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Executive Summary 

 

Hydrologic design of storm sewers, culverts, retention/detention basins and other 

components of storm water management systems are typically performed based on specified 

design storms derived from the rainfall intensity-duration-frequency (IDF) estimates and an 

assumed temporal distribution of rainfall. Use of inappropriate data or design storms could lead 

to malfunctions of the infrastructure systems: over-estimation may result in costly over-design or 

under-estimation may be associated with risk and human safety. One of the expected hydro-

climatic impacts of climate change for London is the increase in the magnitude and frequency of 

extreme rainfalls which can have serious impact on the design, operation and maintenance of 

existing municipal water infrastructure.  

This study presents a methodology for updating the rainfall IDF curves for the City of 

London incorporating various uncertainties associated with the assessment of climate change 

impacts on a local scale. Overall, two objectives have been achieved: first, an extensive 

investigation of the possible realizations of future climate from 29 scenarios developed from 

Atmosphere-Ocean Global Climate Models (AOGCM) and scenarios are performed using a 

downscaling based disaggregation approach. Annual maximum series of rainfall are fitted to 

Gumbel distribution to develop IDF curves for 1, 2, 6, 12 and 24 hour durations for 2, 5, 10, 25, 

50 and 100 years of return periods. Next, the associated uncertainties are estimated using non-

parametric kernel estimation approach and the resultant IDF curve is developed based on a 

probabilistic approach.  

The results indicate that rainfall patterns in the City of London will most certainly change in 

future due to climate change. The use of the multi-model approach, rather than a single scenario 
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is encouraged. Inherent uncertainties associated with different AOGCMs are quantified by a 

kernel based plug-in estimation approach. The resultant scenario indicates approximately 20-

40% changes in different duration rainfalls for all return periods. Use of a probability based 

intensity-duration-frequency curve is encouraged in order to apply the updated IDF information 

with higher level of confidence. 
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1. Introduction 

1.1 Problem Definition 

The increase of carbon dioxide concentration in the atmosphere due to industrial activities in 

the past and recent times has been identified as the major cause of global warming and climate 

change. The normal balance of Earth’s hydrological cycle has been altered due to the changes in 

the temperature and precipitation patterns. Projections from climate models suggest that the 

probability of occurrence of intense rainfall in future will increase due to the increase in green 

house gas emission (Mailhot and Duchesne, 2010). Research related to the analysis of extreme 

precipitation indices have projected an increase in the annual total precipitation during the 

second half of the past century; the number of days with precipitation is also expected to 

increase, with no consistent pattern for extreme wet events (Vincent and Mekis, 2005). Stone et 

al. (2000) reported seasonally increasing trends in total precipitation during the 20
th

 century for 

southern parts of Canada resulting from increased heavy and intermediate events. Research 

related to the Upper Thames River basin (Solaiman and Simonovic, 2011) have also indicated 

that there is now higher probability that the occurrence of extreme precipitation events will be 

more frequent in future. Such changes in extreme events have enormous ecological, societal and 

economic impacts in the form of floods, droughts, heat waves, summer and ice storms and have 

great implications for municipalities: a small shift in the climate normals can have large 

consequences on the existing infrastructure; climate change will affect any municipalities (big or 

small, rural or urban) by damaging existing municipal infrastructure (bridges/roads), natural 

systems (watersheds, wetlands and forests) and human system (health and education) (Mehdi et 

al, 2006). The design standards at present are based on the historic climate information and 

required level of protection from natural phenomena. Under a changing climate, it has become a 
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priority for the municipalities to search for appropriate procedures, planning and management to 

deal with and adopt to changing climatic conditions. Decision makers and stakeholders need to 

understand the possible effects for developing suitable management decisions for the future. 

Possible changes may demand new regulations, guidelines for storm water management studies, 

revision and update of design practices and standards, or retrofitting of existing infrastructure or 

even constructing additional ones (Prodanovic and Simonovic, 2007).  

Global scale climate variables are commonly projected by Coupled Atmosphere-Ocean 

Global Climate Models (AOGCMs) to provide a numerical representation of the climate system 

based on the physical, chemical and biological properties of  their components and feedback 

interactions between them  (IPCC, 2007). They are, currently the most reliable tools available for 

obtaining the physics and chemistry of the atmosphere and oceans and to derive projections of 

meteorological variables (temperature, precipitation, wind speed, solar radiation, humidity, 

pressure, etc). They are based on various assumptions about the effects of the concentration of 

greenhouse gases in the atmosphere coupled with projections of CO2 emission rates (Smith et al., 

2009). 

