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Executive Summary 

 As a result of human induced greenhouse gas emissions the IPCC expects the average global 

temperature to rise in future years. It is important to understand how such change to the earth's climate 

system will affect future precipitation amounts and frequencies as these variables are directly related to 

rising water levels and potential flooding events. Currently hydrologic models use historical daily or 

hourly precipitation as input to measure stream flows and corresponding water levels. However, it is 

becoming that the assumption of a stationary climate is no longer valid. Atmospheric Ocean-coupled 

Global Climate Models are the most credible tool for projecting future climate as they reliably produce 

monthly climate at a global scale. To predict future extreme hydrologic events AOGCM data is used as an 

input to hydrologic models. However, such data cannot be used directly as hydrologic models require 

local-scale daily precipitation as input. Therefore, AOGCM outputs must be manipulated to the 

appropriate spatial and temporal scale using statistical downscaling tools such as LARS-WG, SDSM, and 

KnnCAD. 

 This study includes a detailed analysis of the stochastic weather generator LARS-WG as well as a 

more general comparative analysis between LARS-WG and the two other models SDSM and KnnCAD 

(Version 3). A 27-year historical dataset (1979-2005) from the London International Airport station in the 

Upper Thames River Basin is used as an input for the downscaling models, which simulate 324 years of 

synthetic daily climate variables. All models undergo a performance evaluation where their ability to 

reproduce observed weather statistics is tested. Simulation of future climate variables is done through the 

modification of historical datasets using change factors from the difference in current and future AOGCM 

output.  

 For LARS-WG's performance evaluation, it is evident that total monthly precipitation, total 

number of wet days, and minimum and maximum temperatures are well reproduced as the observed 

medians lie within the inter-quartile range of simulated weather for all variables in each month. In fact 



 

 
 

many of the observed medians coincide with the simulated medians, particularly for total monthly 

precipitation results. As for wet spell frequencies there is some discrepancy as to whether one or two-day 

wet spell lengths occur most often, otherwise they are also simulated well. Overall, LARS-WG 

successfully reproduces observed weather statistics.  

 Next LARS-WG's ability to simulate future weather variables including total monthly 

precipitation, total monthly number of wet days and minimum and maximum temperatures is tested. 

Fifteen different AOGCM and emission scenario combinations are used to modify the historical datasets. 

For total monthly precipitation, the majority of models agree that precipitation will increase between the 

months of January to May and October to December, while most models project a decrease in 

precipitation between June to September. The magnitudes of change in precipitation increase significantly 

between 2020 and 2080 periods, and models become more agreeable with time. The change in total 

number of wet days between baseline and future time periods varies significantly between months, 

however model projections are agreeable within each month, otherwise there are no obvious trends. All 

results for minimum and maximum temperatures are projected to increase in the 2020 time period, and 

further increase in the 2080s. AOGCMs driven by the A1B scenario tend to project the greatest increase 

in temperature. 

 The performance evaluation for the comparative analysis takes into account absolute maximum 

and minimum temperatures, total monthly precipitation, and the mean and standard deviation of daily 

precipitation. KnnCAD best reproduces absolute minimum and maximum temperatures as all monthly 

historical and simulated maximum temperature values coincide, and there is only a small discrepancy in 

minimum temperature results between October to December. LARS-WG and SDSM successfully 

reproduce temperatures as well. All downscaling models simulate precipitation amounts quite well, 

however LARS-WG and KnnCAD are far superior at reproducing precipitation statistics including the 

mean and standard deviation. There is no correlation between datasets for SDSM's projection of mean 

daily precipitation. 



 

 
 

 Future daily precipitation amount is the only variable involved in the comparative analysis of the 

three downscaling models. It is evident that each season projects fairly different results, however there are 

distinct patterns within the individual seasons. In addition, LARS-WG and KnnCAD tend to project 

similar outcomes year round. SDSM projects the greatest increase in precipitation for the winter season, 

while LARS-WG and KnnCAD results are less significant. The opposite is true for the spring season as 

LARS-WG and KnnCAD project the greatest increase in precipitation, and the majority of SDSM results 

project a decrease in precipitation. In the summer season LARS-WG results are variable and the majority 

of KnnCAD results predict a decrease in precipitation, while all SDSM simulations consistently project 

the greatest increase in precipitation. Finally in the fall season, LARS-WG and KnnCAD  project similar 

results that provide the greatest magnitude of precipitation increase. 
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1. INTRODUCTION 

 It is suspected that human-induced climate change has the potential to increase the 

frequency and severity of extreme weather events such as heat waves, floods and droughts. 

Climate change is defined as a difference in the mean and variability of weather variables over a 

significant period of time, typically several decades. The driving forces of climate change may 

be natural, such as ocean oscillations and solar radiation, or human induced greenhouse gases 

that alter the composition of the atmosphere. Since the industrial revolution of the 18th and 19th 

centuries humans have increased their reliance on fossil fuels for transportation, energy 

production and heating processes which emit significant amounts of carbon dioxide into the 

atmosphere. Other processes such as deforestation and agricultural activities also contribute to 

the rising greenhouse gas concentrations. As a result of these activities the IPCC has predicted 

that the mean global temperature could increase by 3 degrees Celcius by 2080 (IPCC, 2007).  

 Change to one component of the earth's climate system will disrupt the balance in another. 

The climate system is composed of five interactive components including the atmosphere, 

hydrosphere, cryosphere, lithosphere, and biosphere. It is expected that an increase in the earth's 

average temperature will cause an imbalance in the hydrologic cycle resulting in a greater 

number of extreme precipitation events (IPCC, 2007).  As such, it is important to perform 

climate change impact assessments to understand how these future extremes will affect our 

society, economy and the environment. This can be done through hydrologic modeling. Daily 

precipitation from historical records is typically used as an input to hydrologic models which 

predict resultant stream flow rates and corresponding water levels in reservoirs and other water 

bodies. These models are essential to water resources management and the development of 

prevention measures for future flooding events. However, it is becoming that historical 



 

2 
 

precipitation records are no longer suitable to predict future events as the assumption of a 

stationary climate is no longer valid. Consequently, it is important to develop a reliable method 

of predicting future climate variables for the use of hydrologic impact analyses.  

 Current weather is measured and collected at weather stations with historical records 

easily accessible on databases, but future weather conditions must be simulated. Global Climate 

Models (GCM's) are the most credible tool for producing future climate variables in response to 

increased greenhouse gas concentrations (Dibike, 2004). Atmosphere Ocean-coupled Global 

Climate Models (AOGCMs) are a branch of GCMs that provide a three-dimensional 

representation of the Earth-Atmosphere-Ocean climate system (CCCSN, 2011). Models of the 

oceans, atmosphere, sea-ice, land surface, global carbon cycle, and aerosols are linked together 

to simulate system changes, (CSIRO, 2011).  They are driven by emissions scenarios that 

provide plausible representations of how the future will unfold with respect to the major 

influences of greenhouse gas emissions such as population growth, economic development, 

technical advancements, resource use and pollution control; refer to Appenix B (IPCC, 2007).   

  AOGCMs can accurately represent monthly averages of global climate data, however 

hydrologic models require a daily time-series of local weather variables as input. Computational 

power is the AOGCMs limiting factor. They must compromise spatial resolution for time to run 

the model, and as a result their resolution is too coarse to adequately represent watershed level 

processes such as precipitation (Semenov, 1997). In order to use global climate data as input to 

hydrologic models, it must be manipulated to the appropriate spatial and temporal scales using 

downscaling techniques.  
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 There are two main types of downscaling techniques: dynamic downscaling and 

statistical downscaling (Brisette, 2006). In this report three statistical downscaling tools are 

analysed and compared. Each model has a unique structure and uses different statistical methods 

to simulate daily climate variables. This study will analyse a range of outputs produced by the 

various models to encompass all plausible weather extremes. It is necessary to understand the 

magnitude of future climate extremes to effectively manage water resources and prevent severe 

events such as flooding or drought from damaging infrastructure and endangering the population. 

2. LITERATURE REVIEW 

 There are several techniques available for downscaling global climate data to an 

appropriate spatial and temporal scale. Each method has its own benefits and limitations, and 

improvements are continuously being made to their structures. A single tool has not been 

identified as the best option, so multiple approaches must be considered for simulating a daily 

time-series of present or future climate data. 

 Dynamic downscaling uses a Regional Climate Model (RCM) nested within an AOGCM 

to simulate high resolution climate data that is more reliable than direct AOGCM output. On 

average an RCM has a 40x40 km
2
 resolution which is a great improvement to the approximate 

250x250 km
2 

resolution of the AOGCM, however its grid size is still much larger than many 

watersheds (Brisette, 2006). It would be inaccurate to apply RCM output to such small 

watersheds for the same reasons that global climate data should not be used directly at local-

scales. A major disadvantage to this method is the RCM's strong dependence on biased input 

from the AOGCM it is nested within. In addition, it is a computationally demanding process 

which limits the number of simulations that can be processed in a timely fashion (CCCSN, 2011). 

