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Abstract 
 

The assessment of climate change impacts on frequency and magnitude of flood flows is 

important for flood risk management. It is recognized that existing methods for the assessment of 

climate change impacts are subject to various sources of uncertainty (choice of climate model, 

choice of emission scenario, course spatial and temporal scales, etc.).  

This study investigates the climate change related uncertainty in the flood flows for the Upper 

Thames River basin (Ontario, Canada) using a wide range of climate model scenarios. Fifteen 

different climate model scenarios from a combination of six Atmosphere-Ocean Global Climate 

Models (AOGCMs) and three emission scenarios “A1B”, “B1” and “A2” out of the family of 

emission scenarios are used to determine an uncertainty envelope of future estimated flood 

flows.   

In this study, AOGCM data is downscaled using the change factor approach for 30-year time 

slices centered on years 2020, 2050 and 2080. To estimate natural variability, a stochastic 

weather generator is used to produce synthetic time series for each horizon and for each climate 

change scenario. The weather generator is also used to perturb historical data so that a number of 

realizations can be produced for the 1979-2005 baseline. 

A continuous daily hydrologic model, calibrated for the basin, was then used to generate daily 

flow series for the 1979-2005 baseline period and the 2020, 2050 and 2080s.  A peak-over-

threshold (POT) modeling approach with Generalized Pareto Distribution is used to produce 

flood frequency distributions for the four time horizons.  The uncertainty involved with the POT 

modelling is also considered. 

The results indicate that frequency and magnitude of flood flows in the Upper Thames River 

basin will most certainly change in the future due to climate change. Inherent uncertainties 

associated with different AOGCMs are quantified by a normal kernel function. Use of a 

probability based frequency curve is encouraged in order to apply the flood magnitude-return 

period relationship with high level of confidence. 
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1 Introduction 

1.1 Research Problem 

 

It is widely recognized that hydrologic cycle will be intensified by increasing global 

temperatures, resulting from increased anthropogenic emissions of carbon dioxide. This will 

influence climate variables and will result in changes in climate. One of the expected 

consequences of climate change is increase in the magnitude and frequency of extreme 

hydrologic events (IPCC, 2007). A number of studies in the Canadian context concur with the 

findings of IPCC (2007). Notably, a study performed by the Environment Canada (EC, 2007) on 

four selected river basins in Ontario using a modeling exercise, indicates  that the impacts of 

future climate change on the frequency and magnitude of precipitation, stream flow, and 

associated flooding risks will increase in that part of Canada. It is also reported that the monthly 

total number of rainfall related water damage insurance claims and incurred loss could increase 

by about 20% to 30% in the 2nd half of the 21st century. Also, the assessment of the 

vulnerability of Canadian public infrastructure to changing climatic conditions performed by the 

Public Infrastructure Engineering Vulnerability Committee of Engineers Canada (PIEVC, 2008), 

concludes that the failures of water resource’s infrastructure due to climate change will become 

increasingly common across Canada.  It is suggested among others, by Simonovic (2008) that 

water resource’s infrastructure design criteria should be revised to adapt to the expected changes 

in magnitude and frequency of extreme events.  

The climate change impact assessments of extremes such as floods are of particular interest 

because floods usually have the greatest and most direct impact on our everyday lives, 

community and environment. Changes in the frequency of flooding events are expected and 

projected changes will have serious implications for planning, operation and design of water 

resources systems.  However, quantifying the changes in extremes is subject to various sources 

of uncertainty and hence requires further investigation.  

Assessment of climate change impacts on floods incorporates projection of climate variables into 

a global scale, downscaling of global scale climatic variables into local scale hydrologic 
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variables and computations of risk of future extreme floods for purposes of water resources 

planning and management.  Global scale climate variables are commonly projected by Coupled 

Atmosphere-Ocean Global Climate Models (AOGCMs), which provide a numerical 

representation of climate systems based on the physical, chemical and biological properties of 

their components and feedback interactions between these (IPCC, 2007).  These models are 

current state of the art in climate change research and they are the most reliable tools available 

for describing the physics and chemistry of the atmosphere and oceans and for deriving 

projections of meteorological variables (temperature, precipitation, wind speed, solar radiation, 

humidity, pressure, etc).  They are based on various assumptions about the effects of the 

concentration of greenhouse gases in the atmosphere coupled with projections of CO2 emission 

rates (Smith et al., 2009).  There is a high degree of consensus in the scientific community that 

AOGCMs are able to capture large scale circulation patterns and correctly model varying fields, 

such as surface pressure, especially at continental or larger scales. However, it is extremely 

unlikely that these models properly reproduce highly variable fields, such as precipitation, on a 

regional scale (Hughes and Guttorp, 1994).  

A single AOGCM have been used by most of the studies related to climate change impacts for 

predicting future climate. It is recognized that there is a great deal of uncertainty involved in the 

estimation of future extreme floods under climate change (e.g. Prudhomme et al., 2003; Mareuil 

et al., 2006; Minville, 2008). The utilization of a single AOGCM may only represent a single 

realization out of a multiplicity of possible realizations and therefore cannot be representative of 

future. Therefore, for a reliable assessment of future changes in extremes, it is important to use 

collective information by utilizing all available climate models and by synthesizing the 

projections and uncertainties in a probabilistic manner.  
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1.2 Objective of the Study 

 

The study is concerned with the assessment of climate change impacts on floods. The traditional 

way to address the problem is to develop climate scenarios from the GCMs and link the 

scenarios to a hydrological model from which peak flow values are extracted and analysed. It is 

recognized that existing methods for the assessment of climate change impacts are subject to 

various sources of uncertainty (choice of climate model, choice of emission scenario, course 

spatial and temporal scales, etc.).  

The main objective of the study is to investigate the climate change related uncertainty in the 

estimation of extreme flood flows for the Upper Thames River basin (Ontario, Canada) using a 

wide range of climate model scenarios.  The peak over threshold (POT) approach of flood 

frequency is considered in this study to estimate flood magnitude - return period (Q-T) 

relationship. The study also address the suitability of the distributions associated with the POT 

model, and the uncertainty involved with the POT modelling under climate change. 

 

1.3 Approach 

 

The approach considers the following steps: 

1. Climate data is obtained from several AOGCMs. Fifteen different climate model 

scenarios from a combination of six Atmosphere-Ocean Global Climate Models 

(AOGCMs) and three emission scenarios “A1B”, “B1” and “A2” out of the family of 

emission scenarios are considered in this study. 

2. AOGCM data is downscaled using a stochastic weather generator. The change factors for 

30-year time slices centered on years 2020, 2050 and 2080 are calculated first. The 

change factors are then used to modify the historic datasets. Synthetic time series, for 

each time horizon and for each climate change scenario, are derived by using the 

modified historic data sets as input to the weather generator. Baseline scenario (1979-
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2005) is produced by perturbing historical data using the weather generator. In each case 

(15 AOGCMs and baseline) 25 model runs are performed. 

