks are used to fit a GPD and associated parameters are estimated using 

L-moments method. Flow quantiles corresponding to 2-year, 5-year, 10-year, 25-year, and 100-

year return period floods are calculated. Also, return-period and flow quantile relationship is 

established.  

 

 

 

 

Threshold 
Domain 
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4 RESULTS AND DISCUSSION 

Statistical bias correction approach is found reasonably effective in correcting bias 

associated with all moments of the GCM data. The effectiveness of methodology is displayed in 

Figures 12 and 13 where a comparison between Probability Distribution Functions of raw and 

bias-corrected GCM data is made. It can be seen that the overlap between observed and GCM data 

increased on bias-correction of precipitation as well as temperature data. Similar results are 

obtained for other GCMs considered in this analysis at different gauging stations across Grand 

River catchment.  

 

Figure 12 Comparison of bin frequency distributions of observed, raw GCM and bias-corrected GCM 

precipitation data at gauging station appsmills for giss-aom (Run 1) climate model. Blue colour represents 

the observed data, pink represents model data and purple represents an overlap between the two.   
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Figure 13 Comparison of bin frequency distributions of observed, raw GCM and bias-corrected GCM 

Tmean data at gauging station appsmills for giss-aom (Run 1) climate model. Blue colour represents the 

observed data, pink represents model data and purple represents an overlap between the two. 

 

Significant changes in precipitation and temperature regimes have been projected across 

the catchment. In Figure 14, GCM averaged changes projected in precipitation and temperature 

means and extremes for timeline 2046-2065 have been summarised. It can be noted that an increase 

in the intensity of mean and extreme precipitation and temperature events is projected across the 

catchment. It can also be noted that changes projected for precipitation and temperature extremes 

are more variable than those projected for means. This also justifies the need for usage of multiple 

change factors to capture changes in entire distributions of climate data. 
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Figure 14 Change factors obtained for precipitation and Tmean for 2050s calculated at 52 gauging stations lying within the catchment. Clockwise 

from top: precipitation means, precipitation above 99th percentile mean, temperature above 99th percentile mean, temperature mean
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 It has been found that mean changes in precipitation across the catchment range from 

around +6% to +9.5% for 2050s and +8.5% to +13.6% for 2090s. Average extreme precipitation 

changes range from +9.7% to +12.5% for 2050s and +13.1% to +17.4% for 2090s. Similar trends 

are projected in case of temperature as well. Average changes in Tmean range from +2.54 ºC to +2.8 

ºC for 2050s and +3.86 ºC to +4.27 ºC for 2090s. Average changes (across GCMs) in temperature 

extremes range from around +2.93 ºC to +3.35 ºC for 2050s and +4.25 ºC to +4.85 ºC for 2090s.         

Table 7 Percent change in flow quantiles of 2-year, 5-year, 10-year, 25-year and 100-year extreme event 

projected in accordance with two hydro-climatic extreme scenarios: “Cold and Dry” & “Hot and Humid” 

Scenario 
Timelines 

Change 
2-year 5-year 10-year 25-

year 

100-year 

Cold and Dry 

2050s 
Max 75.12 43.30 33.36 27.71 24.67 

Min 12.49 -5.97 -15.17 -23.14 -30.01 

2090s 
Max 86.03 54.32 43.85 41.59 42.45 

Min 14.22 -2.24 -6.64 -13.38 -18.79 

Hot and Humid 

2050s 
Max 85.62 46.93 32.28 20.02 8.88 

Min 6.94 -9.86 -15.83 -20.68 -25.43 

2090s 
Max 100.89 58.43 42.94 30.23 18.83 

Min 23.19 4.14 -5.73 -15.36 -24.06 

 

A subsequent increment in flows is observed at Brantford as summarised in Table 7. It is found 

that flow quantiles corresponding to extreme flow events increase in future although a wide range 

of flows may exist. For low return period events, consistent increase in flow quantiles is projected 

for all scenarios considered. However, for higher return period events, considerable range is 

evident in the projections. Therefore, sign of change can’t be inferred with certainty.  

Of the two hydro-climatic scenarios considered, “Hot and Humid” scenario projects higher 

flows for low return period events while “Cold and Dry” scenario projects higher flows for higher 

return period events (Table 7). This highlights the role of snowmelt in causing extreme flow events 

in the catchment. The possibilities of coupling between an intensified hydrological cycle as well 
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as enhanced snow-cover may result in unprecedented changes in flow patterns in future. It also 

reiterates the importance of considering all possible hydro-climatic extreme scenarios into 

analysis. Conversely, return periods of extreme events are expected to decrease in future but again 

an array of changes are possible in future. Figure 15 highlights this by comparing future projected 

extreme flow statistics with respect to baseline statistics. Cumulative probability vs. flow and flow 

vs. return period curves have been used to make the comparisons. Uncertainty associated with 

future extreme events is particularly evident in each of the results. 
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Figure 15 Flow vs. probability and return-period vs. flow curves for projected 2050s and 2090s flows at Brantford. Projections in green 

correspond to cold-dry scenarios while those in blue correspond to hot-humid scenario. Historical observed flows are marked in bold red. 