Because of this, RCMs cannot easily cover the entire scope of plausible future climate outcomes. 
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 The alternative approach is statistical downscaling, which includes regression 

downscaling or the use of a stochastic weather generator. Both methods assume a statistical 

relationship between local and large-scale weather data, (Corte-Real, 1999). Regression 

downscaling estimates local variables (predictands) from large-scale AOGCM outputs 

(predictors) using regression equations and transfer functions. The user must first select the most 

relevant predictor variables. This is done by determining which large-scale variables produce the 

strongest linear correlation with the required local-scale variables through the development and 

analysis of scatter plots. To downscale global climate data the selected predictor variables are 

then used as inputs to the regression model and resultant future daily weather is simulated.  

Statistical Down-Scaling Model (SDSM) is a well-recognized regression model developed by 

Wilby et al. (2002). In a study on the Chute-du-Diable Basin in Quebec, it was discovered that 

SDSM produced a good relationship between observed and simulated outputs for the mean and 

variability of daily precipitation, as well as average monthly dry spell lengths. However average 

monthly wet spell lengths were consistently underestimated (Dibike, 2004). This is a major flaw 

as persistent precipitation events are a primary cause of flooding. Another disadvantage of all 

regression models is their inability to simulate multi-site weather variables and preserve the 

spatial correlation that is present in the observed weather (Semenov, 1997; Apipattanavis et al., 

2007). Also because of the assumed relationship between AOGCM output and site-specific 

observed data, models are not easily transferrable between different sites (Wilby, 2004).   

 Stochastic weather generators use historical datasets as input and produce a synthetic 

time-series that is statistically similar to the observed climate, (Dibike, 2004). They were 

originally developed for hydrologic or agricultural risk assessments, and extending weather 

simulations to unobserved locations through spatial interpolation techniques. More recently 
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weather generators have been used in climate change studies as a means of downscaling future 

global climate data (Semenov 1997; Wilks and Wilby, 1999). Downscaling is achieved by 

applying AOGCM change factors to the observed weather data, then running the modified 

datasets through the weather generator to produce a daily time-series of future climate variables, 

(Diaz-Nieto, 2005; Wilby, 2002). Weather generators are computationally inexpensive and 

capable of simulating time-series of infinite lengths, which is beneficial for a risk analysis of 

extreme weather events.  

 There are three main groups of weather generators and multiple models within each 

group. Parametric weather generators are the most primitive models. They use a first order, two-

state Markov chain to simulate precipitation occurrence. Variables such as precipitation amount, 

temperature and solar radiation are then selected from simple probability distributions that are 

conditional upon the precipitation status of that day. For example, solar radiation is related to the 

amount of cloud cover so there are separate radiation distributions for wet and dry days. This 

procedure preserves the correlation between variables. Precipitation is modeled using a two-

parameter gamma distribution, while normal distributions are used for all other variables 

(Hanson and Johnson, 1998; Soltani, 2003; Kuchar, 2004; Dibike, 2004). There are various 

advantages and disadvantages to the standard distributions used in parametric weather generators. 

They characteristically have a smoothing effect on input parameters, and as a result smooth over 

observed errors. However, this effect may also smooth over extreme values so they are not 

accurately represented in the generated output (Mason, 2004). Appropriate distributions are 

assumed to fit each variable which can be a subjective process. In addition, the selection of a 

suitable probability distribution is site-specific, therefore these models are not easily 

transferrable between sites in different climatic regions (Rajagopalan, 1997; Sharif and Burn, 
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2007). The first such parametric model is WGEN, which is the traditional weather generator 

developed by Richardson (1981). Various other parametric models have been developed as 

extensions of WGEN including WXGEN which takes into account new variables such as the 

non-normal distributions of wind speed and relative humidity (Nicks et al., 1990). Generation of 

Weather Elements for Multiple Applications (GEM) also incorporates wind speed and dew point 

from which relative humidity can be derived, (Hanson and Johnson, 1998). Several multi-site 

parametric models have been developed that preserve the spatial correlation of observed weather 

variables, (Hughs and Guttrop 1994; Wilks 1998). The main short-coming of parametric models 

is their inability to produce wet and dry spell lengths due to the structure of the first order 

Markov chain. It determines the precipitation status of the next day based on the current day's 

status, and the previous day's weather is not considered. Consequently, it does not reproduce the 

temporal correlation that is prominent in the historical datasets (Sharif and Burn, 2007). 

 The serial approach to weather generation came about in response to the limitations of the 

parametric weather generator such as underestimated spell lengths. The first serial-type weather 

generator was developed by Rascko et al. (1991). Instead of using a Markov chain to simulate 

precipitation occurrence day by day, it selects entire wet and dry spell lengths from 

predetermined probability distributions. Semenov and Barrow (1997) extended this method by 

replacing the predetermined distributions with semi-empirical distributions created through the 

analysis of historical records. Their semi-parametric model known as LARS-WG, has proven to 

reproduce wet and dry spell frequencies quite well during the validation process (CCIS, 2007; 

Dibike, 2004). Approximate standard distributions were also replaced with semi-empirical 

distributions for climate intensity variables. Again, weather parameter input is analyzed to 

produce semi-empirical distributions that are flexible enough to fit any distributional shape. As 
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such, errors from the input parameters may be reproduced, but these models are better at 

capturing extreme precipitation intensities. Also, since site-specific assumptions are not made 

between variables and a distribution of best-fit, the model is easily transferrable between sites. 

As with parametric models, variables are conditioned upon the precipitation status of the day and 

selected from separate wet or dry semi-empirical distributions accordingly (Semenov et al., 1997, 

1999). Although great progress has been made from the traditional parametric weather generator, 

LARS-WG has its own shortcomings. Semenov and Barrow (1997) developed LARS-WG for 

the purpose of agricultural risk assessments, so it's output was intended to be used as input to 

crop growth models that require a daily time-series of climate data at a single site. As a result, 

LARS-WG is not programmed for multi-site generation which is preferred for hydrologic risk 

assessments. In many cases hydrologic modeling requires climate data over extensive areas and 

without multi-site generation the spatial correlation in the observed weather is lost. Through a 

comparative study, Dibike (2004) concluded that downscaling with LARS-WG produced an 

increasing trend in mean monthly minimum and maximum temperatures, and a slight decrease in 

temperature variability for most months. Conversely, results suggested there was no significant 

change in mean monthly precipitation or wet and dry spell lengths. Such results are not desirable 

when estimating precipitation extremes. 

 Non-parametric weather generators are another category of statistical downscaling 

models, and of this type the K-nearest-neighbour (K-NN) algorithms are the most promising, 

(Apipatanavis, 2007). Developed by Young (1994), the model simultaneously samples and 

replaces weather variables from a window of time in the historical datasets. Instead of simulating 

variables individually, an entire day's weather is selected at once. This characteristic allows for 

the preservation of multivariate correlations that exist in the observed data. Several extensions of 
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the original K-NN model have been made. For example, Brandsma and Buishand (1998) used a 

K-NN model to simulate precipitation and temperature at various single sites in the Rhine Basin, 

and further extended their model to perform multi-site simulations (2001). Another advancement 

was made by Yates et al. (2003) who developed a K-NN model capable of generating climate 

change scenarios. While it is an improvement from many of the parametric models, the K-NN 

weather generator has some drawbacks. Apipatanavis (2007) used such model in a study to 

discover an underestimation of the fraction of dry months. K-NN weather generators tend to 

underestimate persistent precipitation events due to their simulation procedure. Precipitation is 

an intermittent variable and its occurrence should be simulated independently to maintain a 

temporal correlation. Since a day's weather is selected based on the weighted average of an entire 

suite of variables (temperature, precipitation, humidity, solar radiation), the temporal correlation 

of precipitation is not well reproduced and prolonged spell lengths have a tendency to be 

underestimated. In response to this study, Apipatanavis (2007) developed a modified K-NN 

model that uses a Markov chain to determine the daily precipitation status from which other 

variables are conditioned upon. Results for average spell lengths were improved but maximum 

wet and dry spell lengths were still not accurately reproduced. This is likely due to the 

limitations of the Markov chain as it cannot take more than one day of historical weather into 

account. Another major disadvantage of the traditional K-NN model is its inability to produce 

unprecedented values as the input weather variables are merely reshuffled. Sharif and Burn 

(2006) addressed this issue by adding a random component to the historical input, known as 

perturbation. As a result of this process the model is capable of producing temperature and 

precipitation variables that differ from the observed datasets, which is important for the 

simulation of hydrologic extremes. Through a comparative study in the Upper Thames River 
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watershed in south-western Ontario, Sharif and Burn (2006) determined that the modified K-NN 

model is capable of simulating unprecedented yet realistic results. Also, future climate results are 

more extreme than with previous models. 

 Each downscaling technique has its own biases due to their different statistical methods 

and assumptions. As a result every model produces distinct outcomes and uncertainties, even 

when the same inputs are used. This report compares a suite of AOGCM outputs downscaled by 

three unique weather generators: SDSM, LARS-WG, and KnnCAD. The various combinations 

of AOGCMs and downscaling models will provide a wide range of future weather data for the 

purpose of predicting climate extremes. 

3. STUDY AREA 

 This study takes place in the Upper Thames River watershed (Figure 1) which is situated 

in south-western Ontario, Canada. It covers 3482 km
2
 of land that is mainly rural except for large 

urban centres of London, Stratford, Woodstock, St. Mary's, and Mitchell. Streams and creeks 

collect run-off from the entire catchment area and flow into a major waterway known as the 

Thames River. The river spans 273 kilometres from Tavistock to the mouth of Lake St. Clair, 

and is composed of two major branches. The north branch flows southward through Mitchell, St. 

