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Executive Summary 
The increase in greenhouse gas emissions has had a severe impact on global temperature, 

and is affecting weather patterns worldwide. With this global climate change, 

precipitation levels are changing, and in many places are drastically increasing. The need 

to be able to accurately predict extreme precipitation events is imperative in designing for 

not only the safety of infrastructure, but also people’s lives. To predict these events, the 

use of historical data is necessary, along with statistical distributions that are used to fit 

the data.  

In this study, historical data from the London International Airport station has been used, 

along with 11 different Atmosphere Ocean Global Climate Models (AOGCMs), which 

are used to predict future climate variables. These models produced a total of 27 different 

data sets of annual maximum precipitation over a period of 117 years, for storm durations 

of 1, 2, 6, 12 and 24 hours.  

The current Environment Canada recommended distribution is the Gumbel (EV1) 

distribution, and the current United States distribution is the Log-Pearson type 3 (LP3). 

This report investigates a third distribution, the Generalized Extreme Value (GEV) 

distribution, in the context of the Upper Thames River Watershed. 

The historical data set and the data sets derived from AOGCMs were used with the GEV, 

LP3 and EV1 distributions, and the goodness of fit tests were performed to select which 

was most appropriate distribution. L-Moment Ratio diagrams were also constructed to 

help establish the most suitable distribution.  All results showed that GEV was very 

appropriate to the Upper Thames River Watershed data, and it was often the favored 

distribution.  

This report shows the need for more studies to be carried out on the GEV distribution, to 

ensure we are using the most appropriate methods for predicting these extreme 

precipitation events.  
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1. Introduction 
 

1.1 Climate Change and Water Resource Management 

The increased use of fossil fuels across the globe has led to a substantial rise in 

greenhouse gas emissions worldwide. The scientific community has directly linked these 

CO2 emissions to climate change. The rising temperature will have many effects on the 

environment, and on hydrological processes. These effects will undoubtedly influence the 

frequency and severity of floods and droughts experienced in many areas of the world.  

Addressing and understanding these effects on the climate is essential to ensure that the 

population is prepared to cope with the changes. Predicting the effects that the rising 

temperature will have on precipitation patterns is necessary to safely plan for the future. 

Severe weather can have a tremendous affect on the environment, local infrastructure, 

and the general population.  

 

In order to accurately design and manage flood control structures, including 

sewers, reservoirs and dams, an appropriate way of estimating these extreme events must 

be determined. Engineers, as well as many other professions, have the responsibility of 

accurately assessing these risks and taking them into account during the design process. 

In a 2007 report from the Inter-governmental Panel on Climate Change (IPCC, 2007), it 

is predicted that precipitation intensities will increase world wide, particularly in mid to 

high latitudes. Studying these changing patterns is crucial in being able to estimate future 

extreme climatic events, such as temperature and precipitation intensity. Looking at the 

extremes is vitally important as these values could present much greater risk to the 

population, compared with the mean increases alone.  The change in climate will in turn 

increase the risk of flash flooding and urban flooding, and has the potential to incur a vast 

amount of monetary damage and endanger human lives. The capacity of current city 

infrastructure, including storm drain systems, may need to be evaluated to check if they 

are adequately prepared to handle the increased risk of flooding. The intensities and 

frequency of these rains and floods will vary over the globe, however already in some 

locations the current 100-year design flood is estimated to occur every 2 to 5 years. 

(IPCC, 2007) 
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1.2 Statistical Analysis of Climate Change Data 

The use of statistics has a wide range of important applications in climate research, as 

climatology can be said to be the study of the statistics of our climate (Storch, 1999). 

These applications can range from simple calculations of the means, and measures of 

variability of the data, which is used to predict future events, but also include, advanced 

methods that investigate the dynamics of the climate system. The use of statistical 

distributions is applied to historical data, which is fit to the desired distribution. The 

parameters of the distribution are estimated, and from this information, the Cumulative 

Density Function (CDF) and Probability Density Function (PDF) are created. The 

distributions are also used to estimate the probability of future maximum occurrences, 

which is needed for design and planning. Historical climate data in Canada is available to 

the public from Environment Canada website. This data includes daily and monthly 

temperature and precipitation data, dating back to various years depending on the station 

in question.   

 

As the climate is believed to be changing, and new patterns are emerging, models are 

created to represent future climate predictions. The models are referred to as 

Atmosphere-Ocean Global Climate Models. These models are made up of complex 

mathematical models and equations that represent climate variables, and can be used to 

predict future climatic events. AOGCMs are discussed further in section 3.2.2.   

 

1.3 Statistical Tools 

With new ideas about more appropriate distributions emerging, studies must be done to 

ensure we are using the most accurate method available. Findings in this report will shed 

more light onto the accuracy of the currently accepted methods, and will compare the 

benefits of a new distribution. The three distributions compared are the Generalized 

Extreme Value (GEV), Log-Pearson type 3 (LP3), and Gumbel (EV1). LP3 and GEV are 

3 parameter distributions, compared to EV1, which only uses 2 parameters. Since 1967, 

the U.S Water Resource Council has recommended and required the use of LP3 

distributions for all U.S analysis. This has recently been called into question by several 

papers in the U.S that have done similar studies as carried out in this report, which have 
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found that the GEV distribution is an acceptable distribution, and often preferred over 

LP3 (Vogel, 1993). In Canada, the current required distribution for Precipitation Analysis 

is EV1 used with the method of moments (MOM), as determined by Environment 

Canada (EC Gumbel). Similar to the U.S, recent studies have been carried out to 

investigate the use of GEV distribution in the Canadian context. A study from 

Saskatchewan (Nazemi, 2011) investigated the use of GEV for the city of Saskatoon, 

finding that the GEV model is viable, however more studies need to be conducted to 

determine the appropriate use of the shape parameter as it greatly affected the results.  

 

1.4 Objective of the Study 

The main objective of this report is to investigate the differences between three common 

statistical distributions used in Precipitation Analysis. As the climate is changing, the 

necessity to accurately estimate extreme events plays an important role in climatology. 

This report will investigate the goodness of fit of the GEV, EV1 and LP3 distributions 

with respect to Upper Thames River Watershed, using data collected from the London 

International Airport Station under climate change.  

This study will also calculate Intensity Duration Frequency curves with the data, which 

estimate the future extreme precipitation events, which are necessary for design purposes. 

1.5 Research Procedure 

The appropriateness of the distributions is investigated by the goodness of fit tests and the 

L-Moment Ratio Diagrams. For goodness of fit tests, the Anderson-Darling (AD), the 

Kolmogorov-Smirnov (KS), and the Chi-Squared tests were used in this report. The 

shape parameter of the GEV distribution was also analyzed, which provides more insight 

into the goodness of fit of the distribution.   