3. The hydrological simulations are carried out in a continuous mode using the HEC-HMS 

model and  

4. The peak flows are obtained and hydrological impacts of climate change are assessed 

through the flood frequency peak over threshold (POT) approach. 

 

1.4 Organization of the Report 

 

The outline of the report is organised as follows. Chapter 2 presents literature relevant to the 

development of methods for assessing climate change impacts on flood flows. Chapter 3 

describes the methodology applied in this study. Chapter 4 describes the study area of The Upper 

Thames River basin (UTRb), along with the production of POT series for the Byron gauging 

station. Chapter 4 presents and discusses the results. Finally the study is concluded in Chapter 5. 
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2 Literature Review 

 

The assessment of climate change impacts on flood flows is generally conducted by linking 

climate scenarios, usually precipitation and air-temperature outputs from GCMs, to a 

deterministic hydrological model to simulate river flows, from which peak flows are assessed 

through a flood frequency approach. For instance, Roy et al. (2001) used daily precipitation and 

temperature values extracted from the Canadian coupled global climate model 1 (CGCM1) as 

input values to a lumped hydrological model to investigate the effect of climate change on peak 

discharges of the Chateauguay River, Canada. Loukas et al. (2002) also used output values from 

the CGCM1 model, linked to the UBC watershed model to simulate the discharge of two 

mountainous watersheds located in different climatic regions of BC, Canada. POT series were 

extracted from simulated flows for frequency analysis in the study by Loukas et al. (2002). 

It is recognized that the above methods for the assessment of climate change impacts are subject 

to various sources of uncertainty. The uncertainty mainly depends on climate data (choice of 

climate model, choice of emission scenario) and simulated hydrologic regimes (Prudhomme et 

al., 2003).  Prudhomme et al. (2003) address the problem to some extent (climate related 

uncertainty) by generating a large ensemble of climate scenarios using Monte Carlo simulation. 

Their study used change factor approach to produce large ensemble of climate scenarios. Results 

from a single scenario were discouraged in their study. They suggested rather a range of climate 

scenarios derived from different GCMs should be considered in climate change impact studies. 

A more recent approach of incorporating uncertainty due to climate data in hydrological impact 

studies is to use several climate projections obtained from the combinations of GCM and 

emission scenarios. For example, Minville (2008) in their study for the assessment of impact of 

climate change on the hydrology of the Chute-du-Diable watershed (Quebec, Canada), used 10 

climate projections from a combination of 5 general circulation models (GCMs) and 2 

greenhouse gas emission scenarios. Mareuil et al. (2006) used three GCMs to account for 

uncertainties related to the internal structure of the GCMs.  Their study focused on the potential 

effects of climate change on the flood frequency and severity in a watershed subjected to spring 
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snowmelt and summer-fall storms. In both studies, POT series were derived through a 

continuous hydrological model driven by GCM-derived climate scenarios for frequency analysis. 

Kay et al. (2006, 2009) also performed similar kind of studies for UK catchments. 

The consideration of large number of climate models and scenarios also permits a probabilistic 

assessment of future flood flow uncertainty. The probabilistic treatment of climate related 

uncertainty was performed in many recent studies. Other than simple normal assumption several 

techniques are explored by researchers: for example, Giorgi and Mearns (2003) used ‘Reliability 

Ensemble Averaging (REA)’ technique, Tebaldi et al. (2004; 2005) introduced a Bayesian 

treatment of ‘Reliability Ensemble Averaging (REA)’ approach and, Ghosh and Mujumdar 

(2007) and Solaiman and Simonovic (2011) used a non-parametric approach to quantify 

uncertainty of hydrologic variables in climate change impact studies. Probabilistic approach  thus  

appeared  to  be  an  important  platform  for  estimating  uncertainties  from multi-model 

outputs. 



 

 

7 

 

3 Methodology 

 

This section details the methodology applied in the study which includes use of different types of 

AOGCM models and emission scenarios, weather generator model, continuous hydrological 

model and statistical models.  

 

3.1 Climate Models 

 

Global circulation models namely, coupled Atmosphere-Ocean Global Climate Models 

(AOGCMs) are current state of the art in climate change research. AOGCMs are the most viable 

tools for simulating physical processes in the atmosphere, ocean, cryosphere and land surface 

that determine global climate (IPCC, 2007).  AOGCMs are associated with model structure 

developed by various countries, and the emission scenarios. Three emission scenarios “A1B”, 

“B1” and “A2” out of the family of emission scenarios (Nakićenović and Swart, 2000) are most 

commonly used in climate impact studies.  These represent respectively “the productive world 

with rapid economic expansion and abundance of energy sources”, “the sustainable world with 

clean technologies” and “the world of independent nations with increasing population and slower 

technological advancements”, respectively.  In this study, a total of 15 scenarios from 6 

AOGCMs, each with two to three emission scenarios are selected for investigation. A list of 

these models including their origin and associated scenarios is provided in Table 3.1.  

Table 3.1 List of AOGCM models and emission scenarios used 

GCM models Sponsors, Country 
Emission 

Scenarios 

Atmospheric 

Resolution 

Lat Long 

CGCM3T47, 2005 Canadian Centre for Climate Modelling 

and Analysis, Canada 

A1B, B1, 

A2 

3.75° 3.75° 

CGCM3T63, 2005 A1B, B1, 2.81° 2.81° 
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A2 

CSIROMK3.5, 2001 Commonwealth Scientific and Industrial 

Research Organization (CISRO) 

Atmospheric Research, Australia 

B1, A2 

1.875° 1.875° 

GISSAOM, 2004 National Aeronautics and Space 

Administration (NASA)/ Goddard 

Institute for Space Studies (GISS), USA 

A1B, B1 

3° 4° 

MIROC3.2HIRES, 

2004 

Centre for Climate System Research 

(University of Tokyo), National Institute 

for Environmental Studies, and Frontier 

Research Centre for Global Change 

(JAMSTEC), Japan 

A1B, B1 
1.125° 1.125° 

MIROC3.2MEDRES, 

2004 

A1B, B1, 

A2 

2.8° 2.8° 

 

3.2 Weather Generator 

 

A weather generator model, one kind of downscaling technique, is employed to address the 

deficiencies (i.e. coarse spatial and temporal resolution) of global climate models for use at local 

scales. It stochastically simulates climate information for an area by combining both, local and 

global weather data.  The local data are used to address the fine spatial and temporal scale issues 

needed for impact studies by including historically observed data obtained from stations in and 

around the study area. The global data provide the general direction of change of the climate 

within the region of interest by including outputs obtained from global climate models.  