Mary's, and London. The east branch flows westward through Woodstock, Ingersoll, and into 

London where it meets the north branch at the Forks in downtown London. From there the river 

flows as a single channel out of the west end of the city and eventually drains into Lake St. Clair 

(Upper Thames, 2011; Prodanovic and Simonovic 2007). 

 The Upper Thames River Basin was once covered by a dense deciduous forest, but today 

much of that forest has been cleared for urban and agricultural growth. In fact, agriculture 
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accounts for 80 percent of the watershed's land use because of the area's silty, nutrient-rich soil, 

(Prodanovic and Simonovic, 2007). Such changes to the natural landscape increase the potential 

for flooding events. Prior to land development, swamps and forests naturally moderated water 

levels in the Thames and it's tributaries. Rainfall was retained and slowly released into the river 

as surface or groundwater. Urban and agricultural developments have introduced impervious 

land surfaces and sewer systems that carry storm water to the river much more quickly, resulting 

in uncontrolled, rapidly rising water levels (Thames Topics, 1999).  

 The Thames River has a history of flooding events, the most severe of which occurred in 

April 1937. The watershed experienced thirteen centimetres of rainfall over a six day period, just 

after the water levels had risen due to the spring melt. This extreme precipitation event lead to 

the highest flood levels ever recorded in the area, and consequently over 1,100 homes and 

businesses were damaged. In response to this natural disaster the provincial government 

implemented the Conservation Authority Act of 1946, and the following year the Upper Thames 

River Conservation Authority (UTRCA) was established. As part of their mandate the UTRCA 

agreed to protect people and properties from flooding. So far they have been quite successful due 

to the implementation of three dams along the river including Fanshawe (completed in 1953), 

Wildwood (completed in 1965), and Pittock (completed in 1967), (Thames Topics, 1999).  

 The IPCC suggests that northern countries, including south-western Ontario Canada, will 

experience more frequent and extreme precipitation events as a response to climate change. It is 

important to ensure water management methods and flood control structures are sufficient to 

withstand the severity of future events. More work is required to properly assess the vulnerability 

of extreme climate on the Upper Thames River Basin (IPCC, 2007; Solaiman and Simonovic, 

2010). 
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Figure 1: Schematic location map of the Upper Thames River watershed (Statistics Canada, 2006a; 2006b) 

 

4. DATA 

 Historical records of climate data were collected from several sources for the London 

Airport station in the Upper Thames River Basin. Precipitation and temperature records were 

obtained from the Environment Canada website. Humidity, wind speeds, mean sea level pressure, 

and other meteorological variables that were not made available by Environment Canada, were 

acquired from the North American Regional Reanalysis (NARR) database. Table 1 provides a 

description of each of the weather variables as well as their source. 
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 In this study, outputs from LARS-WG and SDSM are compared to KnnCAD output 

available in Assessment of Climatic Vulnerability in the Upper Thames River Basin: Part 2 by 

King et al. (2010). For an accurate comparison it is important to ensure input parameters are 

consistent for all three weather generators, thus these resources are the same as those used in the 

King et al. (2010) study. 

 The Environment Canada website has a Canadian Daily Climate Data program that 

provides publicly accessible historical climate data for specified stations and time periods. Its 

interface allows the user to select the site, time period, and interval (hourly, daily, monthly) for 

which the data is presented.  For this study daily precipitation, minimum temperature, and 

maximum temperature are obtained for the 27 year period from 1979-2005. This time period is 

selected because it contains complete datasets for all stations used in Assessment of Climatic 

Vulnerability in the Upper Thames River Basin: Part 2 by King et al. (2010). 

 In order to include a variety of weather variables for the KnnCAD and SDSM models, 

NARR data is also employed in this study. The goal of NARR is to create a long-term database 

of consistent climate data for all of North America. It uses the regional Eta model which 

simulates high resolution weather variables that are superior to NCEP/NCAR Global Reanalysis 

output.  Since the high resolution grid size is not sufficient to cover the planet's entire surface 

area, Global Reanalysis 2 supplies its boundary conditions. The Eta model has a spatial 

resolution of 32x32 km
2
 and 45 atmospheric layers in the vertical. Temporally, it is capable of 

simulating climate variables at 3 hour intervals or 8 times daily, (NARR, 2007). It assimilates a 

suite of non-standard variables including wind speeds, humidity, and mean sea level pressure 

that are extracted and used as an input for the SDSM and KnnCAD weather generators. For this 

study the NARR gridded weather data are obtained on request from the National Oceanic and 

http://www.eng.uwo.ca/research/iclr/fids/publications/products/64.pdf
http://www.eng.uwo.ca/research/iclr/fids/publications/products/64.pdf
http://www.eng.uwo.ca/research/iclr/fids/publications/products/64.pdf
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Atmospheric Administration (NOAA), and interpolated for the London Airport station in the 

Upper Thames River Basin. 

 AOGCM outputs are used to create climate change scenario files which contain the 

change factors used to modify the historical datasets for the generation of the future climate 

variables. The AOGCM outputs may be accessed through the Canadian Climate Change 

Scenario Network (CCCSN) website. The website has a user friendly interface where one may 

select an AOGCM driven by one of three emissions scenarios, a climate variable to be simulated, 

and the time period of consideration. The available AOGCMs or RCMs are those published in 

the IPCC's assessment reports, the most recent of which is the Fourth Assessment Report 

released in 2007. Most AOGCMs have output for three divergent emissions scenarios (A1B, A2, 

and B1) that describe different future worlds with respect to demographic development, socio-

economic development, and technical change, (IPCC, 2007). Table 2 contains the complete list 

of AOGCMs used in this study, with their respective resolutions and available emission 

scenarios. Refer to Appendix A and B for AOGCM and SRES emission scenario descriptions, 

respectively. 

 CCCSN is sponsored by the Adaptation and Impacts Research Section (AIRS) of 

Environment Canada as well as various universities and other partners. It supports climate 

change and adaptation research in Canada by providing publicly accessible AOGCM and RCM 

output, downscaling tool downloads, and related research. An ensemble of six different 

AOGCMs are used in this study, each with their own biases. By simulating an ensemble of 

AOGCMs and considering all output to be equally possible, uncertainty is greatly reduced.  
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Table 1: Weather data used for model input 

Model 

Input 
Descriptions Source Input to 

PPT 
Daily precipitation 

amount (mm) 
Environment Canada LARS-WG, SDSM, KnnCAD 

TMIN 
Minimum daily 

temperature (⁰C) 
Environment Canada LARS-WG, SDSM, KnnCAD 

TMAX 
Minimum daily 

temperature (⁰C) 
Environment Canada LARS-WG, SDSM, KnnCAD 

SR Sun hours per day (h) Lee, 2010 LARS-WG, SDSM 

SPFH Specific humidity NARR KnnCAD 

UGRD 
Eastward wind 

component (m/s) 
NARR KnnCAD 

VGRD 
Northward wind 

component (m/s) 
NARR KnnCAD 

PRMSL 
Mean sea level pressure 

(pa) 
NARR KnnCAD 

 

Table 2: SRES Scenarios available for each AOGCM model 

AOGCM Model Sponsor Country 

Available 

SRES 

Scenarios 

Atmospheric 

Resolution 

(Lat x Long) 

CGCM3T47 (2005) Canadian Centre for Climate 

Modelling and Analysis 

(CCCma) 

Canada 
A1B, A2, 

B1 

3.75° x 3.75° 

CGCM3T63 (2005) 2.81° x 2.81° 

CSIRO MK3.5 (2001) 

Commonwealth Scientific 

and Industrial Research 

Organization (CSIRO) 

Australia A2, B1 
1.875° x 

1.875° 

GISSAOM (2004) 
NASA's Goddard Institute 

for Space Studies 
USA A1B, B1 3° x 4° 

MIROC3.2HIRES 

(2004) 

Centre for Climate System 

Research at the University of 

Tokyo, National Institute for 

Environmental Studies, and 

the Frontier Research Centre 

Japan 

A1B, B1 
1.125° x 

1.125° 

MIROC3.2MEDRES 

(2004) 

A1B, A2, 

B1 
2.8° x 2.8° 
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5. METHODOLOGY 

 The objective of this study is to perform a detailed analysis of LARS-WG for both 

baseline and future climate variables, as well as a comparison of future precipitation output from 

LARS-WG, SDSM, and KnnCAD for a single site in the Upper Thames River watershed. Each 

model uses historical datasets as input, and is capable of simulating a daily time-series of 

weather of infinite lengths. For the purpose of this study 27 years of historical climate data is 

used as input, and 324 years of daily climate variables are generated for the historical climate as 

well as for the 15 different AOGCM scenarios.  

5.1 Model Calibration and Validation 

 Before simulating future climate for analysis, each downscaling tool must be calibrated 

and validated. LARS-WG, SDSM, and KnnCAD follow the same general validation procedure. 

Half the historical dataset is used as input to generate 324 years of daily weather for the baseline 

time period. That output is then compared to the remaining half of the historical data. If the 

simulated and observed results are statistically similar, the study may proceed. If not, 

adjustments to the model may be required. Since only 14 years (a half dataset) are available for 

validation, results may not be optimal as weather generators typically work best with 20-30 years 

of input. 