 

There are several methods available to estimate the parameters of these distributions. The 

method of L-Moments which is very often used in hydrology studies is applied in this 

report for the estimation of GEV, LP3 and EV1 parameters.  
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1.6 Organization of the Report 

This report comprises of 4 sections. Section 2 will explain the statistical theory and all 

methodology used in the estimation LP3, GEV and EV1 parameters, as well as the 

advantages/disadvantages of each distribution. The goodness of fit tests used in the report 

are also described in this section, as well as a brief section about Intensity Duration 

Frequency curves. The study area of The Upper Thames River Basin is described in 

section 3, along with the input data and discussion of the results of the goodness of fit 

tests. The report concludes in section 4.   
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2. Methodology 
 

2.1 Statistical Distributions 

The GEV, EV1 and LP3 distributions used in this report have a wide variety of 

applications for estimating extreme values of given data sets. They are commonly used in 

hydrological applications. The following sections will explain and compare the theory of 

the distributions, as well describe the advantages and disadvantages of each.  

 

2.1.1 Generalized Extreme Value Distribution (GEV) 

The GEV distribution is a family of continuous probability distributions that combines 

the Gumbel (EV1), Frechet and Weibull distributions. GEV makes use of 3 parameters: 

location, scale and shape. The location parameter describes the shift of a distribution in a 

given direction on the horizontal axis. The scale parameter describes how spread out the 

distribution is, and defines where the bulk of the distribution lies. As the scale parameter 

increases, the distribution will become more spread out. The 3rd parameter in the GEV 

family is the shape parameter, which strictly affects the shape of the distribution, and 

governs the tail of each distribution. The shape parameter is derived from skewness, as it 

represents where the majority of the data lies, which creates the tail(s) of the distribution. 

When shape parameter (k)=0, this is the EV1 distribution. When k>0, this is EV2 

(frechet), and when k<0 is the EV3 (Weibull).  

 

A large problem in working with the Extreme Value distributions is determining whether 

to use Type 1, 2 or 3. EV3, which has a negative shape parameter is often appealing as it 

has a finite upper limit, which the general belief of observed flood magnitudes (Cunnane, 

1989). In general, a distribution with a larger number of flexible parameters, for instance 

GEV, will be able to model the input data more accurately than a distribution with a 

lesser number of parameters. EV1 is effective for small sample sizes, however if the size 

is greater than 50, GEV shows a better overall performance (Cunnane, 1989). This report 

investigates the truth of these statements by analyzing the goodness of fit of these 

distributions in chapter 3. 
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When recreating synthetic data from a sample data set and finding return values using 

data fit to the GEV distribution, the results have less bias than data fit to the Gumbel 

distribution. Results from (Cunnane, 1989) show that distributions with 2 parameters 

(EV1) have smaller standard error, but larger bias than 3 or 4 parameter distributions 

(GEV, LP3), especially in a small sample size. The 3 or 4 parameter distributions often 

have negligible bias.  

 

As stated in the introduction, the shape parameter for GEV can greatly affect the results. 

A positive shape parameter will result in the distributions being upper bounded. This 

phenomenon is undesirable in practical applications as this produces very minimal 

differences in magnitudes between large return periods. A negative shape parameter 

assures that the distribution is unbounded and that results in an increase in magnitudes, as 

the return period gets larger. When designing for extreme events, we are looking for these 

large values. 

The CDF and PDF are defined in (Hosking, 1997) as: 

 

𝐹 𝑥 = exp {−(1− ! !!!
!

)!/!   (2.1) 

𝑓 𝑥 = 𝛼!! exp − 1− 𝜅 𝑦 − exp −𝑦    (2.2) 

 

where 𝑦 = −𝜅!! log 1− ! !!!
!

, when k≠0 

where, ξ is the location parameter, α is the scale parameter, and κ is the shape parameter. 

 

 

 

2.1.2 Gumbel Distribution (EV1) 

The EV1 distribution only uses 2 parameters, location (𝜉) and scale (𝛼). This is the 

current required method for all Precipitation Frequency Analysis in Canada.  

The CDF and PDF as defined in (Hosking, 1997) are: 
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𝐹 𝑥 = exp − exp − !!!
!

     (2.3) 

𝑓 𝑥 = 𝛼!!exp − !!!
!

exp [−𝑒𝑥𝑝 − !!!
!

]  (2.4) 

where, ξ is the location parameter, α is the scale parameter 

 

2.1.3 Log Pearson Type 3 Distribution (LP3) 

The LP3 distribution is a member of the family of Pearson Type 3 distributions, and is 

also referred to as the Gamma distribution. This is the current required method to be used 

for all Precipitation Frequency Analysis in the United States. The LP3 distribution is 

complicated, as it has 2 interacting shape parameters (Stedinger, 2007). Similar to GEV it 

uses 3 parameters, location (𝜇), scale (𝜎) and shape (𝛾). A problem arises with LP3 as it 

has a tendency to give low upper bounds of the precipitation magnitudes, which is 

undesirable (Cunnane, 1989). 

The CDF and PDF are defined in (Hosking, 1997) as: 

 

If 𝛾 ≠ 0, let 𝛼 = 4 𝛾! and 𝜉 = 𝜇 − 2𝜎 𝛾 

If  𝛾 > 0, then 

𝐹 𝑥 = 𝐺(𝛼, !!!
!
)/Γ(𝛼)  (2.5) 

𝑓 𝑥 = (!!!)!!!!!(!!!) !

!!!(!)
  (2.6) 

 

if 𝛾 = 0 the distribution is Normal and 

𝐹 𝑥 = 𝛷(!!!
!
)   (2.7) 

𝑓 𝑥 = 𝜙(!!!
!
)   (2.8) 

 

if γ < 0, then 

𝐹 𝑥 = 1− 𝐺 (𝛼, !!!
!
) Γ 𝛼   (2.9) 

𝑓 𝑥 = (!!!)!!!!!(!!!) !

!!!(!)
  (2.10) 
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where µ is the location parameter, σ is the scale parameter, and γ is the shape parameter. 
For more information refer to (Hosking, 1997) page 200.  