There is a high level of confidence that AOGCMs are able to capture large scale circulation 

patterns and correctly model smoothly varying fields such as surface pressure, especially at 

continental or larger scales. However, it is extremely unlikely that these models properly 

reproduce highly variable fields, precipitation (Hughes and Guttorp, 1994), on a regional scale, 

let alone, for small to medium watersheds. Although confidence has increased in the ability of 

AOGCMs to simulate extreme events, such as hot and cold spells, the frequency and the amount 

of precipitation during intense events are still being underestimated.  
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Present study aims to provide an insight into the future changes in the intensity of extreme 

rainfall events associated with model and scenario uncertainties and suggest methods for 

quantifying these uncertainties. The result is presented in the form of probability based intensity-

duration-frequency (IDF) curves appropriate for the future climatic conditions.    

1.2 Uncertainties in Atmosphere-Ocean Global Climate Models 

In recent years, quantifying uncertainties from AOGCMs and scenarios for impact 

assessment studies has been identified as a critical climate change and adaptation research topic. 

Climate change impact studies derived from AOGCM outputs are associated with uncertainties 

due to “incomplete” knowledge originating from insufficient information or understanding of 

biophysical processes or a lack of analytical resources. Examples include simplification of 

complex processes involved in atmospheric and oceanographic transfers, inaccurate assumptions 

about climatic processes, limited spatial and temporal resolution resulting in a disagreement 

between AOGCMs over regional climate change, etc. Uncertainties also emerge due to 

“unknowable” knowledge arising from the inherent complexity of the Earth system and from our 

inability to forecast future socio-economic and human behavior in a deterministic manner (New 

and Hulme, 2000; Allan and Ingram, 2002; Proudhomme et al., 2003; Wilby and Harris, 2006; 

Stainforth et al., 2007; IPCC, 2007, Buytaert et al, 2009). It is now established that the accuracy 

of AOGCMs decrease at finer spatial and temporal scales; a typical resolution of AOGCMs 

ranges from 250 km to 600 km, but the need for impact studies conversely increase at finer 

scales. The representation of regional precipitation is distorted due to the coarse resolution and 

cannot capture the subgrid-scale processes significant for the formation of site-specific 

precipitation conditions. While some models are parameterized, details of the land-water 

distribution or topography in others are not represented at all (Widmann et al., 2003). Studies 
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have found that the models failed to predict the high variability in daily precipitation and could 

not accurately simulate present-day monthly precipitation amounts (Trigo and Palutikof, 2001; 

Brissette et al., 2006).  

1.3 Intensity-Duration-Frequency Curves  

Reliable rainfall intensity estimates are necessary for hydrologic analyses, planning and 

design problems. The rainfall intensity-duration-frequency (IDF) curve is one of the most 

common tools for urban drainage designer. Information from IDF curves are used to describe the 

frequency of extreme rainfall events of various intensity and durations. According to the 

guideline for ‘Development, Interpretation and Use of Rainfall Intensity-Duration-Frequency 

(IDF) Information: A Guideline for Canadian Water Resources Practitioners” developed by 

Canadian Standards Association (CSA, 2010), the major reasons for increased demand for 

rainfall IDF information can be summarized as follows: 

 As the spatial heterogeneity of extreme rainfall patterns becomes better understood and 

documented, a stronger case is made for the value of “locally relevant” IDF information.  

 As urban areas expand, making watersheds generally less permeable to rainfall and 

runoff, many older water systems fall increasingly into deficit, failing to deliver the services for 

which they were designed. Understanding the full magnitude of this deficit requires information 

on the maximum inputs (extreme rainfall events) with which drainage works must contend.  