5.2 Development & Application of Change Factors 

 The three stochastic models used in this study are capable of simulating future local 

climate variables in response to climate change by downscaling AOGCM output. This process 
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includes the interpolation of gridded AOGCM output to obtain data for a single site, followed by 

the modification of model input by applying change factors calculated from the AOGCM results.  

    (5.1) 

     (5.2) 

Where i represents the station and j represents the grid point. 

 To obtain data for a single site, such as the London Airport, gridded AOGCM output is 

interpolated using the Inverse Distance Weighting method (IDW).  First, the four grid points 

enclosing the site of interest are selected and the distance between grid points and the site are 

computed individually. Using Equation 5.1 each grid corner is assigned a weight, w, based on its 

distance to the site. A closer grid point will have a higher weight then one further away, and the 

sum of the resultant weights should equal '1'. Equation 5.2 is then used to interpolate the climate 

variable, p, for the site of interest. For example, to interpolate precipitation amount, the 

precipitation values for all four grid points are multiplied by their respective weights, then the 

four products are summed to obtain the final interpolated precipitation amount. In the end, the 

value of the closest grid point is most influential. 

 To calculate change factors, monthly weather data must be extracted from an AOGCM 

for both baseline and future time periods. The baseline period represents current weather and 

future time periods include 2020, 2050, and 2080 outputs for the purpose of this study. For 

precipitation and humidity, change factors are the percent change between future and baseline 

values and are multiplied by the daily values for each month. For all other variables, the change 
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factors are calculated as the magnitude of change and are added to the daily values for each 

month. 

5.3 LARS-WG 

 Long Ashton Research Station Weather Generator, or LARS-WG, was developed by 

Semenov and Barrow (1997). The first step to using LARS-WG is to prepare historical weather 

input files that are used to calibrate the model. During calibration, LARS-WG analyses observed 

weather to determine its statistical characteristics and create site specific cumulative probability 

distributions (CPDs) for the various climate variables including wet and dry spell lengths, daily 

precipitation amount, minimum and maximum temperature, and solar radiation, (Semenov and 

Barrow, 2002). 

 Each CPD is divided into twenty-three intervals of climate variables ranging from 

minimum to maximum values. For each climate variable, v, there is a corresponding probability 

of occurrence, p. 

p0 = 0, and corresponds to v0 = min{vobs} 

pn = 1, and corresponds to vn = max{vobs} 

 

 To approximate extreme climate variables, p is set to 0 for minimum and 1 for maximum 

values. The remaining values are evenly distributed on the probability scale. To put this into 

perspective, the wet spell lengths for the winter season (December, January, and February), 

range from 0-18 consecutive days in the 27 years of historical data. There is a 31.0% probability 

that a 1 day wet spell will occur, a 56.0% probability that at most a 2 day wet spell will occur, 

and a probability of 68.5% that at most a 3 day wet spell will occur. This progression continues 
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until finally there is 100% probability that at most an 18 day wet spell will occur in the months 

of December, January, or February, (LARS-WG, 2010). 

 The wet and dry spell length distributions determine the precipitation status of each day, 

from which the other climate variables such as precipitation amount and temperatures are 

conditioned upon. Two CPDs exist for each conditional climate variable, one for a wet and the 

other for a dry day. Such variables are selected from separate distributions to maintain the 

multivariate correlation that exists between precipitation and other climate variables. For 

example solar radiation and temperature are both related to amount of cloud cover, and more 

coverage is expected on a wet day. Minimum and maximum temperature CPDs are a new feature 

of Semenov's latest model LARS-WG 5.0 which was used in this study (LARS-WG, 2010). 

Previous versions of LARS-WG normalized temperatures resulting in a poor estimation of future 

extremes in regions where temperatures do not follow such normal distributions. As mentioned 

earlier, CPDs are flexible and capable of fitting a variety of distributional shapes (Qian, 2004; 

Semenov 2002).  

 Once LARS-WG has been calibrated a series of synthetic daily weather may be generated. 

A random number generator selects climate variables from the CPDs, and as a result the 

synthetic weather will have the same statistical characteristics as the historical dataset. The 

generation process requires selection of the number of years to be simulated, as well as a random 

seed which controls the stochastic component of the weather generation. Different random seeds 

produce the same weather statistics, however variables differ on a day to day basis, (Semenov 

and Barrow, 2002).  

5.4 SDSM 
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 Statistical Downscaling Model (SDSM), developed by Wilby et al. (2002), incorporates 

both stochastic weather generation and regression based methods. It simulates local daily 

weather variables based on the assumed statistical relationship between observed local-scale 

"predictand" variables and large-scale atmospheric "predictor" variables, (Wilby and Dawson, 

2007; Koukidis and Berg 2009). The first step to using SDSM is determining which predictors, 

such as humidity and wind speeds, are most strongly correlated to the local predictands required 

for the study including precipitation amounts and temperatures. This is achieved through the 

"screening variables" step in the program, where scatter plots and correlation analysis are used to 

determine the most appropriate combination of predictors. It is also beneficial to understand the 

physical relationships between large and small scale weather variables to ensure reasonable 

combinations are used, (Dibike and Coulibaly, 2005; Wilson and Dawson 2007). 

 The selected correlations are presented in the form of regression equations, and used to 

predict watershed scale variables from AOGCM output. Transfer functions can be used to 

improve such predictions as well. For example, a forth root transformation is used to normalize 

the skewed daily precipitation distribution, while temperatures are normally distributed so the 

application of transfer functions is not required (Wilby and Dawson, 2007). As with LARS-WG, 

precipitation amount is first conditioned upon the wet or dry status of the day, then simulated 

using its correlation with atmospheric variables and forth order transfer functions. Temperature 

assumes a direct correlation between local and atmospheric variables and is not conditioned upon 

precipitation status.  

 In order to calibrate the model, 14 years of the historical dataset is used as input and the 

remaining 13 years of data is used to validate the resultant output. This process is repeated 

multiple times using various combinations of predictor-predictand variables to determine which 
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combination is best able to reproduce the observed climate statistics. Following this several more 

tests are run using a constant set of predictor-predictand combinations and varying the choice of 

appropriate transfer functions, as well as the bias correction and variance inflation values. 

Outputs are again analysed to establish which values of bias correction and variance inflation 

produce the most desirable results. Note that bias correction adjusts errors in the sample mean 

estimate, and variance inflation alters the amount of white noise in the regression model, (Khan 

et al., 2006).  

5.5 KnnCAD 

 KnnCAD (Version 3) is a non-parametric weather generator developed by Eum et. al 

(2009). It uses the traditional K-nearest neighbours generation approach with an additional 

perturbation component to improve the simulation of extreme climate.  

 The K-NN approach simulates climate variables one day at a time by selecting a day of 

weather most similar to the current day's from a subset of the historical data. The user is first 

prompted to input the number of years of historical weather N and a temporal window w from 

which the weather will be selected. The temporal window should be chosen carefully during the 

calibration process to ensure seasonality is preserved. If a 14 day window is used, a subset of 

data is created from the 14 days surrounding that date in any year of the historical data set. The 

weather variables for the days within this subset are analysed through principal component 

analysis and their similarity to the current day is measured using the Mahalanobis distance metric. 

The closest K days are retained from this subset and one day is randomly selected as the next 

days' weather using a geometric probability distribution where higher weights are assigned to 

closer neighbours. 
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 A major drawback of the traditional K-NN weather generators is their inability to 

produce unique output, as the historical data is essentially reshuffled. Perturbation of 

precipitation amounts is an additional component developed by Sharif and Burn (2006) to add 

variability to the output and enhance the generators ability to predict extreme values.  

6. RESULTS 

 Three different weather generators are used to simulate 324 years of synthetic climate 

data that represent the historical climate as well as 15 different AOGCM-modified future 

climates. This section includes validation, a detailed performance evaluation, and future 

simulation results from LARS-WG. For comparable detailed results from SDSM and KnnCAD 

refer to (Sarwar et al., 2012) and (King et al., 2010) respectively.  

 Before running simulations of future climate variables, LARS-WG must undergo 

validation and a performance evaluation for the specific site. The goal of any weather generator 

is to simulate climate with the same statistical characteristics as the observed data. In order to 

investigate the effectiveness of the LARS-WG model, box plots and line graphs are used to 

visually interpret the results. Total monthly precipitation, total monthly number of wet days, and 

minimum and maximum temperatures are illustrated as box plots, while wet spell  lengths are 

presented using frequency line graphs.  

 For this study box plots are a favourable method of presenting data for analysis as they 

clearly display statistical information. The height of the box represents the inter-quartile range, 

the horizontal line inside the box indicates the median, and the whiskers extend to the 5th and 

95th percentiles of the simulated datasets. For the purpose of comparison, the median of 

historical climate data is plotted on top of the box plots as a line.  
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6.1 Validation and Performance Evaluation 

 Validation of LARS-WG is performed by using half the historical dataset as input to 

simulate 324 years of current climate data, and comparing that output to the remaining half of the 

historical data. Since the historical data consists of 27 years, the first 14 years (1979-1992) are 

used as input and the remaining 13 years (1993-2005) are left for comparison. During the 

validation process several graphs are constructed using outputs from four simulations with varied 

random seed values. The graphs are compared to determine which random seed gives the most 

accurate results. A value of 4409 is found to produce the strongest correlation with the observed 

data, therefore it is used throughout the entire study and the others were omitted. Figure 2 shows 

the comparison between random seeds 541, 1223, 2741, and 4409 for the simulation of total 

monthly precipitation which is the most influential climate variable in a hydrologic impact 

assessment. For this particular climate variable statistics are quite uniform between all random 

seed results.   