 

 

2.2 Parameter Estimation Techniques 

A common statistical tool to estimate distribution parameters is to use maximum 

likelihood estimators or method of moments (MOM). Environment Canada uses, and 

recommends the MOM technique to estimate the parameters for EV1. Another method of 

estimation is the method of L-Moments, which will be used in this report to calculate the 

parameters of the GEV distribution. L-Moments are based on probability-weighted 

moments (PWMs), however provide a greater degree of accuracy and ease. PWMs use 

weights of the cumulative distribution function (F), however it is difficult to interpret the 

moments as scale and shape parameters for probability distributions (Hosking, 1997). L-

Moments are a modification of the PWMs, as they use the PWMs to calculate parameters 

that are easier to interpret and that can be used in the calculation of parameters for 

statistical distributions. L-Moments are based on linear combinations of data that have 

been arranged in ascending order. They provide an advantage, as they are easy to work 

with, and more reliable as they are less sensitive to outliers. The method of L-Moments 

calculates more accurate parameters than the MOM technique for smaller sample sizes. 

(Kochanek, 2010) The MOM techniques only apply to a limited range of parameters, 

whereas L-Moments can be more widely used, and are also nearly unbiased (Rowinski, 

2001).  

 

2.2.1 Probability Weighted Moments Equations 

PWMs are needed for the calculation of L-Moments. The data first must be arranged in 

ascending order, and then apply the following equations from (Cunnane, 1989).  

 

 

M100= sample mean = !
!

𝑄!!
!!!   (2.11)    
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M110= !
!

(!!!)
(!!!)

!
!!! 𝑄!    (2.12)  

 

M120= !
!

(!!!)(!!!)
(!!!)(!!!)

!
!!! 𝑄!   (2.13)   

 

M130=
!
!

(!!!)(!!!)(!!!)
!!! !!! !!!

!
!!! 𝑄!  (2.14)   

 

in which N is the sample size, Q is the data value, and i is the rank of the value in 

ascending order.  

 

2.2.2 L-Moment Equations 

The following L-Moments are defined in (Cunnane, 1989): 

 

λ1= L1 =M100     (2.15)    

λ2= L2 =2M110 - M100    (2.16) 

λ3= L3 =6M120 - 6M110 + M100  (2.17)   

λ4= L4 =20M130 - 30M120 + 12M110 - M100 (2.18)   

 

 

The 4 L-Moments (λ1, λ2, λ3, λ4) are all derived using the 4 PWMs. Other useful ratios 

are L-CV (τ2), L-Skewness (τ3) and L-Kurtosis (τ4).  

 

L-CV is similar to the normal coefficient of variation (CV). The standard equation for 

CV=!"#$%#&% !"#$%&$'(
!"#$

, and shows how the data set varies. The larger the CV value, the 

larger the variation of the data set from the mean. For example, in arid regions that 

receive few storm events, the variation will be large, as one storm will deviate greatly 

from the low mean.  

 

τ2=L2/L1 (L-CV)    (2.19)    
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L-Skewness is a measure of the lack of symmetry in a distribution. If the value is 

negative, the left tail is long compared with the right tail, and if the value is positive, the 

right tail is longer. For GEV frequency analysis, a positive L-Skewness value is desired, 

as we are interested in the extreme events that occur in the right side tail of the 

distribution.  

 

τ3= L3/L2 (L-Skewness)    (2.20)   

 

L-Kurtosis is difficult to interpret, however is often described as the measure of 

“peakedness” of the distribution (Hosking, 1997). L-kurtosis is much less biased than 

ordinary kurtosis.  

 

τ4= L4/L2 (L-Kurtosis)    (2.21)   

 

2.2.3 Generalized Extreme Value 

As stated, the GEV distribution uses three parameters: ξ is the location parameter, α is the 

scale parameter and κ is the shape parameter. The parameters are defined from (Hosking, 

1997) as: 

 

κ = 7.8590c + 2.9554c2    (2.22) 

in which c= !
!!!!

− !"!
!"!

   

α =
!!!

(!!!!!)!(!!!)
     (2.23)   

 

ξ = λ! −  𝛼 1− Γ 1+ 𝑘 /𝑘    (2.24)  

 

in which Γ= the gamma function 

 

Once all parameters have been estimated, calculating the T-year Return Precipitation (Qt) 

can be done using: 
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Qt= 𝜉 + (!
!
) 1 − (− log !!!

!
)!    (2.25) 

in which T  is the desired return period in years. 

 

Although there are several computer programs capable of working with the GEV 

distribution, all calculations were done in excel using basic macros and formulas. For 

reference, the following is a simple step-by-step procedure for the estimation of the GEV 

parameters. 

 

 

Step by step GEV 

i. sort the data set by ordering all of the data points in ascending order (lowest to 

highest) 

ii. calculate the 4 PWM’s (M100, M110, M120, M130) 

iii. calculate the 4 L-Moments (λ1, λ2, λ3, λ4) using the PWMs 

iv. calculate k, the shape parameter 

v. calculate ξ, the location parameter and α, the scale parameter 

vi. using the desired return period, apply all parameters to the Return Period equation 

to calculate the estimated return value 

 

 

2.2.4 Gumbel (EV1) 

The EV1 Parameters are defined in (Hosking, 1997): 

 

α = !!
!"#!

       (2.26)   

 

ξ = λ! − 𝛼𝛾              (2.27)  

in which 𝛾 = 0.5772 (Euler’s Constant)  

 

Qt=𝜉 + 𝛼𝑦!,                 (2.28)  
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in which yt= −ln [− ln 1− !
!

]   (2.29)  

where T is the return period in years.  

 

2.2.5 Log Pearson Type 3 

The LP3 parameters are defined in (Hosking, 1997): 

 

𝛾 = 2𝛼!!.!𝑠𝑖𝑔𝑛(𝜏!)      (2.30)   

 

𝜎 = !!!!.!!!.!!(!)
!(!!!.!)

     (2.31) 

 

𝜇 = 𝜆!        (2.32)  

   

for estimating 𝛼; 

if 0 < |𝜏!| <
!
!
, let 𝑧 = 3𝜋𝜏!! and use 

𝛼 = !!!.!"#$!
!!!.!""#!!!!.!""#!!

    (2.33) 

if  !
!
< 𝜏! < 1, let 𝑧 = 1− 𝜏!  and use 

𝛼 = !.!"#"$!!!.!"!#$!!!!.!"#$%!!

!!!.!""#$!!!.!"#$"!!!!.!!"#$!!
                              (2.34) 

 

  

 

 

2.3 Goodness of Fit tests 

Goodness of fit tests can be reliably used in climate statistics to assist in finding the best 

distribution to use to fit the given data. These tests cannot be used to pick the best 

distribution, rather to reject possible distributions. These tests calculate test-statistics, 

which are used to analyze how well the data fits the given distribution.  These tests 

describe the differences between the observed data values, and the expected values from 

the distribution being tested.  
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The Anderson-Darling (AD), Kolmogorov-Smirnov (KS), and Chi-Squared (x2) tests 

were used for the goodness of fit tests in this report. All test statistics are defined in 

(Solaiman, 2011). 