The principle component analysis integrated stochastic weather generator (KnnCADV3) is used 

in this study to produce synthetic data sets.  The model is based on K-Nearest Neighbour (K-NN) 

algorithm developed by Sharif and Burn (2006). Recently Eum et al. (2009) revised the weather 

generator model of Sharif and Burn (2006) by adding the principal component analysis, which 

provides reduction in computational requirements and allows user to include more variables for 

an improved selection of nearest neighbours. The weather generator model operates by 

generating weather for a new day for a station of interest. This has been done by extracting all 

days with similar characteristics, known as nearest neighbours, from the historic record from 

which a single is selected according to a defined set of rules. The model also includes a 

perturbation mechanism which allows newly generated values to be outside of the observed 
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range.  The data sets produced in this way take into account natural variability when predicting 

the effects of climate change.  

The steps of the WG-PCA with p  variables and q  stations are as follows (Eum et al, 2009):  

1)  Regional means, tX , of p  variables for all q  stations are calculated for each day of the 

observed data:   

   TtxxxX tpttt ,....,2,1..,|,., ,,2,1        (3.1)  

where    pix
q

x
q

j

j

titi ,..2,1
1

1

,,  


        (3.2) 

2)  Potential neighbours, L days long where    11  NwL  for each of p individual 

variables with N  years of historical record, and a temporal window of size ( w ), are selected by 

the user of the weather generator. The days within the given window are all potential neighbours 

to the feature vector. N  data which correspond to the current day are deleted from the potential 

neighbours so the value of the current day is not repeated (Eum et al, 2009).  

3)   Regional means of the potential neighbours are calculated for each day at all q  stations.  

4)   A covariance matrix, tC  of size pL   is computed for day t .  

5)   The first time step value is randomly selected for each of p  variables from all current day 

values in the historical record.  

6)   (a) From the covariance matrix, ( tC ) the eigenvector and eigenvalue are calculated. (b) 

Selection of the eigenvector corresponding to the eigenvalue which represents the highest 

fraction of variance in the p  variables. (c) The first principle component is calculated from 

Equations (3.3) and (3.4) using the eigenvector, E , found in (b). tPC  is the value of the current 

day and kPC  is the nearest neighbour transferred by the eigenvector in (b).   

EXPC tt            (3.3) 



 

 

10 

EXPC kk            (3.4) 

 (d) The Mahalanobis distance is calculated with Equation (3.5) from the one dimensional matrix 

calculated by the above equations.  

        kkPCVarPCPCd ktk ,..2,1/
2

       (3.5) 

where the variance of the first principle component is  PCVar  for all K  nearest neighbours 

(Eum et al, 2009).   

7) The number of nearest neighbours, K , out of L  potential values is selected using LK  .  

8) The Mahalanobis distance  kd  is put in order of smallest to largest, and the first  K  

neighbours in the sorted list are selected (the K  nearest neighbours). A discrete probability 

distribution is used which weights closer neighbours highest in order to resample out of the set of 

K  neighbours. The weights, w , are calculated for each k  neighbour as: 

  kk

i

k
w

k

i

k ,..,2,1

/1

/1

1






              (3.6) 

Cumulative probabilities, jp , are given by:  

  



j

i

ij wp
1

                 (3.7) 

9) A random number  1,0u  is generated and compared to the cumulative probability calculated 

above in order to select the current day’s nearest neighbour. If kpup 1  , then day j for which  

u  is closest to  jp   is selected. However, if 1pu  , then the day corresponding to  1d  is chosen. 

If kpu  , then the day which corresponds to day kd  is selected. Upon selecting the nearest 

neighbour, the K-NN algorithm chooses the weather of the selected day for all stations in order 

to preserve spatial correlation in the data (Eum et al, 2009).  
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10) In order to generate values outside the observed range, perturbation is used. A bandwidth is 

determined using: 

  5/106.1 k             (3.8)  

  Perturbation is performed next, using:  

  t

j

i

j

ti

j

ti zxy  ,,              (3.9)  

where j

tix ,   is the weather variable obtained in step 9,  j

tiy ,  is the value of that variable obtained 

after perturbation, tz is a random variable which is normally distributed (zero mean, unit 

variance) for day t . Negative values are prevented from being produced for precipitation by 

employing a largest acceptable bandwidth.  If again a negative value is returned, a new value for 

tz  is generated (Sharif and Burn, 2006). 

 

3.3 Hydrological Model 

 

This study uses HEC-HMS to carry out hydrological simulations in a continuous mode. HEC-

HMS is a computational modeling system developed by the Hydrologic Engineering Center 

(HEC) of the U.S. Army Corps of Engineers (USACE) in Davis, California. HEC-HMS is 

designed to simulate the precipitation-runoff process of watershed systems. Precipitation, air 

temperature, and estimated potential evapotranspiration are used as input data for HEC-HMS 

model. Additionally, soil information and land use data are required for estimating initial 

parameter sets for the model. 

 

3.3.1 Model Structure 
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Figure 3.1 represents the overall structure of the continuous hydrologic model. Each box in the 

figure represents a module that mathematically represents a physical processes functioning in the 

basin. Precipitation and maximum and minimum air temperature data obtained from the weather 

generator are used as inputs to a snow module, where adjustments are made to account for both 

solid and liquid precipitation. The output of the snow module is adjusted precipitation, used for 

computation of losses. The losses module represents the movement of moisture through various 

conceptual reservoirs within a catchment, such as canopy, surface, soil, and ground water. One 

of the outputs of the losses module is evapotranspiration, or moisture that evaporates from the 

canopy, surface depressions, and/or the soil. Baseflow (or lateral flow being returned to the 

stream from ground water), surface excess (the portion of the flow that does not infiltrate into the 

soil), and ground water recharge (the flow that enters deep aquifers and does not return to the 

stream) are other outputs from the losses module. The surface excess is converted to direct runoff 

by a unit hydrograph method. In the following the modules are described briefly: 

 

 

 

 

 

  

 

 

 

 

              

Figure 3.1 Continuous hydrologic model structure  
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3.3.2 Snow Module 

 

In snow module degree day and threshold air temperature methods were used to estimate the 

snowmelt and snow accumulation. The precipitation and temperature data is integrated into the 

snow module to separate the solid (snow) and liquid (rainfall) forms of precipitation. The output 

of the snow module is adjusted precipitation.  

The following sets of equations are used in this process. The measured amount of precipitation 

(mm/day) is categorized as rain iR  and snow iS  by the following equations: 

min,
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         (3.10) 
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       (3.11) 
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
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         (3.12) 

where ni ,.....3,2,1 : represents number of days with precipitation; minT and maxT refer to the 

minimum and  maximum temperature for snowfall and snowmelt, respectively.  

The daily amount of snow melt is calculated as:  

 cii TTMRM           (3.13) 

where MR represents a parameter for melt rate (mm/
0
C/day) set to 4.0 and cT is a critical 

parameter for melt and is set to zero.  