Clockwise from top: flow vs. probability (2050s), flow vs. probability (2090s), return-period vs. flow (2050s), return-period vs. flow (2090s).
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5 CONCLUSIONS 

Following conclusions can be made based on the previous discussion of methodology followed 

by climate change impact analysis, and from the results obtained from the Grand River at 

Brantford case study. . 

5.1 Methodology for climate change impact analysis 

 Inclusion of every possible GCM-scenario combination in the analysis is important to 

account for the uncertainty associated with future climate projections. In this respect, 

availability of continuous climate data for different future scenarios and climate variables 

is important.  

 Plotting methodologies like scatter-plot and percentile-plot are useful  if selection of a few 

GCM-scenario combinations is to be made out of them. This process of scenario selection 

reduces the amount of work involved in the analysis as well as is helpful in encompassing 

the uncertainty involved with future projections.   

 If selections are being made, same should be done after correcting climate data for bias (in 

case bias correction step is being performed).  

 Pre-processing steps do change climate data statistics, which in turn impact the changes 

projected by GCMs for future. Therefore, methodology chosen to pre-process model data 

should be consistent and care should be taken to keep the projected changes by model data 

intact.  
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 Suitable spatial, temporal and distributional scale should be selected for different steps in 

the analysis.  It is important to consider all hydro-climatic extreme scenarios while 

generating future flows so that uncertainty associated is encompassed.  

 Semi-distributed or distributed hydrologic models are preferred over lumped models while 

performing hydrologic modelling. Also, continuous hydrological modeling should be 

employed. There is a need to account for non-stationarity while performing hydrological 

modeling step. There is a need to account for changes in land-use among many other 

changes that may have an impact on future flow extremes.  

 Peak Over Threshold (POT) method can be used to select flow extremes for performing 

statistical analysis. Selection of threshold value should be made for historical as well each 

future scenario data using “mean exceedence over threshold” vs. “threshold value” graphs 

and also maintaining the independency of selected peaks. 

5.2 The Grand River at Brantford case study  

 Intensity of mean and extreme precipitation and temperature events is going to increase in 

future across the catchment. Consistent increases are projected by all scenarios considered 

in the analysis for both future timelines. 

 Consequent changes in frequencies of 2-year, 5-year, 10-year, 25-year and 100-year return 

period events are also projected for future. A wide range of changes are projected by the 

scenarios considered in this study. This array of climate projections should be utilised 

judiciously by the decision-makers depending on the type of usage of the result.     
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APPENDICES 

A. Choosing appropriate spatial scale for selection of hydro-climatic extreme scenarios 

within Ontario province 

To highlight the impact of the choice of a suitable spatial scale while selecting extreme scenarios, 

province of Ontario is divided into three regions with distinct climate types. This is done by using 

plots of spatial variability in mean annual precipitation and temperature across Ontario as shown 

in Figure A1.  

 

Figure A1. Annual mean daily precipitation and temperature across Ontario (after Baldwin et al.,  2000) 
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B. Gauging stations lying within the Grand River at Brantford  

Table B1 List of gauging stations considered in the analysis 

Station Name Long(degrees) Lat(degrees) Elevation 

Apps mill -80.383 43.133 230.1 

Arthur -80.567 43.817 452 

Ayr -80.45 43.283 289.6 

Blue acton -80.05 43.6 365.8 

Blue corwhin -80.117 43.533 350.5 

Blue rockwood -80.117 43.583 350.5 

Blue scout -80.083 43.617 342.9 

Blue springs creek -80.117 43.633 373.4 

Brantford morell -80.283 43.15 198.1 

Burford -80.433 43.1 259.1 

Cambridge galt moe -80.317 43.33 268.2 

Cambridge-stewart -80.3 43.35 289 

Canning -80.45 43.183 259.1 

Cathcart -80.567 43.117 269.7 

Crewsons corners -80.1 43.617 358.1 

Damascus -80.483 43.917 487.7 

Drumbo -80.55 43.233 304.8 

Drumbo harrington -80.517 43.233 281.9 

Elmira -80.533 43.6 350.5 

Elora automatic climate station -80.417 43.65 376.4 

Elora rcs -80.417 43.65 376.4 

Elora research stn -80.417 43.65 376.4 

Falkland -80.45 43.133 262.1 

Fergus moe -80.38 43.702 396.2 

Fergus shand dam -80.331 43.735 417.6 

Glen allan -80.711 43.684 400 

Grand valley wpcp -80.333 43.883 464.8 

Guelph arboretum -80.217 43.55 327.7 

Guelph oac -80.233 43.517 333.8 

Guelph oac physics dept -80.267 43.55 340.5 

Guelph turfgrass cs -80.217 43.55 325 

Haysville -80.633 43.35 320 

Hillsburgh -80.167 43.767 427 

Kitchener -80.5 43.433 320 

Kitchener city eng 1 -80.483 43.45 320 

Kitchener city eng 2 -80.483 43.45 281.9 

Kitchener owrc -80.433 43.4 321.6 
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Kitchener/waterloo -80.379 43.461 342.9 