 

The goodness of fit tests were executed in the downloadable software EasyFit, available 

at http://www.mathwave.com/easyfit-distribution-fitting.html. All test values and 

statistics were produced from this program.  

 

 

2.3.1 Anderson-Darling Test 

The Anderson-Darling test compares an observed CDF to an expected CDF. This method 

gives more weight to the tail of the distribution than KS test, which in turn leads to the 

AD test being stronger, and having more weight than the KS test. The test rejects the 

hypothesis regarding the distribution level if the statistic obtained is greater than a critical 

value at a given significance level (α). The significance level most commonly used is 

α=0.05, producing a critical value of 2.5018.  This number is then compared with the test 

distributions statistic to determine if it can be rejected or not. The AD test statistic (A2) is: 

 

A2=−𝑛 − !
!

2𝑖 − 1 . [𝑙𝑛𝐹 𝑥! + ln 1− 𝐹 𝑥!!!!! ]!
!!!    (2.35) 

 

2.3.2 Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test statistic is based on the greatest vertical distance from the 

empirical and theoretical CDFs. Similar to the AD test statistic, a hypothesis is rejected if 

the test statistic is greater than the critical value at a chosen significance level. For the 

significance level of α=0.05, the critical value calculated is 0.12555. The samples are 

assumed to be from a CDF F(x). The test statistic (D) is: 

 

D=max(𝐹 𝑥! − !!!
!
, !
!
− 𝐹 𝑥! )     (2.36) 
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2.3.3 Chi-Squared Test 

The Chi-Squared test is used to determine if a sample comes from a given distribution. It 

should be noted that this is not considered a high power statistical test and is not very 

useful (Cunnane, 1989). The test is based on binned data, and the number of bins (k) is 

determined by: 

 

𝑘 = 1+ 𝑙𝑜𝑔!𝑁       (2.37) 

in which N= sample size 

 

The test statistic (x2) is: 

x2= (!!!!!)!

!!
!
!!!       (2.38) 

where, 

Oi is the observed frequency 

Ei is the expected frequency, Ei=𝐹 𝑥! − 𝐹 𝑥!  

 where x1 and x2 are the limits of the ith bin  

 

The significance level, α=0.05 produced a critical value of 12.592 which is used in this 

report. Again, if the test statistic is greater than the critical value, the hypothesis is 

rejected.  

 

2.3.4 L-Moment Ratio Diagrams 

Another way to measure goodness of fit is to construct an L-Moment Ratio Diagram. 

This is a diagram of L-Skewness and L-Kurtosis of the sample data set, which is plotted 

against constant lines and points of known statistical distributions of interest. This is a 

common technique used in Regional Flood Frequency Analysis, which uses the average 

values of L-Skewness and L-Kurtosis from several stations in an area. The goodness of 

fit for the observed data is determined by comparing the values against the fitted regional 

data. In this report, there was no regional data to use for averages and comparison, as 

only data from one station was analyzed. However the use of L-Moment ratio diagrams 
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can still be used in this context for comparing the observed data against the 3 known 

distributions of interest; GEV, Gumbel and LP3.  

 

Many statistical distributions have predetermined relationships between L-Skewness and 

L-Kurtosis (τ3 and τ4). These are useful and necessary for creating L-Moment Ratio 

Diagrams, to visually inspect which distribution has the best fit. As EV1 is a 2-parameter 

distribution with only location and scale parameters, this plots as a single point with a 

constant τ3 value of 0.1699, and a τ4 value of 0.1504. Parameters differing only in scale 

and location have by definition the same values of L-Kurtosis and L-Skewness. Three 

parameter distributions (GEV, LP3) are plotted as a line that corresponds to the varying 

shape parameters. The expressions for τ4 are given as functions of τ3 and are 

approximated as follows (Hosking and Wallis 1997). 

 

LP3 

τ4= 0.1224+ 0.30115𝜏!! + 0.95812𝜏!! − 0.57488𝜏!! + 0.19383𝜏!! 

 

GEV  

τ4=0.10701+ 0.1109𝜏! + 0.84838𝜏!! − 0.06669𝜏!! + 0.00567𝜏!! − 0.04208𝜏!! +

0.03673𝜏!! 

 

Step by Step L-Moment Diagrams 

i. create a table containing L-Skewness and L-Kurtosis values for each data set (in 

this case 27 sets for each AOGCM) 

ii. plot L-Skewness against L-Kurtosis of the observed data sets 

iii. plot L-Skewness against L-Kurtosis of the given distributions, and visually 

compare the plot 

 

 

2.4 Intensity Duration Frequency Curves & Storm Durations 

The purpose of fitting data to statistical distributions is to be able to estimate the 

probability of extreme precipitation intensities for a given return period (T). Firstly, the 
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maximum amount of precipitation for a given storm duration is calculated (Pt), and is 

then converted into an intensity (commonly with units of mm/hour). This intensity value 

is needed for many design calculations, most commonly for determining peak flow or 

peak runoff. The estimated return values are needed to construct Intensity Duration 

Frequency curves (IDF curves), which are widely used in engineering applications. These 

curves show the relationship between the intensity of the precipitation and the duration of 

the storm for a given return period. The IDF curves are developed for a specific location, 

with a specific return period. IDF curves developed in this report are shown in section 

3.4.2.  

 

The Pt, or IDF curve value is the design precipitation that has the probability of occurring 

on average 1/T for each year. For example, if the Pt value for a 100-year return period, 

for a 1-hour storm duration is 100mm, there is a 1/100 (1%) chance of this extreme 

precipitation value occurring in any given year.  

 

Estimating design floods plays an important role in the planning and management of 

floodplains. Planning for design floods does not guarantee that the area will be protected 

for the amount of years designed for, however it is a safety measurement that must be 

met, and the return period varies depending on various requirements. In this report, the 

design precipitation value is calculated, which is needed to estimate the design flood. The 

design flood is calculated using many factors such as the ground type (imperviousness), 

slope, vegetation and of course precipitation intensity. The precipitation intensity is 

determined from IDF curves, which are shown in chapter 2 of this report.   

 

 

2.4.1 Storm Durations 

Determining precipitation intensities for various storm lengths is an important aspect for 

safely designing structures and infrastructure to manage flooding.  Often short storm 

durations are desired as they can give high intensities (mm/hr). The data sets in this report 

were initially given in total daily precipitation, that is 365 data points for each year. A 

disaggregation technique was used to break the data down into hourly time steps, which 
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is 24 data points for each day. To determine the 1-hour annual maximum, each day of the 

year is disaggregated into hourly data to produce a total of 8,760 data points (365x24). 