Adjusted precipitation is calculated from previously obtained snow-accumulation as: 

1 iii SSS           (3.14) 
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If snowmelt occurs (i.e., if 0tM ) and if the accumulated snowmelt, tS , is greater than the melt 

rate, tM , ( tt MS  ), then only a portion of the accumulated snow melts as: 

iii MSS            (3.15) 

On the other hand, if all accumulated snow melts, the adjusted precipitation becomes: 

iia MRP            (3.16) 

Lastly, if no snowmelt occurs, the adjusted precipitation takes on simply the value of rainfall as: 

ia RP            (3.17) 

The adjusted precipitation is then used as input to the losses module.  

 

3.3.3 Losses Module 

 

The losses module incorporated within the HEC-HMS is called SMA (Soil Moisture 

Accounting). The module based on Precipitation-Runoff modeling System, PRMS (Leavesly and 

Stannard, 1995) was designed to compute runoff discharge on a continuous time basis. 

Conceptually, the SMA algorithm divides the potential path of rainfall in the watershed into five 

zones, as shown in Figure 3.2. The losses module uses a series of conceptual reservoirs to 

represent the storage and movement of water in each sub-catchment of the basin: (i) canopy 

interception, (ii) surface interception, (iii) soil profile, and (iv) a number of ground water layers 

(only two shown in Figure 3.2). The inflow and outflow rates between the reservoirs regulate the 

amount of water stored in each conceptual reservoir. These include evapotranspiration, 

infiltration, percolation, surface runoff and ground water flow. A more detailed description of the 

losses module can be obtained from Prodanovic and Simonovic (2006). The mathematical 

equations for the Soil Moisture Algorithm are well documented and can be found in Bennett 

(1998). 



 

 

15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Soil moisture accounting losses module 
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reservoirs. A series of linear reservoirs is used to transform lateral ground water flow into the 

baseflow. 

3.4 Statistical Analysis 

 

In this study the peaks-over-threshold (POT) approach is chosen for flood frequency analysis. 

The statistical procedure associated with frequency analysis focuses on outlining an appropriate 

form to model, the underlying distribution of flood data, and then estimating the parameters of 

this distribution.  

This study uses the method of L-moments to estimate parameters of a distribution. L-moments 

method introduced by Hosking (1990) is used because it is almost free of bias, easy to use and 

generally unaffected by outliers. L-moments are analogous to conventional moments defined as 

linear combinations of the probability weighted moments (PWMs) introduced by Greenwood et 

al. (1979). Theoretical formula in terms of the basic population quantities can be obtained from 

Hosking and Wallis (1997). Necessary relationships for the calculation of these statistics from 

the sample data can be obtained from Das (2010, p. 25). 

3.4.1 POT Modelling: 

 

A peak over threshold series is formed by replacing the continuous hydrograph of flows by a 

series of randomly spaced spikes on the time axis. The series generally consists of well-defined 

flood peaks above a specified threshold ( 0q ). In a POT model, such a series is fitted with a 

continuous probability distribution. The flood events are modelled by a discrete probability 

distribution, such as Poisson distribution, and the model is of the form: 

 
T

qQQF TT


1
/1 0          (3.18) 

where  F  is the cumulative frequency distribution of flood magnitude, 0qQ  .    is the 

number of peaks per year included in the POT series. According to Cunnane (1989, p. 3), the 

POT model is statistically more efficient than the Annual Maximum (AM) model when  > 1.65. 
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The  generalized Pareto  distribution (GPD),  of which  the  exponential  distribution (Cunnane, 

1973; 1979)  is  a  special  case, with Poisson arrival rate has  been  the  most  popular  model  

for  POT  series  analysis  (Wang, 1991; Rosbjerg et al., 1992). This  follows from the result 

shown by Pickands (1975) that the generalized Pareto distribution  arises  as  a  limiting form  for  

the distribution  of independent exceedances over  a  high  threshold. In this study the GPD with 

Poisson arrival rate is used for POT analysis. 

 

3.4.2 Generalized Pareto Distribution (GPD) 

 

This is a three parameter distribution and the distribution function is  

     
k

qq
k

qqqQPqF

1

00 11/ 










     (3.19) 

where 0q  is the threshold    is a scale parameter and  k  is a shape parameter. 

When k =0 , this is reduced to exponential distribution of the form  

   







 0

1
exp1 qqqF


        (3.20) 

The inverse form of the GPD is  

     0,110  kF
k

qFq
k

       (3.21) 

    0,1ln0  kFqFq         (3.22) 

The estimation of the parameters can be done in either of two distinct ways from a record of N 

years. 
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a) Fix 0q  a priori and abstract from the record of flows every peak value exceeding 0q . Let 

there be M of them  

b) An alternative to fix   a priori. This determines M=  N the required sample size. The 

largest M peaks are then extracted from the record and both 0q  and    and k  are 

estimated from a sample of data. 

 

The estimation of the parameters using L-moments are as follows: 

For case (a) the two parameters   and k  are given by (Hosking and Wallis, 1997) 

  2/ 201  lqlk         (3.23) 

  011 qlk          (3.24) 

For case (b), the three parameters are given by (Hosking and Wallis, 1997) 

   331 1/3 ttlk          (3.25) 

   221 lkk          (3.26) 

  210 2 lklq          (3.27) 

where 1l   is 1
st
 L-moment, 2l  is 2

nd
 L-moment and 3t  is L-skewness 

 

3.4.3 Selection of Peaks 

 

Flood peaks can be obtained using different methods from a time series. The number of floods 

(M) generally will be different to the number of years of record (N), and will depend on the 

selected threshold discharge.  The US Geological Survey (Dalrymple, 1960) recommended that 



 

 

19 

M should equal 3N.  The UK Flood Studies Report (NERC, 1975) recommended that M should 

equal 3N to 5N.  

A criterion for independence of successive peaks must also be applied in selecting events.  Beard 

(1974) used a criterion that flood peaks should be separated by five days plus the natural 

logarithm of the square miles of drainage area, with the additional requirement that intermediate 

flows must drop to below 75% of the lower of the two separate flood peaks.  The UK Flood 

Studies Report (NERC, 1975) used a criterion that flood peaks should be separated by three 

times the time to peak and that the flow should decrease between peaks to two thirds of the first 

peak.  An excellent review on the selection of flood peaks is presented by Lang et al. (1999).  In 

this study, the method proposed by Willems (2003, 2008) is used where two adjacent peaks are 

considered independent if:   

(i)  the time between the two peaks is longer than the recession constant of the quick flow runoff 

components for the given basin;  

(ii) the minimum discharge between the two peaks is smaller than 37% of the peak discharge.  

The POT values were extracted by applying the criteria mentioned above using the WETSPRO 

software, which has been developed by the Hydraulics Laboratory of K.U. Leuven in Belgium 

(Willems, 2003; 2008).  