 Following validation, a performance evaluation is done using the full 27-year observed 

record to determine how well LARS-WG reproduces observed climate characteristics. Figure 3 

contains box plots of simulated total monthly precipitation with historical medians shown as a 

line plot. It is evident that the observed and simulated data are in close agreement as all observed 

medians lie within the inter-quartile ranges of the observed data. In most months the historical 

median agrees with that of the simulated data. The plot for total number of wet days shows 

similar results in Figure 4. Again, all observed values lie within the simulated inter-quartile 
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range, however LARS-WG slightly underestimates results for January, March, June, August, 

September, and December, and overestimates results for February, May, July, and October.   

 The temperature box plots differ in that there is far less monthly variation in average 

temperature. Figure 5 and Figure 6 contain minimum and maximum temperature results, 

respectively. The inter-quartile boxes and whiskers are quite short, and any outliers are just 

outside the 5th and 95th percentiles. Most results lie within the simulated inter-quartile range, 

and the observed medians agree closely with the simulated values. There is a slight 

overestimation in the maximum average temperature predicted for February and August and an 

underestimation in January. Overall, LARS-WG reproduces both minimum and maximum 

average daily temperatures fairly well.  

 Wet spell lengths are relatively well simulated, however in some months one-day spell 

lengths tend to be underestimated, and two-day spell lengths are overestimated. Figure 7 

contains such poorly simulated results for July, while Figure 8 depicts results for September 

which is a well-simulated month. May, June, October, November, and December have similar 

results to July, while January to April are simulated more accurately, as in September.  

 Based on these results, LARS-WG's performance in simulating historical climate is 

deemed acceptable and it may be used to simulate future climate variables for analysis.  
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Figure 2: Validation results for total monthly precipitation using 541, 1223, 2741, and 4409 random seeds.
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Figure 3: LARS-WG performance evaluation results for total monthly precipitation. 

 

 

Figure 4: LARS-WG performance evaluation results for total number of wet days. 
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Figure 5: LARS-WG Performance evaluation results for minimum temperature. 

 

 

Figure 6: LARS-WG performance evaluation results for maximum temperature. 
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Figure 7: LARS-WG fair performance evaluation results for wet spell lengths in July. 

 

  

Figure 8: LARS-WG successful performance evaluation results for wet spell lengths in September. 
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6.2 Generation of Future Climate Variables 

 In order to simulate the future climate, change factors are used to modify the historical 

input parameters. Output from six AOGCMs are used to create change factors for the 2020, 2050, 

and 2080 time periods; refer to Table 2. 

 The resultant monthly change factors are applied to the 27 years of historical weather 

input, and a 324 year time-series is simulated for each AOGCM in all three future time periods. 

This report provides a detailed analysis of the future climate produced by LARS-WG for the 

2020 and 2080 time periods. The 2050 results are excluded from this section to avoid 

redundancy and may be found in Appendix C. 

6.2.1 Total Monthly Precipitation 

 Percent change charts are developed to visualize how each AOGCM projects an increase 

or decrease in total monthly precipitation relative to observed weather data. A positive value 

indicates an increase and a negative value indicates a decrease in total precipitation. A zero 

percent change indicates no change between future and observed parameters. Three charts are 

created to represent the 2020, 2050, and 2080 time periods. The 2020 and 2080 results are 

available in Figure 9 and Figure 10, while 2050 results are available in Figure 18 in Appendix 

C.  

 It is evident that some discrepancy exists between the models as both positive and 

negative changes of varying magnitudes are predicted for each monthly value. However, there 

are groups of months that exhibit similar trends. In the late winter and spring (February, March, 

April, May) the majority of AOGCMs agree that total monthly precipitation will increase 

between less than 1% to 33.5% in the 2020 time period. The highest value is predicted by 
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CGCM3T63 A2 scenario in May. In fact all models predict positive results in May for the 2020 

time period. However, seasonally there are several models that project negative results. In 

February all scenarios driving CGCM3T63 project a decrease in precipitation between 1% to 

16%, which are the most significant negative results for the season.  

  The opposite is true for summer and early fall (June, July, August, September), as thirty-

two of the sixty AOGCM simulations predict a decrease in precipitation in the 2020 time period. 

In June the CGCM3T47 and CGCM3T63 models predict decreases between 2% to 22% for A1B, 

A2, and B1 scenarios. MIROC3.2HIRES A1B also projects a significant decrease of 26%, which 

is the largest decrease predicted for the season. Models project relatively moderate positive and 

negative values for July and August, while September results are more extreme. All scenarios for 

CGCM3T47, CSIROMk 3.5, and MIROC3.2MEDRES, as well as GISSAOM  A1B and 

MIROC3.2HIRES  B1 project negative results between 3% to 20%. On the other hand, 

CGCM3T63 A1B predicts the greatest increase in precipitation for the entire season at 37%. 

 Finally, in late fall and early winter (October, November, December, January) more 

models project an increase than a decrease in precipitation, and the magnitudes of increase are 

greater. In the 2020 time period October, November, and December have similar results, while 

January is more unique. All scenarios driving CGCM3T47 and CGCM3T63 project increases in 

precipitation between 1% to 55% for October, November and December. CGCM3T47 A2 in 

October, and CGCM3T63 A1B and A2 in November all predict increases in precipitation greater 

than 50%. Conversely, CSIROMk 3.5 B1 projects the greatest decrease in precipitation at 28% 

for the October 2020 time period. Results for January are more sporadic, and both positive and 

negative values are relatively insignificant. 
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 These patterns are more pronounced in the 2080s as changes become more extreme 

further into the future; refer to Figure 10.  For the late winter and spring all models project an 

increase in precipitation with the exception of MIROC3.2MEDRES B1 in February, and 

MIROC3.2HIRES A1B and B1 in May. The negative changes in precipitation are small, while 

positive results range from 1% to 48%. The 48% increase is predicted by CGCM3T63 A1B in 

March. 

 The 2080 results for summer and early fall are evenly split between positive and negative 

values, however the magnitudes of precipitation increase are less, while the magnitudes of 

precipitation decrease are significantly greater. All scenarios driving MIROC3.2MEDRES 

project precipitation decreases between 2% to 48% for June, July, August and September. The 

48% decrease is predicted by MIROC3.2MEDRES A1B in September, which continues to be the 

month providing the most extreme negative results. Notably, MIROC3.2MEDRES A1B also 

predicts a precipitation decrease of 36% for August.  

 The number and magnitude of predicted precipitation increases are higher in the late fall 

and early winter 2080 time period. Only eight of the sixty AOGCMs project precipitation 

decreases, which are all less than 20% for the season. All scenarios for CGCM3T63 project 

extreme precipitation increases for October, and November especially, ranging from 34% to 76%. 

The 76% increase is predicted by CGCM3T63 A1B in November. Predicted increases in 

December and January are relatively moderate, as they range from approximately 1% to 32%.
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Figure 9: Percent change in total monthly precipitation, 2020s.

-40

-30

-20

-10

0

10

20

30

40

50

60

JAN FEB MARCH APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC

P
e

rc
e

n
t 

C
h

an
ge

 (
%

) 

Month 

CGCM3T47_A1B

CGCM3T47_A2

CGCM3T47_B1

CGCM3T63_A1B

CGCM3T63_A2

CGCM3T63_B1

CSIROMK3.5_A2

CSIROMK3.5_B1

GISSAOM_A1B

GISSAOM_B1

MIROC3HIRES_A1B

MIROC3HIRES_B1

MIROC3MEDRES_A1B

MIROC3MEDRES_A2

MIROC3MEDRES_B1



 

32 
 

  

Figure 10: Percent change in total monthly precipitation, 2080s
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6.2.2 Total Monthly Number of Wet Days 

 The percent change between baseline and future climate is also used to analyze change in 

total monthly number of wet days. Three percent change graphs represent the 2020, 2050, and 

2080 future time periods. The 2020 and 2080 results are available in Figure 11 and Figure 12, 

while 2050 results are in Figure 19 in Appendix C. AOGCMs tend to predict similar results 

within each month, however results vary greatly between months. In the following analysis the 

first paragraph describes 2020 results, while the second explains the 2080s. 

 In January all AOGCMs predict a decrease in total number of wet days between baseline 

and 2020 time periods. Results range from -9% to -13%, with the exception of a more significant 

17% decrease projected by MIROC3.2MEDRES A1B. There is little agreement among AOGCM 

outputs for February. The magnitudes of percent change are fairly moderate, excluding the 13% 

decrease in number of wet days projected by MIROC3.2MEDRES A1B. The months of March 

and August produce quite similar results. All AOGCMs and their respective emissions scenarios 

project a decrease between 3% to 12%. April provides mostly negative results up to around -11%. 

Results for May and July are also fairly similar in the 2020s. All models and their respective 

scenarios project an increase of around 2% to 14% for May, and 1% to 12% for July. In June 

thirteen of the fifteen models project a decrease in the number of wet days between 2% to 8.5%, 

while  MIROC3.2MEDRES A1B predicts a 21% increase which is by far the highest increase for 

all months in the 2020 time period. September contains some of the most extreme results for 

both 2020 and 2080 time periods, as all AOGCM scenarios project a decrease between 8.5% to 

21% in the 2020s. In October the majority of AOGCMs predict an increase in number of wet 

days between 2% to 11% while CSIROMk 3.5 B1 and MIROC3.2MEDRES A1B predict 

decreases of  less than 1% and 8%, respectively. November also provides a mixture of results. 
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Positive results range from 1% to 10%, while negative projections are fairly insignificant. Finally 

all models project a decrease in total number of wet days between 2% to 10.5% for December.  