The maximum value of this data set is the 1-hour annual maximum precipitation. This 

was done for all 117 years of data created to produce the annual maximum data series, 

which is necessary to use in the statistical distributions in this report. Storm durations of 1, 

2, 6, 12 and 24 hours were used for this report. The longer storm durations were all 

created using combinations of the hourly precipitation data. For example, the 2-hour 

storm used 4,380 (365x12) data points for each year to determine the 2-hour annual 

maximum series.  
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3. Case Study 
 

3.1 Study Area: The Upper Thames River Watershed 

The Upper Thames River Watershed (UTRW) is located between Lake Huron and Lake 

Erie in Southwestern Ontario, and has an area of 3842 km2. The watershed is largely 

comprised of rural areas, however it is home to approximately 485,000 people, mostly in 

the main centers of London, Stratford and Woodstock. London alone is home to 

approximately 350,000 residents, many of whom experience the affects of flooding as the 

Thames River runs directly through he city (UTRCA, 2011). The Thames River is quite 

large, with a total length of 273 km and an average annual discharge of 35.9 m3/s 

(Prodanovic, 2006). The UTRW receives approximately 1,000 mm of annual 

precipitation, however 60% of this is lost due to mechanisms including evaporation and 

evapotranspiration. The Thames River has experienced several extreme flood events, 

most recently in July 2000, April 2008 and December 2008.  

 

The UTRW contains 6 weather-gauging stations, with 9 more in the surrounding area. 

The station used in this study is the London International Airport, with latitude of 43.03° 

N, longitude 81.16° W and an elevation of 278 m above sea level.  

 

 

3.2 Input Data 

All historical and climate model data sets used in this report have been collected and 

processed for a PhD thesis (Solaiman, 2011). For detailed information on all data 

collected, including downscaling techniques and the application of all global climate 

models, please refer to the PhD thesis.   

 

3.2.1 Historical Data 

This report uses daily precipitation data collected from the UTRW for a period of 39 

years from 1965-2003, from the London International Airport Station. The observed 

historical data has been collected from Environment Canada (National, 2011) and 
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simulated using 11 different climate models, each with a number of various emission 

scenarios.  

 

3.2.2 Data Manipulation 

The observed data was simulated in the WG-PCA weather generator to produce the 

various data sets for the application of the statistical distributions (Solaiman, 2011). 

Weather generators are used to generate long sequences of daily precipitation data for 

various climate models, also known as Atmosphere-Ocean Global Climate Models 

(AOGCM).  

 

Weather generators are essentially random number generators, and are also capable of 

producing a synthetic data set with the same, or when using AOGCMs, different, 

statistical properties of the input data. The observed historical data from the London 

International Airport station was simulated in the weather generator, using both perturbed 

(different maximum and minimum values) and unperturbed (same maximum and 

minimum values as input data) settings.  These techniques are useful for researchers as 

this enables them to account for natural environmental variability, while keeping almost 

identical distribution parameters. The simulation of the 39 years of data was done 3 times, 

to create a total of 117 years of synthetic historical data, sufficient enough for the 

estimation of a 100-year return period which is a common design period. (Solaiman, 

2011) 

 

AOGCMs are complex mathematical models of the atmosphere and the ocean that 

combine rotating sphere and thermodynamic equations using various energy sources. 

They are often the key component in computer programs that model the atmospheric or 

ocean conditions of the Earth. AOGCMs are also used in weather forecasting and have 

many applications in investigating and predicting climate change. The models are used in 

this report to produce various precipitation data sets that can be fitted to the three 

distributions being analyzed. The wide range of models used accounts for variability in 

the future climate data, however the actual values produced are not of importance in the 

context of this report. The models were needed to provide a large amount of data to test 



25   

with the distributions to determine which has the most appropriate fit. These models also 

have various scenarios that can be applied to them, which vary in future emissions, 

economic and population predictions, which all having varying effects on the future 

climate. These global models are not designed for local modeling however, so a 

downscaling method must be used. Downscaling of the AOGCMs is done to convert 

these large-scale models into the scale in question, and is done using the K-nearest 

neighbor approach. Weights are calculated by comparing the new data to the historical 

data, calculating a correction ratio to be applied.  For more information on the 

downscaling and data processing, refer to (Solaiman, 2011). 

 

Once the 117 years of synthetic data were created, the weather generator was again used 

to simulate the data under 11 different AOGCMs with various emission scenarios, thus 

creating a total of 27 different data sets.  

 

3.2.3 Description of AOGCM Models 

Table 3.1 shows the 11 AOGCMs used, with the combination of the 3 available emission 

scenarios that were applied to each model. The CGCM3T models were created by the 

Canadian Centre for Climate Modeling and Analysis for the IPCC in 2005. The models 

use 4 major components: an ocean global climate model, an atmospheric global climate 

model, a thermodynamic sea-ice model, and a land surface model. The CSIROMK 

models were created by Australia’s Commonwealth Scientific and Industrial Research 

Organization, and consist of atmosphere, land surface and ocean and polar ice 

components. Max Planck Institute for Meteorology created the ECHAM model, which is 

capable of hosting sub-models beyond the processes of an AOGCM. The ECHO-G 

model is coupled, using the ECHAM atmospheric model, along with the HOPE ocean 

model, and was created by the University of Bonn Meteorological Research Institute of 

KMA. The Goddard Institute for Space Studies, along with NASA, developed the 

GISSAOM model in 1995, and was edited in 2004. The Japanese Model for 

Interdisciplinary Research on Climate developed a high-resolution model, 

MIROC3HIRES, and a medium resolution model, MIROC3MEDRES. The CCSRNIES 

and GFDLCM2.1 models are both used by the IPCC and consist of coupled models.  
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3.2.4 Emission Scenarios 

All scenario information is from (Nakicenovic et al, 2000).  

 

A1B: This scenario uses the assumption of rapid economic expansion and globalization, a 

total population of 9 billion in 2050, and a wide range of energy sources. 

 

B1: This scenario is similar to A1B, however it presumes a more resource efficient world, 

with the use of clean technologies and emphasis on global sustainability.  

 

A2: This scenario consists of a world of independent nations, with an increasing 

population, with slower technological advancements.  

 

Model Emission scenarios 

CCSRNIES B21 

CSIROMK2b B11 

CSIROMK35 A1B, B1, A2 

CGCM3T47 A1B, B1, A2 

CGCM3T63 A1B, B1, A2 

ECHAM5AOM A1B, B1, A2 

ECHO-G A1B, B1, A2 

GFDLCM2.1 A1B, B2, A2 

GISSAOM A1B, B1 

MIROC3HIRES A1B, B1 

MIROC3MEDRES A1B, B1, A2 

Table 3.1: Summary of AOGCMs and emission scenarios 
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3.3 Results 

In this section the results for the goodness of fit tests and the L-Moment ratio diagrams 

are discussed with respect to the statistical distributions in question. In both tests, for all 

storm durations the GEV distribution appears to have the most appropriate fit.  