 

3.4.4 Test of Suitability of GPD Distribution: L-Moment Ratio Diagrams 

 

The suitability of GPD probability distribution can be assessed with the help of L-moment ratio 

diagrams.  The L-moment ratio diagrams are considered as a reliable diagnostic tool for 

identifying a probability distribution (Hosking and Wallis, 1997).  The L-moment ratio diagram 

is a graph between L-kurtosis (τ4) and L-skewness (τ3). Usually a two-parameter distribution 

with a location and a scale parameter plots as a single point on such a diagram while a three 

parameter distribution with location, scale and shape plots as a line or curve on the diagram.  

Generally the distribution selection process involves plotting the sample L-moment ratios as a 
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scatter plot and comparing them with theoretical L-moment ratio points or curves of candidate 

distributions (Hosking and Wallis, 1997).  

The GPD distribution is plotted as a line that corresponds to the varying shape parameters. The 

expressions for τ4 are given as functions of τ3 and are approximated as (Hosking and Wallis, 

1997). 

8

3

6

3

4

3

2

34 19383.057488.095812.030115.01224.0      (3.28) 

The Exponential distribution (a 2-parameter distribution) which is a special case of the GPD 

plots as a single point with a constant τ3 value of 0.333, and a τ4 value of 0.169. The L-moment 

ratio diagram has been successfully used in regional frequency analysis to select a distribution 

for a region (e.g. Das and Cunnane, 2011). In this context, a good number of POT series obtained 

from different AOGCMs allow the L-moment ratio diagram to be used. 

3.4.5 Test of Poisson Process 

 

The  simplest Poisson model states that  the occurrence of  flood peaks in excess of  a given 

threshold 0q conforms to  a Poisson process, the number occurring in  any year being a Poisson 

variate with parameter  , !/)( 0 mePyearainqpeaksmp m

m   and that the flood peak 

magnitudes are identically, independently distributed (i.i.d)  with distribution function 

 0/ qqqQF   (Cunnane, 1979). 

A test of the Poisson assumption can be conducted on a flow series of peaks exceeding 0q . The 

Poisson dispersion test introduced by (Cunnane, 1979) in POT flood frequency analysis  

provides  the  most  powerful   method  for  testing  the  adequacy  of  the  fitted Poisson  

distribution.    The statistic ( D ) also known as Fisher dispersion statistic is based on the fact that 

the Poisson distribution, the mean and variance are equal.   

The test statistic is as follows:  
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 
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     (3.29) 

However it is shown by Cunnane (1979) in the context of POT analysis that while the Poisson 

assumption is a sufficient condition for flood magnitude-return period relationship, it is not a 

necessary one.  
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4 Case Study  

 

4.1 Description of the Watershed 

 

The methodologies described in the previous section are applied to the Upper Thames River 

basin (UTRb). The Upper Thames River basin has an area of 3,842 km
2
 located between Lake 

Huron and Lake Erie in Southwestern Ontario. Majority of the river basin is covered with 

agricultural lands (80%), with forest cover and urban uses taking about 10% each. London is the 

major urban centre with a population of around 366,151 inhabitants, many of whom experience 

the effects of flooding as the Thames River runs directly through the City. The Thames River 

with a total length of 273 km has an average annual discharge of 35.9 m3/s. The UTRb receives 

approximately 1,000 mm of annual precipitation; however 60% of this is lost due to evaporation 

and evapotranspiration (Prodanovic and Simonovic, 2006). Figure 4.1 shows a schematic map of 

the Upper Thames River basin.  

Flooding represents one of the major hydrologic hazards in the Upper Thames River basin. 

Flooding most frequently occurs after snowmelt, typically in early March; it also occurs as a 

result of summer storms usually taking place in July and August. In 1937, the City of London 

experienced a massive flooding event which eventually sparked the creation of the Upper 

Thames River Conservation Authority. Since then, three major water management reservoirs 

were created, namely Pittock, Wildwood, and Fanshawe (Prodanovic and Simonovic, 2007). 

Most recently such as in July 2000, April 2008 and December 2008, the Thames River has 

experienced several extreme flood events. Several weather stations are located throughout the 

basin to provide point measurements of climatic variables. Stations chosen for this study are 

listed in Table 4.1. 
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Figure 4.1Map of the Upper Thames River basin  

 

 

 

 

 

 



 

 

24 

 

Table 4.1 Location of stations in the Upper Thames River basin 

Station Latitude(deg N) Longitude(deg W) Elevation(m) 

Blyth 43.72 81.38 350.5 

Brantford MOE 43.13 80.23 196 

Chatham 42.38 82.2 198 

Delhi CS 42.87 80.55 255.1 

Dorchester 43 81.03 271.3 

Embro 43.25 80.93 358.1 

Exeter 43.35 81.5 262.1 

Fergus 43.73 80.33 410 

Foldens 43.02 80.78 328 

Glen Allan 43.68 80.71 404 

Hamilton A 43.17 79.93 238 

Ilderton 43.05 81.43 266.7 

London A 43.03 81.16 278 

Petrolia Town 42.86 82.17 201.2 

Ridgetown 42.45 81.88 210.3 

Sarnia 43 82.32 191 

Stratford 43.37 81 354 

St. Thomas WPCP 42.78 81.21 209 

Tillsonburg 42.86 80.72 270 

Waterloo Wellington 43.46 80.38 317 

Woodstock 43.14 80.77 282 

Wroxeter 43.86 81.15 355 
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4.2 Hydrological Model Setup, Calibration and Validation 

 

The hydrologic model has been originally developed and applied to the Upper Thames River in 

the work by Cunderlik and Simonovic (2004, 2005). The hydrologic model consists of thirty 

three sub-basins, twenty one river reaches, and three reservoirs namely Wildwood, Fanshawe 

and Pittock. The schematic of the model is shown is Figure 4.2. Each sub-basin in Figure 4.2 is 

represented by rectangles and is provided with interpolated precipitation and maximum and 

minimum temperature data. The outputs of each sub basin are flow hydrographs joined by 

junctions (circles) where the flows are added together. River reaches represent the major rivers in 

the basin and are shown as thick lines connected between two junctions. The routing module is 

applied to each river reach, and thus acts as a passage of a flood wave as it moves through the 

river system. Reservoirs are depicted as triangles and the same routing rules are applied.  

The hydrologic model applied to the Upper Thames River basin has been calibrated and verified 

with extensive sensitivity analyses (Cunderlik and Simonovic, 2004; 2005). The model is 

seasonal in nature with different parameters referring to the summer and winter seasons. The 

parameter sets for the summer and winter seasons are presented in Cunderlik and Simonovic 

(2004) and Prodanovic and Simonovic (2007). In this report no attempt has been made to 

recalibrate the model. 
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Figure 4.2 Schematic of Upper Thames River basin hydrologic models (Prodanovic and 

Simonovic, 2006) 
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4.3 Data Source and Production of POT Series 

 

The following steps are implemented to produce POT series for a stream gauge under climate 

change. Byron stream gauge, located in South-East of the Upper Thames River basin, is selected 

for this study.  