 Climate change will likely result in an increase in the intensity and frequency of extreme 

precipitation events in most regions in the future. As a result, IDF values will optimally need to 

be updated more frequently than in the past and climate change scenarios might eventually be 

drawn upon in order to inform IDF calculations. 
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The typical establishment of rainfall IDF curves involves three steps. First a probability 

distribution function (PDF) or Cumulative Distribution Function (CDF) is fitted to each group 

comprised of the data value for any specific duration. The maximum rainfall intensity for each 

time interval is related with the corresponding return period from the cumulative distribution 

function. For a given return period  , the cumulative frequency   can be expressed as: 

    
 

 
                        (1.1) 

or  

  
 

   
                             (1.2) 

If the cumulative frequency is known, the maximum rainfall intensity can be determined 

using an appropriate theoretical distribution function (such as Generalized Extreme Value 

(GEV), Gumbel, Pearson Type III, etc). 

In the presence of climate change, the theoretical distribution based on historical 

observations will be different for the future conditions. The issue is further aggravated by the 

presence of various uncertainties associated with AOGCM models and emission scenarios. 

Therefore, in this study the non-parametric kernel estimator is used to combine uncertainties 

generated from different AOGCMs. Probability of occurrences of maximum rainfall generated 

for any specific duration is presented in the form of cumulative distribution function for different 

return periods.   

1.4 Outline of the Report 

The report is organized as follows: research related to IDF information under climate is 

presented in Chapter 2. Chapter 3 details the database and methodology applied in the study. The 
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results and discussion obtained from the analysis are explained in Chapter 4. Finally the report 

ends with conclusions based on the research findings.   
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2. Literature Review 

 

Literature related to intensity-duration-frequency (IDF) curves concentrates on developing 

appropriate distribution of fit, comparison of sampling techniques and generation of IDF 

information under climate change. 

Interesting research is emerging on the development of alternative methods, other than the 

distribution fit, for developing IDF values. Huard et al (2010) applied a Bayesian analysis to the 

estimation of IDF curves. Comparison of the Bayesian and classical approach using GEV 

distribution using Peak Over Threshold (POT) method indicated the extent of uncertainties in the 

IDF curves. Svensson et al (2007) made an experimental comparison of methods for estimating 

rainfall IDF from fragmented records for Eskdalemuir, Scotland. Three different methods were 

applied to cope with the missing data in the annual and monthly series: (i) using only 

years/months with complete records; (ii) using only years/months with complete records with not 

more than 20% missing data; and (iii) using censored data from months where records are 

incomplete.  The result recommends the use of monthly maxima for calculating return period 

rainfall allowing up to 20% of missing data in each month. Despite the fact that over a decade 

long research  have been investigating for alternate methods for IDF development, studies related 

to developing IDF curves incorporating climate change are limited.  

Estimations of future modifications in rainfall due to increase in greenhouse gas 

concentrations depend on response from global climate models. Studies have related statistical 

downscaling with outputs from global and regional climate model outputs. Nguyen et al (2007a, 

b) and Desramaut (2008) presented a spatial-temporal downscaling method based on scale 

invariance technique for constructing IDF relations using outputs from two GCMs (HadCM3 A2 
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and CGCM2 A2) for future climate. The spatial downscaling methodology based on SDSM was 

used to generate daily precipitation data. The temporal scaling was performed for extreme value 

distribution factors based on current historical rainfall distribution. The studies found large 

differences in future IDF values between two the models.  

Prodanovic and Simonovic (2007) developed IDF curves for current and future climate for 

city of London using a K-NN based weather generator. Future rainfall derived for the wet 

(CCSRNIES B21) scenario projected 30% increase in rainfall magnitude for a range of durations 

and return periods. More recently Simonovic and Peck (2009) used all the available  

precipitation data for different durations for developing IDF information under the wet climate 

change scenario. The 24 hr duration rainfall was modified by applying moving window 

procedure to recreate maximum 24 hour rainfall events crossing the calendar day boundary. 

Their study indicated 10.7% to 34.9% change in IDF information for 2050s.   

Coulibaly and Shi (2005) used outputs from CGCM2 B2 to develop IDF curves for Grand 

River and Kenora Rainy River regions in Ontario using statistical SDSM downscaling 

methodology. Their study found an increase in the range of 24-35% in the rainfall intensity for 

24 hour and sub-daily durations for all stations of interest for 2050s and 2080s with decreases in 

2020s. 