 

3.3.1 Goodness of Fit Tests 

Combining the 27 data sets produced from the AOGCM’s, and the 5 different storm 

duration data, a total of 135 data sets were used in the goodness of fit tests. For the 

purpose of this report, each testing method only compared the three distributions 

discussed: GEV, LP3 and EV1. The test results were calculated using the methods 

described in chapter 2.3 of the report. Analyzing the goodness of fit results is a way to 

determine which of the distributions should not be considered, if there is a clear trend in 

the results. These tests do not provide a simple yes or no answer to whether the 

distribution should be used, and must be considered with other test methods (L-Moment 

Ratio Diagrams). 

  

The GEV distribution showed to have the best fit of the 3 distributions. Out of the 135 

data sets, the Kolmogorov-Smirnov test results did not reject GEV distribution in any 

circumstance. The Anderson-Darling test also did not reject the GEV distribution at all. 

The Chi-squared method rejected GEV least frequently of the 3 distributions, with a total 

of 14 (10.4% of the time).  

 

The LP3 distribution showed to fit the second best. Similar to GEV, the Kolmogorov-

Smirnov test also did not reject LP3 at all. The Anderson-Darling test rejected LP3 a total 

of 8 times (6% of the time), and Chi-Squared test rejected LP3 22 times (16.3% of the 

time).  

 

The EV1 distribution showed to have the worst fit as it was rejected 11 times by 

Kolmogorov-Smirnov, 20 times by Anderson-Darling and 37 times by Chi-Squared.  
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 GEV LP3 EV1 

Kolmogorov-Smirnov 0 0 11 

Anderson-Darling 0 8 20 

Chi-Squared 14 22 37 

Table 3.2: Number of rejections at the 5% significance level for the 3 goodness of fit tests 

 

These results show that in comparison to EV1, the GEV distribution is a more acceptable 

fit for the data used from the London International Airport station. 

 

3.3.2 L-Moment Ratio Diagrams 

L-Moment Ratio Diagrams were constructed for each of the 5 storm durations, as well as 

the historical unperturbed data using the methodology discussed in chapter 2.3 of the 

report. Figure 3.2 displays the 12-hour L-Moment ratio diagram, with all 27 data points 

from each scenario shown. Diagrams of other storm durations can be located in the 

appendix. The average of the 27 scenarios is shown (red square), as well as the base 

distributions for comparison of GEV, EV1 and LP3.  The EV1 distribution is shown as a 

single point (green triangle).  Figure 3.1 shows the data for the 12-hour storm follows the 

GEV distribution very well. The diagrams shown in the appendix all display very similar 

results to figure 3.1 and show that the GEV distribution has the best fit when analyzing 

L-Moment Ratio Diagrams for the London International Airport Station data.  

 

 

 

 

 

 

 

 

 

Figure 3.1: L-Moment Ratio Diagram for 12-hour storm duration 
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3.3.3 Shape Parameter 

As discussed in section 2.1.1, the shape parameter determines the shape of the 

distribution. A negative value determines that the distribution is upper unbounded, and a 

positive value leads to the distribution being upper bounded. This is why even if the data 

is a good fit to the GEV distribution, if the shape parameter is positive, this may be 

undesirable in practical applications.  Therefore an evaluation of the shape parameter for 

all data sets is needed, and is performed in this section.  

Table 3.3 lists the shape parameter values for all AOGCM data sets for the 5 different 

storm durations.  

Analyzing the parameters from all data sets used in the report shows that the average ĸ-

value is -0.108 with only 23 positive values of the 135 data sets. It should also be noted 

that the positive values are all very close to 0, further displaying the suitability of the 

GEV in this context 

  Storm Duration (hours) 
AOGCM 1 2 6 12 24 

CCSRNIES_B21 -0.1212 -0.2476 -0.2494 -0.1415 -0.0603 
CSIROMK2b_B11 -0.0762 -0.1863 -0.2307 -0.1640 -0.1227 
CGCM3T47_A1B 0.0151 -0.1155 -0.2635 -0.1541 -0.1653 
CGCM3T47_B1 -0.0415 -0.0220 -0.0350 -0.0739 -0.1438 
CGCM3T47_A2 -0.1371 -0.1134 -0.2593 -0.2234 -0.2059 
CGCM3T63_A1B -0.1167 -0.2985 -0.3280 -0.2035 -0.1396 
CGCM3T63_B1 -0.0925 -0.2849 -0.3006 -0.1816 -0.1939 
CGCM3T63_A2 0.0642 -0.1379 -0.2116 -0.0055 0.0464 
CSIROMK35_A1B 0.0188 0.0566 -0.0942 -0.0999 -0.1103 
CSIROMK35_B1 -0.0298 -0.0106 -0.0561 -0.0911 -0.1057 
CSIROMK35_A2 -0.1025 -0.0547 -0.1176 -0.1415 -0.1213 
ECHAM5AOM_A1B -0.1609 -0.1814 -0.1979 -0.1756 -0.1467 
ECHAM5AOM_B1 0.0311 -0.0999 -0.0710 0.0739 0.1037 
ECHAM5AOM_A2 0.0193 -0.1214 -0.1155 -0.0355 -0.0606 
ECHO-G_A1B 0.0167 -0.1222 -0.2086 -0.2207 -0.2338 
ECHO-G_B1 -0.1152 -0.1969 -0.1712 -0.1647 -0.1375 
ECHO-G_A2 -0.0977 -0.1610 -0.1448 -0.0400 -0.0287 
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GFDLCM2.1_A1B -0.0357 -0.0330 0.0243 0.1035 0.0974 
GFDLCM2.1_B1 -0.2069 -0.1719 -0.2506 -0.2526 -0.2059 
GFDLCM2.1_A2 0.0001 -0.1495 -0.1513 -0.1320 -0.0969 
GISSAOM_A1B -0.0184 -0.2196 -0.3029 -0.2092 -0.1499 
GISSAOM_B1 0.0974 -0.1213 -0.1673 -0.0422 -0.0213 
MIROM3HIRES_A1B 0.0008 0.0011 0.0067 0.0536 0.0040 
MIROM3HIRES_B1 0.0031 -0.1628 -0.2335 -0.1468 -0.0851 
MIROC3MEDRES_A1B -0.1128 -0.1625 -0.2232 -0.2441 -0.1704 
MIROC3MEDRES_B1 0.0172 -0.0870 -0.0458 -0.0512 0.0141 
MIROC3MEDRES_A2 -0.1570 -0.0412 -0.0313 -0.0148 -0.0071 

Table 3.3: Shape Parameter values for all AOGCM data sets 

Figure 3.2 displays the boxplot for the shape parameter for all 5 storm durations. This 

shows how the shape parameter values vary for each of the data sets. The minimum, first 

quartile, median, third quartile and maximum values are all represented in the figure, and 

gives a very good indication of the negative trend in the data. The mean and median of 

the 5 different storm durations are all negative, which is desired for the practical 

application of the GEV distribution. The 6-hour storm duration has the most negative 

values, with a median value of -0.1693. The 1-hour storm duration has the least negative 

median of -0.0328. The most negative value is from the 6-hour duration and is -.02415, 

and the largest value is from the 24-hour duration with 0.1037.  