 

1. Daily weather data (precipitation, maximum temperature and minimum temperature) for 

the period of 1979-2005 was obtained from Environment Canada 

(http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html) for each of the 

stations listed in Table 4.1. Stations were chosen based on the completeness and length of 

the observed data. The historic daily flow data for the Byron gauging station was 

obtained from Environment Canada (http://www.wateroffice.ec.gc.ca). 

2. Climate data for each of the fifteen AOGCM’s scenarios have been collected from the 

nearest grid points surrounding the Upper Thames River Basin. The Canadian Climate 

Change Scenarios Network (CCCSN) provides access to those AOGCM models and 

emissions scenarios. Data have been obtained for four time slices: 1961-1990, 2011-

2040, 2041-2050 and 2071-2100. Seven variables were chosen: minimum temperature, 

maximum temperature, precipitation, specific humidity, northward wind component, 

southward wind component and mean sea level pressure.   

3. Climate variables from the nearest grid points have been interpolated to provide a data set 

for each of the stations of interest.  For the purpose of interpolation the inverse distance 

weighting (IDW) (for calculation see King et al., 2009) is used. This method is widely 

used, and recommended by the United States Army Corps of Engineers (USACE, 2000).   

4. Calculation of change factors for future climate is performed. Using the AOGCM 

datasets for each station, monthly averages are computed for each variable for both the 

baseline (1960-1990) and the future time slices (2011-2040, 2041-2070 or 2071-2100). 

http://www.wateroffice.ec.gc.ca/
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For maximum temperature, minimum temperature, northward wind speed, eastward wind 

speed and mean sea level pressure, the monthly change factors are computed as the 

difference between the baseline and the future averages. For precipitation and humidity, 

the change factors are taken as the percent change between the baseline and the future 

averages.  The change factors have been used to modify the historic datasets for each 

station gathered from Environment Canada. The historical daily data for humidity and 

precipitation are multiplied by the monthly change factors. For the rest of the variables, 

the change factors are added to modify the historical data.  

5. Modified historic data sets, are used as input into the WG-PCA to produce a synthetic 

dataset. This study uses 22 stations for the period of 1979-2005 (N=27) to simulate 

different rainfall scenarios.  Employing  the  temporal  window  of  14  days  (w=14)  and  

27  years  of  historic  data (N=27),  390  days  are  considered  as  potential  neighbors  

(L=(w+1)  x  (N-1)=390).  Each case is simulated 25 times.  Another scenario “baseline” 

(historical perturbed data) is developed to describe  the climate that will continue to 

change as the consequence of already  altered  greenhouse  gas  concentrations  in  the  

atmosphere,  ignoring  any  future  change  in  greenhouse  gas  emissions. 

6. The locations of 22 stations for climate data do not correspond to the locations of the sub-

basins. The climatic data derived from the weather generator is therefore spatially 

interpolated in order to be used by the hydrologic model. The Inverse Distance Weighting 

Method (USACE, 2000) is used for interpolation. The interpolated synthetic data series 

of precipitation, maximum and minimum air temperature are fed into the calibrated 

hydrological model to get the simulated flow series for the four time horizons. 

7. Peaks are extracted from the flow series for the Byron station at an average rate of three 

per year (i.e. the peak threshold is implicit), using the set of rules defined in Section 

3.4.3. Thus 81 most extreme floods are selected for each of the flow series. 
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5 Results and Discussions 

 

This section presents the results of the statistical procedures applied to the POT data series 

produced for Byron stream gauging station located at the Upper Thames River basin under 

changing climate conditions. 

 

5.1 Peak Flows 

 

POT series are obtained for each future time horizon (2020, 2050 and 2080) and for the baseline 

(1979-2005).  A total of 375 POT series (15 AOGCMs x 25 model runs each) are derived for 

future climate projections (2020, 2050 and 2080). For baseline, 25 POT series are obtained by 

perturbing historical data 25 times using the weather generator.  Figure 5.1 shows the Box-plots 

of peak discharges for each AOGCM for all the time horizons. Baseline is included in each 

future time horizon for the comparison.  By 2020, Canadian climate models (CGCM3T47 and 

63) under scenarios A1B, A2, B1, suggest a 7-16% (median) increase in peak discharge, whereas 

rest of the models propose a 4-16% (median) decrease compared to the baseline period. By 2050, 

climate models MICROC3HIRES and GISSAOM under scenarios A1B and B1, suggest a 1-8% 

(median) decrease in peak discharge, whereas rest of the AOGCMs propose an 8-28% (median) 

increase in peak discharge compared to the baseline period. The largest increase is projected by 

CSIROMK3.5_A2.  By 2080, climate models, MICROC3HIRES under scenarios A1B and B1 

and CSIROMK3.5 under scenario B1 propose a 2-11% median decrease, whereas rest of the 

AOGCMs suggest a 2-44% (median) increase in peak discharge compared to the baseline period.  

The largest increase at 44% is projected by CGCM3T63_A1B. The maximum discharge is 

projected by CGCM3T63_A2, MICROC3MEDRES_B1 and CGCM3T47_A2, respectively for 

the 2020, 2050 and 2080 time horizon.  This shows the variability of peaks projected by different 

climate models under different emission scenarios in different time horizons. 
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Figure 5.1 Box-plots of peak discharges for all AOGCMs considered in this study. Results are 

for the Byron gauging station in the Upper Thames River basin at the 2020, 2050 and 2080 time 

horizons. The baseline period (BL) is also included with each future time horizon. 

BL-Baseline (1979-2005) 

1-CGCM3T47_A1B 

2-CGCM3T47_A2 

3-CGCM3T47_B1 

4-CGCM3T63_A1B 

5-CGCM3T63_A2 

6-CGCM3T63_B1 

7-CSIROMK3.5_A2 

8-CSIROMK3.5_B1 

9-GISSAOM_A1B 

10-GISSAOM_B1 

11-MIROC3HIRES_A1B 

12-MIROC3HIRES_B1 

13-MIROC3MEDRES_A1B 

14-MIROC3MEDRES_A2 

15-MIROC3MEDRES_B1 
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5.2 Evaluation of POT Modelling 

 

This section presents the results related to POT modelling. 