Mailhot et al. (2006, 2007) used outputs from Regional Climate Models (RCMs) (CRCM A2) 

for developing IDF for different durations for May-October over Southern Quebec using regional 

frequency analysis. The results were obtained for the RCM grid-box scale ranging over 45 km 

distances in between two grids. Projected rainfall showed 50% decrease by 2050s for 2 and 6 

hour durations and 32% decrease for 12 and 24 hour durations than the base climate (1961-
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1990). The results indicated limitation of using grid box scale and acknowledged that the results 

may be improved by using point estimates.  

Onof and Arnbjeg-Nielsen (2009) used an hourly weather generator approach with 

disaggregation to derive IDF values from hourly rainfall data. Future hourly data was obtained 

from RCM A2 scenario with a 10 KM x 10 KM resolution for 2050s. The limitation of the study 

includes the stationarity assumption that the ratio of areal to the point estimates will remain 

unchanged with any changes in the climate.  

Literature related to developing IDF values incorporating climate change from AOGCM 

models suffer from: 

(i) Limitations of statistical downscaling approaches: Downscaling approaches such as 

SDSM or most of the weather generators assumed to have stationary climate. One possible way 

to overcome such issue is to perturb the model to generate values to achieve outputs beyond the 

range of inputs, which can be easily included in the weather generator. 

(ii) Application of sub-daily scaling factors to daily precipitation data and uncertainties: Use 

of historical hourly data can prevent this issue.    

(iii) Use of single AOGCM response: In all the literature listed above, single AOGCMs have 

been used for predicting future climate. It is well understood that in the presence  of significant 

uncertainties, utilization of a single AOGCM may be one of all possible realizations and cannot 

be representative of the future. So, for a comprehensive assessment of the future changes, it is 

important to use collective information by utilizing all available GCM models, synthesizing the 

projections and uncertainties in a probabilistic manner. 

(iv) Appropriate distribution fit for future: In presence of human induced warming trends 

added to Earth’s natural variability, it is unlikely that the present precipitation or rainfall pattern 
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will comply with the future. Differences in the initializations and parameterizations of different 

climate model responses make it more complex to assume a specific distribution for all possible 

realizations.  
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3. Methodology 

3.1 Database 

3.1.1 Observations 

Environment Canada is responsible for collection and distribution of weather data in 

Canada. The Environment Canada’s hourly database mostly consists of rainfall data; the hourly 

gauges often freeze during winter and estimates obtained from them are not accurate; hence for 

this part of the study, precipitation could not be used. Hourly rainfall data covering stations 

around London for the period of 1965-2003 (Figure 1) has been extracted from the Data Access 

Integration Network (DAI, 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Meteorological Stations Used in the Study 
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Daily rainfall data for the same stations and same time period is obtained from Environment 

Canada’s Weather Office (http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html).  

The station selection process is highly dependent on the availability of hourly data with 

adequate lengths. This is an important step in running nearest neighbor based weather generator 

used in the present study. The number of stations used in the K-NN algorithm influences 

computation of regional means and the Mahalanobis distance (see section 3.2.1 for details), 

which affects the choice of nearest neighbor. Data of shorter durations are available only for a 

handful of stations. So stations closer to London but with shorter record have not been 

considered in this study. At first, all hourly stations within 200 km radius of London are 

considered. Next, stations with data going back to 1965 with a record till 2001 are selected. 

Figure 1 and Table 1 present the details of stations used initially for IDF analysis.  

Table 1: Rain Gauge Station Details 

Climate ID Station Name 
Latitude 

(deg) 

Longitude 

(deg) 

Elevation  

(m) 

Distance from London 

(km) 

6110557 Barrie WPCC 44.3758 -79.6897 221 190 

6140954 Brantford MOE 43.1333 -80.2333 196 75 

6131415/6 Chatham WPCP 42.39 -82.2153 180 113 

6131982/3 Delhi 42.8667 -80.55 232 52 

6142285/6 Elora 43.65 -80.4167 376 91 

6142400 Fergus 43.7347 -80.3303 418 102 

6153194 Hamilton A 43.1717 -79.9342 238 100 

6153300/1 Hamilton RBG 43.2833 -79.8833 102 106 

6144475/8 London Int’l A 43.0331 -81.1511 278 0 

6116132 Owen Sound MOE 44.5833 -80.9333 179 173 

6127519 Sarnia 43 -82.3 181 93 

6137361/2 St. Thomas 42.7833 -81.1667 236 28 

6148105 Stratford MOE 43.3689 -81.0047 345 39 

6158350 Toronto 43.6667 -79.4 113 158 

6158733 Toronto  Int’l A 43.6772 -79.6306 173 142 

6149387 Waterloo A 43.45 -80.3833 317 78 

6119500 Wiarton A 44.7458 -81.1072 222 190 

6149625 Woodstock 43.1361 -80.7706 282 33 
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3.1.2 Climate Change Scenarios 