Table 3.4 displays the quartile information used for the boxplot in figure 3.2. These 

values display the negative trend for the shape parameter of all the data sets.  
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Figure 3.2: Boxplot of shape parameter values for all 5 storm durations 
 

 
  Storm Duration (hours) 
Quartile 1 2 6 12 24 
q1 -0.1140 -0.1767 -0.2415 -0.1786 -0.1483 
median -0.0328 -0.1218 -0.1693 -0.1367 -0.1158 
q3 0.0163 -0.0628 -0.0768 -0.0405 -0.0232 
min -0.2069 -0.2985 -0.3280 -0.2526 -0.2338 
max 0.0974 0.0566 0.0243 0.1035 0.1037 

Table 3.4: Summary of quartile information for shape parameter boxplot 
 
Refer to the appendix for graphs of the variation of the shape parameter with respect to 

each AOGCM. 
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3.4 GEV Return Values & Uncertainties 

For the context of this report, the return values are of little importance. The goal was not 

to determine the accuracy of these values, rather to discuss the fit of each distribution as 

done in section 3.3. When using data from different AOGCMs, it is believed that a very 

large amount of uncertainty is included in the estimation of IDF curve for future climate. 

By making use of all data produced by the 27 different scenarios, the many variations of 

climate change encompassing all uncertainties were taken into account, which gave a 

wide variety of results to analyze. The following pages discuss the differences between 

the results between the models used, as well as the historical data from Environment 

Canada. They show that there is a clear need for more studies done on the GEV 

distribution, as the results can be significantly different in comparison to current 

Environment Canada standards which use the EV1 distribution.  

After analyzing all 27 models, the emission scenario that produced the most intense (wet) 

results was ECHAM5AOM_A1B, and the least intense scenario (dry) was 

MIROC3MEDRES_A2. The data in table 3.3 shows the depth of rain in mm for each 

return period, and of the 5 different storm durations for both the wet and dry scenarios. 

The current Environment Canada data is also shown.  

 

 

 

 

ECHAM5AOM_A1B Return Period (years) 

Duration (hours) 2 5 10 25 50 100 

1 52.38 71.31 85.89 107.01 124.90 144.78 

2 68.99 94.33 114.21 143.53 168.78 197.24 

6 88.20 120.55 146.33 184.88 218.53 256.91 

12 103.39 136.43 162.22 200.06 232.50 268.91 

24 118.43 154.48 181.86 221.06 253.88 289.98 

Table 3.5(a): Depth of precipitation (mm) for ECHAM5AOM_A1B 
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MIROC3MEDRES_A2 Return Period (years) 

Duration (hours) 2 5 10 25 50 100 

1 30.15 41.27 49.79 62.11 72.50 84.02 

2 37.51 48.08 55.35 64.86 72.16 79.62 

6 49.88 63.48 72.75 84.78 93.93 103.23 

12 62.73 78.69 89.40 103.10 113.40 123.72 

24 72.21 89.30 100.69 115.17 125.98 136.76 

Table 3.5(b): Depth of precipitation (mm) for MIROC3MEDRES_A2 

 

EC (1943-2003) Return Period (years) 

Duration (hours) 2 5 10 25 50 100 

1 24.40 35.30 42.50 51.60 58.30 65.00 

2 29.60 41.60 49.50 59.60 67.00 74.40 

6 36.60 48.20 55.80 65.40 72.50 79.60 

12 43.00 54.70 62.50 72.40 79.70 87.00 

24 51.30 66.80 77.10 90.00 99.60 109.20 

Table 3.5(c): Depth of precipitation (mm) for Environment Canada 

 

Table 3.6, shows the percent differences between the Environment Canada data, 

compared with both the wet and dry scenarios from the GEV distribution. There are 

drastic differences between the ECHAM5AOM_A1B (wet) scenario and the current EC 

values. On average, the wet scenario values are 84.46% higher than the EC values, with 

the greatest differences occurring for the 100-year return period in which 2 values are 

more than double the current EC standards.  

The differences between the dry scenario and the EC values are not quite as severe, 

however the dry scenario average is still 24.16% larger than EC. In this case, the 2-hour 

return period has the largest differences occurring within it.  
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ECHAM5AOM_A1B Return Period (years) 

Duration (hours) 2 5 10 25 50 100 

1 72.88 67.56 67.59 69.87 72.71 76.06 

2 79.91 77.59 79.06 82.64 86.34 90.44 

6 82.70 85.75 89.57 95.48 100.35 105.38 

12 82.51 85.53 88.75 93.71 97.89 102.22 

24 79.10 79.25 80.91 84.27 87.29 90.58 

Table 3.6(a): Percent Difference between ECHAM5AOM_A1B and EC 

 

MIROC3MEDRES_A2 Return Period (years) 

Duration (hours) 2 5 10 25 50 100 

1 21.08 15.58 15.80 18.48 21.72 25.53 

2 23.57 14.44 11.15 8.46 7.42 6.78 

6 30.71 27.36 26.37 25.80 25.76 25.85 

12 37.32 35.97 35.42 34.99 34.90 34.85 

24 33.86 28.83 26.54 24.54 23.39 22.41 

Table 3.6(b): Percent Difference between MIROC3MEDRES_A2 and EC 

 

The 2 scenarios shown represent the maximum and minimum outcomes of all the 

emission scenarios that were tested. By looking at these 2 extremes, we bypass the need 

to consider all of the uncertainties that are present when using the AOGCMs as all other 

scenario data will fit between the bounds of 2 extremes. However, due to the 

uncertainties in the models, these data sets do not provide an accurate estimate of the 

future extreme events, rather they display that the future precipitation events will not be 

similar to the historical data.   