Millers lake -80.383 43.283 304.8 

Monticello -80.4 43.967 481.6 

Morriston -80.117 43.467 304.8 

Newton -80.9 43.583 373.4 

Newton -80.883 43.583 382 

Paris -80.45 43.183 266.7 

Preston -80.417 43.4 291.1 

Preston wpcp -80.35 43.383 272.8 

Salem -80.47 43.71 430 

Waldemar -80.283 43.883 449.6 

Waterloo fire hall -80.517 43.467 317 

Waterloo wellington a -80.383 43.45 317 

Waterloo wellington 2 -80.383 43.45 313.6 

Waterloo wpcp -80.517 43.483 327.7 
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C. Description of climate models considered in the analysis 

Table C1 Climate models considered in this study 

S.No Model 

Atmospheric component resolution 

Horizontal(lat x lon) Vertical (levels) 

1 BCCR-BCM2.0, 2005 1.9º x 1.9º L31 

2 CGCM3.1(T47), 2005 2.8º x 2.8º L31 

3 CGCM3.1(T63), 2005 1.9º x 1.9º L31 

4 CNRM-CM3, 2004 1.9º x 1.9º L45 

5 CSIRO-MK3.0, 2001 1.9º x 1.9º L18 

6 CSIRO-MK3.5, 2005 1.9º x 1.9º L18 

7 GFDL-CM2.0, 2005 2.0ºx 2.5º L24 

8 GFDL-CM2.1, 2005 2.0º x 2.5º L24 

9 GISS-ER, 2004 4º x 5º L20 

10 IAP-FGOALS, 2004 2.8º x 2.8º L26 

11 INGV-ECHAM4, 2005 1.9º x 1.9º L18 

12 IPSL-CM4, 2005 2.5° x 3.75° L19 

13 MIROC3.2(medres), 2004 2.8º x 2.8º L20 

14 MPI-ECHAM5, 2005 1.9º x 1.9º L31 

15 MRI-CGCM2.3.2, 2003 2.8º x 2.8º L30 
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D. Stations at which hourly precipitation data is obtained from the GRCA 

Table D1 Stations at which hourly precipitation data is obtained from the GRCA 

Station_ID Station_Name Easting Northing 

1 Proton Station 538657 4890504 

2 Monticello 546796 4870194 

3 Grand Valley WPCP 553569 4859138 

4 Fergus Shand Dam 553704 4842478 

5 Elora RCS 547057 4833173 

6 Mount Forest (AUT) 520063 4870059 

7 Glen Allan 522851 4836748 

8 Elmira 537659 4831262 

9 Waterloo Wellington 549910 4810980 

10 Preston 547252 4805408 

11 Guelph Turfgrass 563292 4822199 

12 Cambridge Galt MOE 555396 4797843 

13 Stratford MOE 500013 4801541 

14 Roseville 543238 4799828 

15 Woodstock 520352 4773808 

16 Scotland 547562 4760987 

17 Brantford MOE 562370 4775914 

18 Valens 570216 4803756 

19 Middleport 578658 4774231 

20 Hagersville 576132 4757543 

21 Dunville Pumping stn. 613076 4743243 
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E. R programming language codes used 

 

 

Figure E1. Files layout inside the attached CD-ROM  

 

CD-ROM attached with this blue book contains R-codes used in this research. Codes have 

been divided into “Main” and “subordinate” categories. “Main” R-codes are associated with a 

jaishreeganesh_CCISMain_STEPNAME.R structure in their filenames. These files correspond to 

different steps performed during the climate change analysis. One file each for the steps: Bias 

correction, Filling-in of observed data using spatially interpolated reanalysis data, flood frequency 

analysis, generation of future scaled climate data, hydrological modeling, ranking of climate 

models, selection of extreme precipitation-temperature combinations, selection of GCM-scenario 
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combinations, spatial interpolation of GCM gridfiles, weather generator is located inside the folder 

“R-Codes used” in the CD-ROM.   

Subordinate R-codes for each step (which are called in the main R-codes) are located in 

//R-Codes used/STEPNAME folder. The locations of these files and other input files need to be 

updated in the “Main” R-codes before running them. Codes provided are very generic and can be 

utilised for performing climate change impact study at any area of interest. Also, separate files are 

made available for each step so that they can even be utilised when only a section of the analysis 

is being performed.     
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