5.2.1 Suitability of GPD Distribution 

 

The L-moment ratio diagrams (LMR) were constructed for all four time horizons and they are 

displayed in Figure 5.2. The LMR for baseline is constructed with 25 data points, one for each 

model run. The LMRs for future time horizons are constructed with 375 data points (15 

AOGCMs x 25 model runs each).  The average of the data points is shown as square.   The GPD 

is shown as a curve whereas the Exponential distribution which is a special case of GPD is 

shown as a single point (circle).  Figure 5.2 shows except for baseline, the peaks follow the GPD 

distribution very well.  The average data point is also very close on those cases to the population 

L-moments of an exponential distribution. This indicates that the two parameter GPD 

distribution is also capable of describing the data very well. Therefore either GPD or its special 

case Exponential distribution can be used to describe POT flood data for future climate.  
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Figure 5.2 L-moment ratio diagrams for POT series obtained for all future climate projections, 

and for the baseline period (BL) 

 

5.2.2 Poisson Process 

 

Dispersion test described in Section 3.4.5 is used to test the Poisson process.  The dispersion 

index, D, is calculated for POT series obtained for all the future time horizons. The test is 

evaluated at the 0.05 significance level, which means that it is expected that if the Poisson model 

is reasonable for the data, it is rejected in about 5% of cases.  Table 5.1 summarizes the % of 

times out of x datasets (for BL, x = 25; for future climate, x = 375) that Poisson is rejected by the 

test. The D rejected Poisson about 50% of all cases suggesting that peaks derived in this study 

follow Poisson distribution in about 50% cases.  It can be mentioned here that for obtaining a 

flood magnitude-return period relationship using a POT series, the Poisson assumption is not a 

necessary one (Cunnane, 1979). 
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Table 5.1 Percentage of rejections at the 5% significance level for the dispersion test 

 Baseline 2020 2050 2080 

Poisson 52% 42% 55% 47% 

 

5.2.3 Shape Parameter Uncertainty 

 

The value of the shape parameter and its precision is important in POT modelling using the 

GPD.  Estimated shape parameter from a data series has a significant amount of uncertainty.  

Therefore an evaluation of the parameter for all data sets is needed, and is performed in this 

section. Figure 5.3 displays the boxplots for the shape parameter for all time horizons. This 

shows how the parameter values vary for each of the data sets in each time horizons. It is 

suggested that the upper and lower values indicated by the box i.e. containing the middle 50% of 

values, ought to give a good indication of the range of true values. For BL the range is between -

0.09 and 0.1 (median value is .05), which indicates most of the cases the distribution is upper-

bounded. For the future time horizons (no particular trend was observed among the three 

horizons) the ranges are between -0.1 and 0.1 with median value zero indicates a decreasing 

trend compared to BL. Thus overall results show that the future data can be descried with GPD 

with shape parameter, k = 0, in other words with an Exponential distribution. 
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Figure 5.3 Box plots of shape parameter of GPD distribution at the four time horizons 

 

5.3 Flood Magnitude - Return Period Relationship and Uncertainties 

 

POT data derived from different AOGCMs are used to estimate Flood magnitude-Return period 

relationships (Q-T curves) for all time horizons. It is hoped that employing a good number of 

different AOGCM scenarios the many variations of climate change encompassing all 

uncertainties were taken into account, which give a wide variety of results to analyze. The T- 

year return period flood magnitudes for all climate model scenarios are produced using the GPD 

model.   

Figure 5.4 to Figure 5.7 display the flood frequency curves (Q-T) for all the time horizons. The 

flood frequency curve derived from historic data is also shown for information only.  The 

AOGCMs for the highest and the lowest frequency curves are also shown in the figure. For 

example, for 2020 the highest and lowest frequency curves are obtained from a model run 

derived from CGCM3T63-A2 and MICRO3MEDRES-A1B, respectively. It is found that the 

corresponding magnitudes for 100 (250)-year floods are respectively 1175(1626) and 391(478) 

m
3
/s.  
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These indicate how the return values vary with the application of different AOGCMs, due to the 

assumptions made in each model.  
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Figure 5.4 Simulated flood frequency results for climate data at time horizon 2020. Data from 

375 scenarios (15 climate model scenarios x 25 model runs each) are used. Each line with a 

specific color represents a different AOGCM. The upper and lower bound frequency curves are 

obtained from scenario runs derived from CGCM3T63-A2 and MICRO3HIRES-B1, 

respectively. 
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Figure 5.5 Simulated flood frequency results for climate data at time horizon 2050. Data from 

375 scenarios (15 climate model scenarios x 25 model runs each) are used. Each line with a 

specific color represents a different AOGCM. The upper and lower bound frequency curves are 

obtained from scenario runs derived from MICRO3MEDRES-A2 and MICRO3MEDRES-A1B, 

respectively. 
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Figure 5.6 Simulated flood frequency results for climate data at time horizon 2080. Data from 

375 scenarios (15 climate model scenarios x 25 model runs each) are used. Each line with a 

specific color represents a different AOGCM. The upper and lower bound frequency curves are 
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obtained from scenario runs derived from CGCM3T63-A2 and MICRO3MEDRES-A1B, 

respectively. 
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Figure 5.7 Simulated flood frequency results for climate data at baseline. Data from 25 runs 

produced a range of results.  

 

The frequency curves for Canadian models (CGCM3T47 and 63) under emission scenarios A1B, 

A2 and B1 are grouped together to show how Canadian models performed in terms of Q-T 

relationship. They are displayed in Figures 5.8, 5.9 and 5.10 for the time horizon 2020, 2050 and 

2080 respectively. These climate models are of particular interest because the study region is 

located in Canada. The upper and lower bound frequency curves for 2020 time horizon were 

obtained from scenario runs derived from CGCM3T63-A2 and CGCM3T63-B1, respectively. 

For 2050, they were from CGCM3T63-A2 and CGCM3T63-A1B, respectively, while for 2080 

they were from CGCM3T63-A1B and CGCM3T47-B1, respectively. 
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Figure 5.8 Simulated flood frequency results for climate data at time horizon 2020. Data from 

150 scenarios (6 Canadian climate model scenarios x 25 model run each) are used. The upper 

and lower bound frequency curves are obtained from scenario runs derived from CGCM3T63-

A2 and CGCM3T47-A1B, respectively. 
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Figure 5.9 Simulated flood frequency results for climate data at time horizon 2050. Data from 

150 scenarios (6 Canadian climate model scenarios x 25 model run each) are used. The upper 

and lower bound frequency curves are obtained from scenario runs derived from CGCM3T63-

A2 and CGCM3T47-A1B, respectively. 



 

 

39 

10
0

10
1

10
2

10
3

0

500

1000

1500

2000

2500

Return Period, T (years)

D
is

c
h
a
rg

e
,Q

 (
m

3
/s

)

Q-T Relationship for Canadian Climate Models (2080)

 

 

CGCM3T47-A1B

CGCM3T47-A2

CGCM3T47-B1

CGCM3T63-A1B

CGCM3T63-A2

CGCM3T63-B1

 

Figure 5.10 Simulated flood frequency results for climate data at time horizon 2080. Data from 

150 scenarios (6 Canadian climate model scenarios x 25 model run each) are used. The upper 

and lower bound frequency curves are obtained from scenario runs derived from CGCM3T63-

A1B and CGCM3T63-B1, respectively. 