 Unlike the results for total monthly precipitation, the magnitude of change in total 

number of wet days does not seem to increase in the 2080s. In the January 2080 time period all 

models switch to predict positive results between 7% to 13.5%, indicating an increase in number 

of wet days as time progresses. February predictions continue to consist of fairly low increases 

between 1% to 11%, and one negative value of less than 1% projected by MIROC3.2HIRES 

A1B. The 2080 predictions for March and August are similar to those of the 2020s, as values 

range between a 3% to 13% decrease in number of wet days. In April, there is little change 

between baseline and 2080 time periods as most predictions are less than 1% and fluctuate 

between negative and positive values. Similar to March and August results, May and July 

provide little change between 2020 and 2080 results. Models predict increases of around 4% to 

16% in May and 2% to 15% in July. In June the majority of models project negative results 

between 1% to 8%. September continues to exhibit more extreme magnitudes of change in the 

number of wet days, as predictions range from -14% to -17%. Such results correspond with the 

48% decrease in total precipitation in the September 2080 time period; refer to Section 6.2.1. 

Results are fairly similar for October and November, with a strong agreement among AOGCMs 

that the number of wet days will increase up to 12%. Again, the 2020 and 2080 results are 

similar in sign and magnitude for December, as they range between a 2% to 8% increase. Overall, 

there are no obvious trends in the number of wet days as time progresses. 
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Figure 11: Percent change in total number of wet days, 2020s 
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Figure 12: Percent change in total number of wet days, 2080s.
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6.2.3 Temperature 

 The temperature results are presented as line graphs in Figure 13 to Figure 16 for the 

2020s and 2080s. Minimum and maximum temperature plots are developed for 2020, 2050, and 

2080 time periods for emission scenarios A1B, A2, and B1. Each plot has four to six lines that 

represent the various AOGCMs as well as a thicker black line representative of the historical 

climate. Plots for the 2050 time period are available in Appendix C. 

 For maximum temperature results in the 2020 time period, the three graphs representing 

A1B, A2, and B1 scenarios look quite similar. All lines follow a uniform bell curve shape and 

have a strong correlation, indicating a close agreement among AOGCM outputs. The low points 

of the curves occur in January, February, and December and the high points peaks in July. 

GISSAOM predicts higher temperatures in May than in June from both A1B and B1 scenarios, 

which may be due to AOGCM shortcomings or error in the calculation of the figure. In July 

MIROC3.2HIRES projects a significant maximum temperature of 28.4 ⁰C for scenario A1B, 

while MIROC3.2MEDRES projects maximum temperatures of 28.1⁰C and 28.5⁰C for scenarios 

A2 and B1, respectively. To put these results into perspective, the average historical maximum 

temperature in July is 26.38⁰C.  

 The averaged minimum temperatures in the 2020 time period follow the same shape as 

the maximum temperatures. The greatest discrepancy between future and baseline values occurs 

in February for all three scenarios. The average historical minimum temperature in February is -

9.1⁰C, while CGCM3T47 consistently projects the most extreme minimum temperatures as -

5.74⁰C,  -5.77⁰C, and -6.08⁰C for scenarios A1B, A2, and B1, respectively.  



 

38 
 

 It is evident that the magnitudes of both maximum and minimum temperatures increase 

in the 2080s, as the gap between future and historical results grows wider. In addition, the future 

outcomes are more highly variable. The agreement between AOGCM simulations becomes 

weaker and the predicted values are more spread out. As in the 2020 time period, GISSAOM 

A1B and A2 projected lower temperatures for June than that for May for maximum temperature 

only. Although this trend is observed in both 2020 and 2080 time periods, 2050s values from the 

model appear to be more reasonable; Appendix C, Figure 20. This likely indicates an error in 

change factor application or perhaps within the AOGCM dataset. 

 The greatest discrepancy between baseline and 2080 average maximum temperatures 

occurs in March. The observed maximum temperature in March is 4.34⁰C, while 

MIROC3.2MEDRES consistently yields the most extreme results as 11.88⁰C, 13.12⁰C and 

9.29⁰C for scenarios A1B, A2, and B1, respectively. For minimum temperature in the 2080 time 

period the gap between baseline and future results is widest in February. Again it is the 

MIROC3.2MEDRES model that projects the most extreme results of -1.25⁰C, -0.76⁰C, and -

4.33⁰C for scenarios A1B, A2, and B1, respectively while the historical average minimum 

temperature is -9.13⁰C for that month. 
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Figure 13: AOGCM predictions for maximum temperature, 2020s. Emission scenarios A1B, A2, B1 from top to bottom. 
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Figure 14: AOGCM predictions for minimum temperature, 2020s. Emission scenarios A1B, A2, B1 from top to bottom. 
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Figure 15: AOGCM predictions for maximum temperature, 2080s. Emission scenarios A1B, A2, B1 from top to bottom. 
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Figure 16: AOGCM predictions for minimum temperature, 2080s. Emission scenarios A1B, A2, B1 from top to bottom.
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7. COMPARISON BETWEEN SDSM, LARS-WG, KnnCAD  

 To assess the performances of SDSM, LARS-WG, and KnnCAD simulated climate 

variables are compared to their equivalent historical values. Following a comparative 

performance evaluation, the downscaling models' abilities to simulate future daily precipitation 

is analysed and compared. Future precipitation amounts are studied as it is the most important 

variable in hydrologic modeling. 

7.1 Comparative Performance Evaluation of LARS-WG, SDSM, KnnCAD 

 SDSM, LARS-WG, and KnnCAD results are presented in separate columns of Figure 17. 

The first row contains results for absolute minimum and maximum temperatures where the solid 

and dashed lines represent historical and simulated values, respectively. The goal of any 

downscaling model is to produce a strong agreement between the datasets so that ultimately the 

two lines will overlap. It is evident that KnnCAD reproduces temperature most accurately as the 

historical and simulated maximum temperature lines coincide and any discrepancy between 

values for minimum temperature is minor. LARS-WG produces reasonable temperature results 

as well. Historical and simulated values coincide for the months of January, March, April, May, 

July, and September. In addition, the difference in historical and simulated values from October 

to December is minimal. Simulation of minimum temperature is slightly less accurate as only 

results for January, June, September, and December agree, however the overall correlation is still 

quite strong. SDSM output captures the seasonal trend well but the historical range is 

significantly lower than the simulated range. Maximum temperature outputs only coincide in 

August and December, and there is no overlap in minimum temperature results. 
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 Box plots are used to represent simulated total monthly precipitation results in the second 

row of Figure 17, with historical medians shown as a line plot. The historical median line is well 

within the inter-quartile range of simulated monthly precipitation amounts for all three models. 

There are some over or underestimations in total monthly precipitation values for certain months 

depending on the model. It is evident that LARS-WG and KnnCAD are most successful at 

reproducing total monthly precipitation amounts, particularly in the months of April, May, and 

December.  

 The third row of Figure 17 shows the mean and standard deviation in daily precipitation 

by month, represented as a line plot. The top line shows the standard deviation while the bottom 

line shows daily mean precipitation. LARS-WG and KnnCAD produce far superior results than 

SDSM. SDSM's projection of mean daily precipitation is significantly underestimated between 

the months of June to September. Such results contradict the Dibike (2004) study in the Chute-

du-Diable Basin in Quebec, where SDSM successfully reproduced the mean and standard 

deviation of daily precipitation. 

 Overall, LARS-WG and KnnCAD are found to be more capable of reproducing the 

observed climate. SDSM has shortcomings in the simulation of historical trends in daily 

precipitation and temperature. The results of this performance evaluation should be taken into 

account in the comparison of AOGCM downscaling results to understand the validity of the 

different future climate projections.  
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Figure 17: Comparative performance evaluation results for LARS-WG, SDSM, and KnnCAD 
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7.2 Comparative Generation of Future Daily PPT by LARS-WG, SDSM, KnnCAD 

 The comparative analysis of future precipitation amount is broken into four seasons as 

there are distinct trends within winter, spring, summer and fall months. Fifteen simulations are 

executed for the three stochastic downscaling models, each using different AOGCM output to 

perturb the historical input. Refer to Table 2 for a list of AOGCMs and their available emissions 

scenarios.  

 Table 3 includes results for percent change in seasonal precipitation amounts between 

baseline and 2050 time periods. Positive values indicate an increase in total seasonal 

precipitation between time periods, alternatively negative results indicate a decrease in 

precipitation. Each simulation results in a 324-year time series of data, therefore 324 total 

seasonal precipitation results are averaged to obtain a single value representative of a 

downscaling model and AOGCM combination; i.e. SDSM with CGCM3T47 A1B output used to 

perturb the historical input  

 For the winter season SDSM tends to project the greatest average precipitation increases 

of 14.1%, 15.0%, and 17.8% for scenarios A1B, A2, and B1 respectively. The highest predicted 

increase for the winter season and A1B scenario is 20.8% projected by SDSM with 

MIROC3.2HIRES. All results are positive for the A1B scenario although the KnnCAD and 

LARS-WG models predict a smaller magnitude of increase overall. Such results indicate a strong 

agreement among the various models that winter precipitation amount will increase by the 2050s. 