Atmosphere-Ocean Global Climate Models (AOGCMs) represent physical processes in 

the atmosphere, ocean, cryosphere and land surface and are the most advanced tools available for 

simulating the response of the global climate system to increasing greenhouse gas 

concentrations. While simpler models have also been used to provide global or regional average 

estimates of the climate response, only AOGCMs, possibly in conjunction with nested regional 

models, have the potential to provide geographically and physically consistent estimates of 

regional climate change needed for climate change impact studies (IPCC, 2007). It is important 

to note that AOGCMs offer only possibilities of future climate pattern in differing socio-

economic conditions depending on continual growth of population, increased carbon dioxide 

emission, rate of urbanization, etc. Outputs from AOGCMs, thus, should not be considered as the 

forecasts of future climate conditions. 

 The Canadian Climate Change Scenarios Network (CCCSN) provides access to several 

AOGCM models and emission scenarios. The website allows the user to specify the range of 

geographical co-ordinates required, as well as the climatic variable and time period of interest. 

For the purpose of this study, precipitation data for two time slices: 1960-1990 (baseline) and 

2071-2100 (2080s) are collected. It is important to note here that the AOGCMs provide only 

precipitation data which is a combination of snow and rainfall during winter. They do not count 

for rainfall change information. Hence for this study, change in the precipitation between 

different AOGCM scenarios and historical observed precipitation are used to calculate the 

change fields and are applied to develop modified rainfall series to be used in the weather 

generator. 
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A total of 27 scenarios from 11 AOGCMs, each with two to three emission scenarios 

(Nakicenovic et al, 2000) are selected for developing future scenarios. Full descriptions of the 

emissions scenarios and AOGCMs can be found in Appendices B and C. Table 2 provides a 

complete list of the details of the AOGCM scenarios used in this study.  

 

Table 2: List of AOGCM Models and Emission Scenarios 

GCM models Sponsors, Country 
SRES 

scenarios 

Atmospheric 

resolution 

Lat Long 

CGCM3T47, 2005 
Canadian Centre for Climate Modelling 

and Analysis, Canada 

A1B, A2, 

B1 
3.75° 3.75° 

CGCM3T63, 2005 
A1B, A2, 

B1 
2.81° 2.81° 

CSIROMK3.5, 2001 

Commonwealth Scientific and Industrial 

Research Organization (CISRO) 

Atmospheric Research, Australia 

A1B, A2, 

B1 
1.875° 1.875° 

ECHAM5AOM, 

2005 

Max Planck Institute for Meteorology, 

Germany 

A1B, B1, 

A2 
1.875° 1.875° 

ECHO-G, 1999 

Meteorological Institute of the University 

of Bonn, Meteorological Research Institute 

of the Korea Meteorological 

Administration (KMA), and Model and 

Data Group, Germany/Korea 

A1B, B1, 

A2 
3.9° 3.9° 

GFDLCM2.1, 2005  

U.S. Department of Commerce/ National 

Oceanic and Atmospheric Administration 

(NOAA)/Geophysical Fluid Dynamics 

Laboratory (GFDL), USA 

A1B, B1, 

A2 
2° 2.5° 

GISSAOM, 2004 

National Aeronautics and Space 

Administration (NASA)/ Goddard Institute 

for Space Studies (GISS), USA 

A1B, B1 3° 4° 

MIROC3.2HIRES, 

2004 

Centre for Climate System Research 

(University of Tokyo), National Institute 

for Environmental Studies, and Frontier 

Research Centre for Global Change 

(JAMSTEC), Japan 

A1B, B1 1.125° 1.125° 

MIROC3.2MEDRES, 

2004 

A1B, A2, 

B1 
2.8° 2.8° 

CCSR/NIES B21, 

1999 

Centre for Climate System Research, 

University of Tokyo and National Institute 

for Environmental Studies, Japan 

B21 5.6° 5.6° 

CSIROMK2b, 1997 

Commonwealth Scientific and Industrial 

Research Organization (CISRO) 

Atmospheric Research, Australia 

B11 5.6° 3.2° 
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3.2 Development of Methodology 

Figure 2 presents the schematic of the methods adopted for generating IDF curves for 

2080s incorporating uncertainties from AOGCM scenario. The step by step procedures are 

presented below. 