 

A large number of flow values (15 AOGCMs X 25 model runs each = 375 data series) obtained 

for different model scenarios for a particular return period can be assumed to be a good 

representation of flow variability under climate change and these can be used to establish an 

uncertainty measure. The simplest normal assumption or non-parametric assumption (e.g., 

Solaiman and Simonovic, 2011) can be employed to estimate an uncertainty bound. Non 

parametric based approach, normal kernel function, is used in this study to construct probability 

density functions (PDF).  The PDFs allow the uncertainty of design flow to be better quantified.  

Figure 5.11 shows the PDFs of 100-year return period flood for each AOGCMs at time horizon 

2050. The PDFs are constructed for each AOGCM using 25 model runs. The PDFs are different 

for different AOGCMs. A greater variance is observed for the climate models, CGCM3T63-A2 

and MICROC3MEDRES-B1. The PDFs of floods at return periods, T = 10, 100 and 250, for the 

time horizons 2020, 2050 and 2080 are shown in Appendix A. 
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Figure 5.11 Probability density functions (PDFs) of 100-year return period flood for all 

AOGCMs at the time horizon 2050. Each PDF is constructed using 25 model runs. 

 

Data from 15 climate models are employed to construct probability density plots for floods at 

return period, T = 10, 100 and 250 for the four time horizons for comparison. The plots are 

displayed in Figures 5.12, 5.13 and 5.14. It is to be mentioned that the corresponding T-year 

floods based on historic data are 574, 955 and 1107 m
3
/s, respectively. Results show that 

uncertainty increases with time, as PDFs become flatter. A greater variance of the design flood is 

also observed as PDFs become generally flatter with time. It is found that the average percentage 

changes of the 100-year flood magnitude between the future climate (2020, 2050 and 2080) and 

the baseline (1979-2005) are respectively 8, 12 and 12.3%. The corresponding percentage 

changes for the 250-year flood are respectively 19, 32 and 32.5%. 
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Figure 5.12 Probability density plots for 10-year return period flood for the four time horizons.  
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Figure 5.13 Probability density plots for 100-year return period flood for the four time horizons.  
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Figure 5.14 Probability density plots for 250-year return period flood for the four time horizons.  

 

The information from the above figures, Figure 5.12, 5.13 and 5.14, are converted to cumulative 

distribution functions (CDFs). They are displayed in Figures 5.15, 5.16 and 5.17 for 10, 100 and 

250-year return period flood, respectively.  
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Figure 5.15 CDFs for 10-year return period flood for the four time horizons.  
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Figure 5.16 CDFs for 100-year return period flood for the four time horizons.  
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Figure 5.17 CDFs for 250-year return period flood for the four time horizons.  
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From the results of flood magnitude – return period relationship (Q-T) it can be said that there is 

significant variability between AOGCMs, and this variability increases when an attempt is made 

to project flood events for a more distant future. For this reason, climate change impact studies 

based on only one AOGCM and/or SRES should be considered with a great care. The use of two 

carefully chosen climate projections (dry and wet projections, for example) may be more 

appropriate for climate change impact analyses and this has been done in several recent studies 

(e.g. Prodanovic and Simonovic, 2006). 

One of the limitations to the approach presented in this paper is linked to hydrologic model 

calibration.  In this research no attempt has been made to recalibrate the model.  The approach 

implicitly assumes that the calibration is equally acceptable for the baseline and the future 

conditions.  Therefore the focus of future work should be on the expected % changes of design 

flood magnitude between future climate and baseline period. Based on the percentage changes of 

design flood magnitude between future climate and baseline period it can be recommended that 

design extreme floods (i.e. 250-year return period flood) established from observed data should 

be increased for at least 30% to account for climate change for engineering practice. 
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6 Conclusions 

 

This study uses a multi-model, multi-projection approach to generate probability distribution 

functions of future extreme flood flows. A wide range of climate model scenarios is used to 

investigate the climate change related uncertainty in the flood flows for the Upper Thames River 

basin (Ontario, Canada).  Fifteen different climate model scenarios from a combination of six 

Atmosphere-Ocean Global Climate Models (AOGCMs) and three emission scenarios “A1B”, 

“B1” and “A2” are used to determine an uncertainty envelope. To account for the natural 

variability of the hydroclimatic system, a stochastic weather generator was employed to 

construct sequences of daily precipitation amounts and minimum and maximum air 

temperatures.  A total of 375 (15 AOGCMs X 25 model runs) climate scenarios were produced 

for the future time horizons centred on 2020, 2050 and 2080 and 25 for baseline period (1979-

2005). A continuous daily hydrologic model, calibrated for the basin, was then used to generate 

daily flow series for the baseline period and for the future time horizons.  A peak-over-threshold 

(POT) modeling approach with Generalized Pareto Distribution is used to produce flood 

frequency curves for the four time horizons.  The uncertainty involved with the POT modelling 

is also considered. The following conclusions are obtained from the study: 

1. Analyzing the shape parameter for the GPD for different datasets, it appears that the POT 

modelling with GPD using k = 0 (i.e. Exponential distribution) can be used for flood 

frequency analysis at the Byron gauging station in the Upper Thames River basin. 

2. A large uncertainty exists in all the projected future design floods. Use of probabilistic 

approach helps to better define the uncertainty linked to future climate.  

3. Based on the study results, it is reasonable to say that the hydrologic behaviour of the 

Upper Thames River basin would be modified over the next century. While it is 

impossible to predict the future flows accurately, the recommendation of this study is to 

include the uncertainty associated with future design floods into engineering and 
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management practices. Based on the comparison made with the baseline period it is  

recommended, for engineering practice that design extreme floods established from 

observed data should be increased for at least 30% to account for climate change. 
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Figure A. 1 Probability density functions for 10-year return period flood for all climate model 

scenarios at the time horizon 2020. 
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Figure A. 2 Probability density functions for 100-year return period flood for all climate model 

scenarios at the time horizon 2020. 
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Figure A. 3 Probability density functions for 250-year return period flood for all climate model 

scenarios at the time horizon 2020. 
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Figure A. 4 Probability density functions for 10-year return period flood for all climate model 

scenarios at the time horizon 2050. 
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Figure A. 5 Probability density functions for 250-year return period flood for all climate model 

scenarios at the time horizon 2050. 
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Figure A. 6 Probability density functions for 10-year return period flood for all climate model 

scenarios at the time horizon 2080. 
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Figure A. 7 Probability density functions for 100-year return period flood for all climate model 

scenarios at the time horizon 2080. 
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Figure A. 8 Probability density functions for 250-year return period flood for all climate model 

scenarios at the time horizon 2080. 
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