When driven by scenario A2, SDSM projects the greatest precipitation increase of 26.5% using 

CGCM3T63 output. KnnCAD also produces significant positive results from CGCM3T47 at 

24.8%. LARS-WG is the only model to predict decreases in winter precipitation, although the 
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magnitude of such decreases are low. Using MIROC3.2MEDRES output, LARS-WG projects 

decreases of 0.9% and 2.2% for scenarios A2 and B1, respectively, and another relatively 

insignificant decrease of 1.2% with GISSAOM  B1.  

 The three stochastic models provide a mixture of results for the spring season. For the 

A1B scenario LARS-WG projects the highest average precipitation increase at 11.3%. KnnCAD 

provides similar output of 9.2%, and SDSM projects a much smaller increase of 1.9%. This low 

value is the result of a mixture of relatively significant positive and negative outcomes that have 

a cancelling effect on each other. CGCM3T47 and CGCM3T63 simulations project increases of 

13.1% and 11.5%, respectively, while GISSAOM, MIROC3.2HIRES, and MIROC3.2MEDRES 

project decreases up to 8%. LARS-WG also projects a 6.0% decrease in precipitation using the 

MIROC3.2HIRES model output, while all other LARS-WG and KnnCAD results are positive for 

both A1B and A2 scenarios. Again, the average percent change predicted by SDSM for scenario 

A2 is relatively insignificant at 2.2%. For the same scenario, LARS-WG and KnnCAD project 

positive average results of 12.0% and 13.5%, respectively. The most significant positive percent 

change from scenario A2 is a 22.1% increase projected by KnnCAD, using the CGCM3T47 

output. There are far more negative results in the spring season for the B1 scenario. SDSM 

projects the most significant decreases in spring precipitation ranging from 1.3% to 7.4%, with 

only one increase of 2.1% projected using the CGCM3T47 model. About half of LARS-WG 

simulations project an increase and the remainder project a decrease in spring precipitation. 

KnnCAD results are similar to LARS-WG in that two simulations predict decreases and the 

remaining four simulations predict increases of about 3.0% to 21.0%, resulting in a 13.5% 

average precipitation increase.  
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 The downscaling models produce highly variable results for the summer season. SDSM, 

LARS-WG, and KnnCAD project average percent changes of 7.8%, -1.0%, and -7.2%, 

respectively from the A1B emissions scenario. The most significant decrease in precipitation is -

17.8% projected by the KnnCAD, MIROC3.2MEDRES simulation. Conversely, the most 

significant increase in precipitation is 14.2% projected by the SDSM, GISSAOM simulation. 

The A2 scenario yields similar results to the A1B driven output. SDSM's averaged percent 

change is identical to that of the A1B scenario at 7.8%. For LARS-WG, the CSIRO Mk3.5 A2 

simulation projects a 20.9% increase in precipitation which is the largest observed increase for 

the summer season. For the same downscaling tool CGCM3T47 and CGCM3T63 simulations 

project relatively insignificant changes of 1.2% and -1.2%, and the MIROC3.2HIRES simulation 

projects an 8.2% decrease in seasonal precipitation. All KnnCAD results range from about -4% 

to -16%, with the exception of the CSIRO Mk3.5 simulation which yields an increase of 10.1%. 

Increases in precipitation occur most frequently using the B1 scenario. All SDSM outputs are 

positive ranging from 4.2% to 13.0%, with an average percent change of 10.0%. LARS-WG 

results are more variable as CGCM3T47 and MIROC3.2HIRES simulations predict decreases of 

2% and 6 %, respectively. The remaining simulations predict increases up to 27%. The KnnCAD 

results are divided with some models projecting more precipitation and others projecting less 

precipitation. The outcomes range from a decrease of 15% to an increase of 22.5% for summer 

precipitation. Overall there was little agreement among downscaling tools and models on the 

sign, and magnitude of change for summer precipitation. 

 In the fall season, all A1B driven SDSM simulations agree that seasonal precipitation will 

decrease between 6% to 19%. Alternatively, LARS-WG simulations predict an increase ranging 

from about 3% to 42%. The 42% increase is the most extreme outcome for the A1B scenario, 
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projected by LARS-WG using the CGCM3T63 data to alter the historical input. The KnnCAD 

model also produced its highest output using this scenario, at 38.8%. KnnCAD results are 

generally similar to LARS-WG as most outcomes are positive ranging from around 7% to 39%, 

with the exception of one negative value of -4.7% projected using MIROC3.2MEDRES output. 

Results for the A2 and B1 scenarios follow a very similar pattern to the A1B scenario described 

above. Average results for scenario A2 are -13.4%, 14.9%, and 11.1% for SDSM, LARS-WG, 

and KnnCAD, respectively. Again, all SDSM simulations project negative results, while all 

LARS-WG and KnnCAD outcomes are positive with the exception of the MIROC3.2MEDRES 

simulations projecting decreases of around 4% each. As in the A1B scenario, the CGCM3T63 

A2 simulations project the most extreme precipitation increases of 46% and 39% for LARS-WG 

and KnnCAD, respectively. Average changes predicted for the B1 scenario are -10.8%, 13.8%, 

and 9.1% for SDSM, LARS-WG, and KnnCAD, respectively. This time the MIROC3.2HIRES 

simulation produces a decrease in fall precipitation for LARS-WG and KnnCAD, and 

MIROC3.2MEDRES predicts a negative percent change for KnnCAD only. All other results for 

the two weather generators are positive, while SDSM projects decreases in precipitation ranging 

from around 4% to 23%. Once again, CGCM3T63 projects the most significant increases of 

around 55% and 42% for LARS-WG and KnnCAD.  
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      Winter     Spring     Summer     Fall   

Emission 
Scenario AOGCM SDSM LARS-WG KnnCAD SDSM LARS-WG KnnCAD SDSM LARS-WG KnnCAD SDSM LARS-WG KnnCAD 

A1B CGCM3T47 10.5 16.5 18.7 13.1 20.5 17.6 -3.6 0.6 -3.9 -11.0 6.3 7.2 

  CGCM3T63 13.7 13.0 13.2 11.5 15.8 10.1 4.7 -1.1 -5.1 -19.3 41.5 38.8 

  GISSAOM 14.3 5.5 7.6 -7.0 13.1 4.7 14.2 13.1 7.0 -6.2 11.5 10.4 

  MIROC3.2HIRES 20.8 18.4 16.2 -8.1 -6.0 1.0 11.1 -3.0 -16.0 -12.5 9.7 7.3 

  MIROC3.2MEDRES 11.2 0.4 2.9 -0.1 12.9 12.6 12.7 -14.5 -17.8 -10.2 2.7 -4.7 

Average A1B 
  14.1 10.8 11.7 1.9 11.3 9.2 7.8 -1.0 -7.2 -11.8 14.3 11.8 

A2 CGCM3T47 18.1 21.7 24.8 4.0 15.0 22.1 6.2 1.2 -9.9 -17.2 10.6 6.6 

  CGCM3T63 21.8 4.9 5.6 3.6 11.0 8.4 3.5 -1.2 -3.8 -17.8 46.2 39.4 

  CSIRO MK3.5 7.4 9.8 13.5 0.1 15.2 14.1 10.2 20.9 10.1 -8.4 7.6 2.3 

  MIROC3.2MEDRES 13.6 -0.9 2.5 1.4 7.5 13.5 11.2 -8.2 -15.5 -12.0 -4.1 -4.5 

Average A2 
  15.0 9.2 11.6 2.2 12.0 13.5 7.8 2.3 -5.2 -13.4 14.9 11.1 

B1 CGCM3T47 20.4 11.9 16.1 2.1 18.4 14.8 4.2 -2.4 -5.9 -15.4 6.3 6.0 

  CGCM3T63 26.5 12.9 22.7 -1.3 -3.4 -4.5 5.3 11.9 5.8 -17.8 54.6 41.6 

  CSIRO MK3.5 7.0 4.1 7.3 -7.1 16.1 13.7 13.0 27.4 22.5 -4.2 9.2 4.4 

  GISSAOM 18.4 -1.2 8.4 -7.4 -0.5 -0.9 12.8 12.8 11.0 -7.9 6.2 6.6 

  MIROC3.2HIRES 21.0 5.2 5.3 -5.1 -0.6 2.7 10.0 -5.9 -15.1 -14.2 -2.3 -3.6 

  MIROC3.2MEDRES 16.1 -2.2 3.2 -5.8 23.0 20.7 8.9 1.2 -3.7 -9.6 1.1 -3.4 

Average B1 
  17.8 3.8 9.4 -5.3 6.9 6.3 10.0 9.5 4.1 -10.8 13.8 9.1 

 

Table 2: Percent change results for total seasonal precipitation amounts for SDSM, LAR-WG, and KnnCAD; 2050s
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8. CONCLUSION 

 In this study a detailed analysis of LARS-WG is performed and its ability to produce 

historical and future output is compared with that of two other downscaling tools, namely SDSM 

and KnnCAD. The models are tested using input data from the London Airport station in the 

Upper Thames River Basin of Ontario Canada. Simulations of 324 years of historical climate 

data are produced to provide for a performance evaluation. Following this, 324-year simulations 

are produced for each of the 15 AOGCM scenarios in the 2020, 2050, and 2080 future time 

periods.   