3.2.1 Downscaling 

Stochastic weather generators simulate weather data to assist in the formulation of water 

resource management policies. The basic assumption for producing synthetic sequences is that 

the past would be representative of the future. They are essentially complex random number 

generators, which can be used to produce a synthetic series of data. This allows the researcher to 

account for natural variability when predicting the effects of climate change. 

In order to reduce multi-dimensionality and collinearity associated with the large number of 

input variables, principal component analysis has been integrated with the weather generator. 

The process requires selecting appropriate principal components (PCs) that will adequately 

represent most information of the original dataset.  

The WG-PCA algorithm with p variables and q stations works through the following steps: 

1) Regional means of p variables for all q stations are calculated for each day of the observed 

data:  



X t  x 1, t,x 2, t,...,x p, t      



t  1,2,...,T                                        (3.1) 
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Figure 2: Schematic Diagram of Developing IDF Curve 
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2)  Selection of potential neighbors, L days long where  L=(w+1)  (N-1) for each of p individual 

variable with N years of historic record, and a temporal window of size w which can be set by 

the user of the weather generator. The days within the given window are all potential neighbors 

to the feature vector. N data which correspond to the current day are deleted from the potential 

neighbors so the value of the current day is not repeated. 

3)   Regional means of the potential neighbors are calculated for each day at all q stations. 

4)   A covariance matrix, Ct of size L  p is computed for day t. 

5)  The first time step value is randomly selected for each of p variables from all current day 

values in the historic record. 

6) Next, using the variance explained by the principal component, Mahalanobis distance is 

calculated with equation 3. 

  )(/
2

PCVarPCPCd ktk       Kk ,...,2,1                               (3.3) 

Where PCt is the value of the current day and PCk is the nearest neighbor transferred by the 

Eigen vector. The variance of the first principle component is Var(PC) for all K nearest 

neighbors.  

7) The selection of the number of nearest neighbors, K, out of L potential values using LK  . 

8) The Mahalanobis distance dk is put in order of smallest to largest, and the first K neighbors in 

the sorted list are selected (the K Nearest Neighbors). A discrete probability distribution is used 

which weights closer neighbors highest in order to resample out of the set of K neighbors. Using 

equations 4 and 5, the weights, w, are calculated for each k neighbor. 
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Cumulative probabilities, pj, are given by: 





j

i

ij wp
1

                                       (3.5) 

 9) A random number u (0,1) is generated and compared to the cumulative probability 

calculated above in order to select the current day’s nearest neighbor. If p1 < u < pk, then day j 

for which u is closest to pj is selected. However, if pi > u, then the day which corresponds to d1 

is chosen. If u=pK, then the day which corresponds to day dK is selected. Upon selecting the 

nearest neighbor, the K-NN algorithm chooses the weather of the selected day for all stations in 

order to preserve spatial correlation in the data (Eum et al, 2009). 

10) In order to generate values outside the observed range, perturbation is used. A conditional 

standard deviation for K nearest neighbors is estimated. For choosing the optimal bandwidth of 

a Gaussian distribution function that minimizes the asymptotic mean integrated square error 

(AMISE), Sharma et al. (1997) reduced Silverman’s (Silverman 1986, pp. 86-87) equation of 

optimal bandwidth into the following form for a univariate case: 

5/106.1  K                                     (3.6) 

 Using the mean value of the weather variable
j

tix , obtained in step 9 and variance
2)(

j
i , a 

new value 
j

tiy , can be achieved through perturbation (Sharma et al. 1997). 

t
j

i
j
ti

j
ti zxy  ,,                                        (3.7) 
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Where tz is a random variable, distributed normally (zero mean, unit variance) for day t. 