 

Table 3.7 shows the percent differences of the wet and dry scenarios, compared with the 

historical perturbed data.  
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ECHAM5AOM_A1B Return Period (years) 

Duration (hours) 2 5 10 25 50 100 

1 44.93 51.56 57.24 65.22 71.49 77.86 

2 43.76 49.19 54.07 61.10 66.73 72.54 

6 51.06 57.11 61.18 66.37 70.25 74.12 

12 50.12 56.17 60.87 67.31 72.33 77.45 

24 48.84 53.16 56.44 60.92 64.42 67.99 

Table 3.7(a): Percent Difference between ECHAM5AOM_A1B and Historical Perturbed 

 

MIROC3MEDRES_A2 Return Period (years) 

Duration (hours) 2 5 10 25 50 100 

1 -9.51 -1.96 4.36 13.27 20.33 27.61 

2 -16.43 -17.14 -16.96 -16.28 -15.55 -14.69 

6 -4.79 -5.40 -6.69 -8.98 -11.05 -13.34 

12 1.25 2.69 3.27 3.74 3.96 4.08 

24 0.37 -0.33 -1.10 -2.28 -3.28 -4.35 

Table 3.7(b): Percent Difference between MIROC3MEDRES_A2 and Historical Perturbed 

 

The wet scenario shows a large increase of 61.06%, however the dry scenario shows a 

slight decrease of 2.84%. The EV1 statistics show the same wet scenario increasing at 

approximately 80%, while the dry scenario shows similar results. This shows that the 

EV1 distribution estimates higher values than GEV in the case of the UTRCA data. 

(Solaiman, 2011) 

 

 

3.4.1 Return Values 

This report analyzed data from 27 different AOGCMs, each for durations of 1, 2, 6, 12 

and 24-hour storms. Results shown are based strictly on GEV calculations. 

The following figures show the return values for all scenarios of each storm duration.  

Figures 3.3(a-e) show the relationship between the return period and the depth of 

precipitation for each AOGCM, at all 5 storm durations. For the 1-hour duration, the 
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minimum value is 60mm, and the maximum is 140mm at the 100-year return period. The 

minimum and maximum values for the 24-hour storm duration are 140mm and 290mm 

respectively. These figures show how with the application of the AOGCMs, the return 

values widely vary due to the assumptions made in each model. 

 

  

 

 

 

 

 

 

 

 

 
   Figure 3.3(a): 1-Hour Duration Return Values   Figure 3.3(b): 2-Hour Duration Return Values 
 
 

 

 

 

 

 

 

 
 

 
 
 
 
Figure 3.3(c): 6-Hour Duration Return Values     Figure 3.3(d): 12-Hour Duration Return Values 
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    Figure 3.3(e): 24-Hour Duration Return Values 
 

 

 

3.4.2 IDF Curves 

The following figures show the 2, 5, 10, 25, 50 and 100 year return period IDF curves. 

These figures show the intensity (mm/hour) of precipitation for the 5 storm durations. 

Displayed in the figures are the wet and dry scenarios, as well as the resultant of the wet 

and dry scenarios, plotted against the historical perturbed data. The wet and dry scenarios 

are used as they produce the most extreme values, meaning that all other AOGCM 

models would fit between the 2 curves. In all 6 graphs the historical perturbed curve is 

very similar to the dry scenario (MIROC3MEDRES_A2).  

 

 

 

 

 

 

 

 

 

 
 

Figure 3.4(a): 2-Year IDF Curve    Figure 3.4(b): 5-Year IDF Curve 
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Figure 3.4(c):10-Year IDF Curve       Figure 3.4(d):25-Year IDF Curve 

  
 

 

 

 

 

 

 

 

 
Figure 3.4(e):50-Year IDF Curve     Figure 3.4(f):100-Year IDF Curve 
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4. Conclusions 

 
Historical precipitation data and precipitation data sets derived from different AOGCMs 

for future climate for the London International Airport station has been used in this study 

to select an appropriate distribution for the estimation of  design precipitation. 11 

different AOGCMs were used to produce a total of 27 different synthetic data sets, each 

with 117 years of annual maximum precipitation data for storm durations of 1, 2, 6, 12 

and 24 hours. The GEV distribution was compared with the Gumbel distribution, which 

is currently the standard in Canada, and the Log-Pearson type 3 distribution, which is the 

standard in the United States.  

A variety of tests were used to determine if the synthetic data was an acceptable fit with 

the GEV distribution. The Anderson-Darling, Kolmogorov-Smirnov, and Chi-Squared 

tests were used to compare the goodness of fit between the 3 distributions. The GEV 

distribution was rejected the least number of times (14 times), at the 5% significance 

level, with EV1 being rejected the most (68 times). This shows that GEV cannot be 

excluded from one of the possible distributions, whereas EV1 showed a much weaker fit. 

L-Moment Ratio diagrams were also used to help determine which distribution displayed 

the best fit for the data. In all 6 diagrams, the data seemed to follow the GEV distribution 

very well, much better than both LP3 and EV1.   

The shape parameter of the GEV distribution was also analyzed, as a negative value is 

desired for practical applications as it ensures that the distribution is not upper-bounded. 

The average value was -0.108, with only 23 out of the 135 values being greater than 0. 

The 23 positive values were all very close to 0, further emphasizing the suitability of the 

GEV distribution for the Upper Thames watershed data.  

 

The IDF curves are estimated in this report for historical data and data sets from different 

AOGCMs using the previously selected GEV distribution for London station. 
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As statistical models use many assumptions, the use of different AOGCMs ensures the 

uncertainties that are present in the calculation of IDF curves are included. A wide range 

of results was produced from these 27 different models, with a large difference between 

the minimum and maximum precipitation values. For the purpose of this study, no one 

model is being recommended. These results were produced to show how the GEV return 

values greatly vary from current Environment Canada standards, and that more research 

needs to be done to determine the validity of the results in this report. Some comparisons 

were made between the historical data and the current Environment Canada values. As 27 

various models were used, the IDF curves show the 2 extreme models of the largest and 

smallest return values. Using the 2 extreme models ensures that we are taking into 

account all the uncertainties from the 27 models.  

The GEV distribution has shown to be the strongest fitting distribution out of the 3 when 

using the data sets from the Upper Thames River Watershed. The need for more studies 

of the application of GEV distribution on other watersheds in Canada is recommended to 

ensure its countrywide applicability.  
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Appendix A: Figures 
Figure A.1-A.6 show the L-moment ratio diagrams for the 5 durations used, and also 
include the historical unperturbed data set (A.6). 

 

 

 

 

 

 

 

 

 
Figure A.1 
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Figure A.3 

 

 

 

 

 

 

 
 

 
Figure A.4 

 

 

 

 

 

 
 

 

Figure A.5 
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Figure A.6 

 

Figure A.7-A.11 show the variation of shape parameter with respect to the AOGCMs for 
each of the 5 durations. 

    

 

 

 

 

 

 

 

 
Figure A.7           Figure A.8 
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