 LARS-WG's ability to reproduce precipitation amount, precipitation frequency, and 

minimum and maximum temperatures is tested in a detailed performance evaluation. It is 

determined that total monthly precipitation, total monthly number of wet days, and minimum and 

maximum temperatures are simulated quite well. The parameters are slightly over or 

underestimated in certain months, however the historical median values are well within the inter-

quartile ranges of the simulated data. LARS-WG simulates spell lengths relatively well despite 

an underestimation in the number of one-day wet spells and an overestimation in two-day spell 

occurrence. Overall, LARS-WG's performance in the preservation of historical statistics is 

deemed satisfactory.  

 A detailed analysis of LARS-WG's future climatic output includes total monthly 

precipitation, total monthly number of wet days, and minimum and maximum temperatures. 

Trends in total monthly precipitation are divided into three seasons. In the late winter and early 

spring, and the fall and early winter seasons the majority of AOGCMs project an increase in 

precipitation. Results are mixed in the late spring and early summer. The magnitudes of percent 

change are generally more significant in the 2080s indicating a greater amount of precipitation in 
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the first two seasons and a significantly drier late spring and summer season, especially in 

September. Results for total number of wet days vary considerably between months and exhibit 

little correlation between time periods, although within most months models are quite agreeable. 

All AOGCM scenarios project an increase in minimum and maximum temperatures except for 

one occurrence where the GISSAOM outcomes project higher average maximum temperatures 

in May than in June. This is likely due to an error in change factor application. Overall, there is a 

strong agreement among all models that temperatures will increase as a result of human induced 

climate change. 

 A comparative performance evaluation is carried out for SDSM, LARS-WG and 

KnnCAD prior to evaluation of the downscaling results. The models' abilities to reproduce 

absolute minimum and maximum temperatures, total monthly precipitation, and the mean and 

standard deviation of daily precipitation are tested. All models produce satisfactory results, with 

the exception of SDSM's output for the mean and standard deviation of daily precipitation values 

as there is great discrepancy between historical and simulated datasets.  

 The downscaling of 15 AOGCM models is performed using three different tools, and 

their outputs are compared. For the winter season, results show that SDSM projects the most 

significant increase in precipitation between time periods, while both LARS-WG and KnnCAD 

projections are less significant. The opposite is true for the spring season as LARS-WG and 

KnnCAD results are positive and generally of a greater magnitude than SDSM outcomes. Many 

SDSM simulations are negative or fairly similar to the historical climate. The trend in the model 

output changes again in the summer. SDSM consistently projects the most significant 

precipitation increase for scenarios A1B, A2, and B1. LARS-WG results vary considerably and 

most KnnCAD results predict decreases in precipitation. Finally in the fall, all SDSM results 
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predict precipitation decreases, while most LARS-WG and KnnCAD results predict precipitation 

increases of similar magnitudes. There is also a similarity between simulations that use 

CGCM3T63 output to perturb the historical datasets. Such results are far greater for both LARS-

WG and KnnCAD models using all emissions scenarios in the fall season. Overall, there does 

not seem to be a relationship between SDSM and the other downscaling tools. This is likely due 

to the various statistical assumptions programmed in the models' structures. It is important to 

consider a variety of downscaling tools as well as a range of AOGCM models as each will 

produce different results even when the same model input is used. For a comprehensive climate 

change assessment, the assumption of a single downscaling tool or one AOGCM does not 

provide for an adequate range of potential events.
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APPENDIX A: AOGCM DATA DESCRIPTION 

Coupled Global Climate Model: The third generation Coupled Global Climate Model 

(CGCM3) is an atmospheric-ocean model used in the IPCC's Fourth Assessment Report (2007) 

to produce extensive model simulations. It was developed by the Canadian Centre for Climate 

Modeling and Analysis (CCCma), which is a division of the Climate Research Branch of 

Environment Canada. The model runs at two resolutions, T47 and T63. The lower resolution 

model, CGCM3T47, has a grid size of 3.75⁰ latitude by 3.75⁰ longitude and 31 vertical layers. 

The CGCCM3T63 model provides a slightly higher resolution of 2.8⁰ x 2.8⁰ also with 31 vertical 

layers, (CCCma, 2010). Both versions are driven by A1B, A2, and B1 emissions scenarios which 

each provide potential, yet divergent, atmospheric greenhouse gas concentrations for the future. 

Commonwealth Scientific and Industrial Research Organizations Mk3.5 Climate Systems 

Model: Commonwealth Scientific and Industrial Research Organization (CSIRO) is located in 

Australia and is one of the largest and diverse scientific agencies in the world. The Marine and 

Atmospheric research division of CSIRO developed a coupled global climate model with 

atmosphere, land surface, ocean, polar ice components known as CSIRO Mk3.5. Its predecessor 

(CSIRO Mk3.0) appeared in the IPCC's Fourth Assessment Report and improvements were 

made to create CSIRO Mk3.5. Such improvements include reduced drift in the global mean 

temperature. CSIRO Mk 3.5 has a spatial resolution of 1.875⁰ x 1.875⁰ with 18 vertical levels, 

(Collier, Dix, and Hirst, 2010). Emissions scenarios A2 and B1 are used as input as scenario 

A1B is not available for this AOGCM on the CCCSN database. 

Goddard Institute for Space Studies Atmospheric Ocean Model: NASA's Goddard Institute 

for Space Studies (GISS) explores the global affects of natural and human induced change to our 
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environment on various time scales. In 2004 they released their own global climate model, GISS-

AOM. It has a spatial resolution of 4⁰ longitude and 3⁰ latitude, 12 atmospheric layers, and up to 

16 oceanic layers, (Atmosphere-Ocean Model, 2007). Emissions scenarios A1B and B1 are used 

to drive this model. 

Model for Interdisciplinary Research on Climate 3.2: The Model for Interdisciplinary 

Research on Climate 3.2 (MIROC3.2) was developed at the Centre for Climate System Research 

at the University of Tokyo, National Institute for Environmental Studies, and the Frontier 

Research Centre. This model runs at two resolutions MIROC3.2HIRES and 

MIROC3.2MEDRES. MIROC3.2HIRES (high resolution) has a spatial resolution of 1.125⁰ x 

1.125⁰ and is driven by emissions scenarios A1B and B1. MIROC3.2MEDRES (medium 

resolution) differs from MIROC3.2HIRES only in resolution as it has a courser grid size of 2.8⁰ 

x 2.8⁰, (PCMDI, 2005). All three emissions scenarios (A1B, A2, B1) are available and used as 

input to the MIROC3.2MEDRES version. 

 



 

62 
 

APPENDIX B: SRES EMISSIONS SCENARIOS 

 The IPCCs Special Report on Emissions Scenarios (SRES) contains scenarios with both 

greenhouse gas and sulphate aerosol forcings. In general, emissions scenarios provide input to 

the AOGCMs for evaluating climatic and environmental consequences of future greenhouse gas 

emissions, (IPCC, 2000). Greenhouse gases are considered positive forcings, and sulphate 

aerosols are negative forcings as they scatter and absorb solar radiation. Nevertheless, they 

negatively impact the environment by indirectly altering cloud properties and longevity.  

 

 Several divergent scenarios are used when simulating global climate data as 

recommended by the IPCC to ensure a wide range of future variables are considered in analysis, 

thus reducing uncertainty. The IPCCs Fourth Assessment Report (2007) uses three primary 

emission scenarios in their multi-model ensemble which include A1B, A2, and B1. All three 

scenarios are separately used as input to the AOGCMs for this study. 

  

 A1B: The SRES A1 storyline has three sub-categories that all describe a future with 

alternative development of energy technology. These sub-scenarios include A1FI, A1B, and A1T 

which represent fossil-fuel intensive, balanced, and predominantly non-fossil fuel technological 

advances, respectively. The A1B scenario was used in the IPCC's Fourth Assessment Report as 

well as in this study. It illustrates an integrated world of rapid economic and population growth 

on a global scale. The population peaks at approximately 9 billion mid-century and declines 

thereafter. New technologies consume a combination of clean non-fossil fuels and fossil fuels 

that are a major contributor to greenhouse gas emissions. 
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  A2: The SRES A2 emissions scenario is similar to A1 as it portrays an economic future, 

but it is more heterogeneous. Countries are self-reliant and the feeling of nationalism is strong. 

As a result technological change and economic growth per capita is slower than in other 

storylines. It is understood that globalisation would increase these rates of growth. 

 

 B1: As in the A1 emissions scenario the SRES B1 scenario describes a world with a 

global population that peaks mid-century and declines after. As a result of globalisation, there 

have been rapid changes in economic structure. It is a positive outlook of a future with reduced 

material consumption and the introduction of clean, resource-efficient technologies. 
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APPENDIX C: 2050 RESULTS FOR LARS-WG 

 

Figure 18: Percent change in total monthly precipitation, 2050s 
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Figure 19: Percent change in total monthly number of wet days, 2050s
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Figure 20: AOGCM predictions for maximum temperature, 2050s. Emission scenarios A1B, A2, B1 from top to bottom. 
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Figure 21: AOGCM predictions for minimum temperature, 2050s. Emission scenarios A1B, A2, B1 from top to bottom
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