Negative values are prevented from being produced for precipitation by employing a largest 

acceptable bandwidth: 
jj

ta x **, 55.1/    where * refers to precipitation. If again a negative value 

is returned, a new value for zt is generated (Sharif and Burn, 2006). 

3.2.2 Bias Correction of Downscaled Outputs 

The downscaling process scales down coarse grid outputs of AOGCMs into the scale of 

interest. However, significant simulation bias still may exist from the initializations of 

atmospheric-oceanic processes. Hence, employing coarse resolution global model output for 

regional and local climate studies requires an additional bias correction step based on the ability 

of the AOGCMs to reproduce the past climate. In this study, bias from the downscaled outputs is 

corrected by the following equation: 

 Bias in AOGCM, 

 

    
     

  
                                                      (3.8) 

Where, 

bi = bias from different AOGCMs 

xi = Monthly mean of observed precipitation for 1965-1990 

yi = Monthly mean from different AOGCMs for 1965-1990 

 

the correction factor for the AOGCMs is then calculated using, 

    
  

   
                                                          (3.9) 

So, the treated downscaled rainfall for 2080s, 

                                                              (3.10) 
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where, 

pi = untreated daily downscaled rainfall for 2080s 

 

3.2.3 Disaggregation 

The disaggregation scheme works by extracting rainfall event records from the hourly 

observed data. A rainfall event can be defined as a period of non-zero rainfall for two or more 

days where the total amount of rainfall during the consecutive days is considered as the event 

rainfall value. Once the rainfall events are extracted from the historic record, they are 

disaggregated by a K-nearest neighbor approach. The algorithm considers daily rainfall produced 

by the weather generator for day  , for each station. A set of potential events are selected from 

the observed record from which once such event is chosen based on which the daily output is 

disaggregated into hourly values. 

The selection of neighboring events from the observed record follows simple rule:  

Only events within a moving window of    days are selected to account for the seasonally 

varied temporal distribution of rainfall. Events are selected from the prescribed moving window 

from all years in the historic record of events as a potential set of neighbors. The daily totals 

from downscaled outputs are compared with the set of neighboring event totals to assure that the 

only disaggregation of similar events is considered.  

Observed hourly data is used as a template on how the hourly values of the generated 

outputs would look like. A specific number of days are considered to compare with the present 

day value. The best match is determined by (Mansour and Burn, 2010): 

 

   √(   (     )
 )  (   (     )

 )    (3.11) 
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Where,    is the daily rainfall output from weather generator,    is the historical observed 

daily rainfall,     and    are the events calculated from WG outputs and historical observed data 

respectively. The weights       are used to identify the best historical hourly ratio of the data. 

An hourly value set within the moving window of days can be chosen for a similar event    or 

for the daily total rainfall   . The combination of the weights, which provide the lowest    for 

each value within the window, is considered as the daily ratio of historical hourly values used to 

disaggregate the WG’s daily data into hourly values.  The ratio of the hourly values found within 

the chosen day is applied to the daily value to create a plausible hourly set-up for the given daily 

data. This is done based on the methods of fragments (Svanidze, 1977; Sharif et al., 2007). The 

fragments represent the fraction of daily rainfall that occur during each hour of the day summing 

to unity and can be expressed as: 

   
  

∑   
 
   

               (3.12) 

 

where    represents the fragments calculated for hour  ,    is the chosen hourly data from 

observations,   is the number of hours in a day which is 24. The fragments are then multiplied 

with the daily data to produce data for each hour: 

 

  
                         (3.13) 

 

where   is the daily rainfall (mm). This program has been sent daily data that already had 

known hourly values and the results have been compared in an attempt to verify that the model 

works correctly. 
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This approach utilizes locally observed data using a non-parametric method avoiding the 

chance of errors that may occur from the parametric methods due to theoretical distribution fits, 

parameter estimations and calibration. Additionally, there is high likelihood that the statistical 

characteristics of the disggregated rainfall are stored by applying the resampling algorithm.    

3.2.4 Generation of Rainfall for Different Durations 

Sampling of rainfall data for estimating rainfall extremes are commonly proceeded using 

two approaches: the annual maxima series (AMS) or block maxima and peak over threshold 

(POT) or partial duration series (PDS) (Coles, 2001). Literatures have identified limitations and 

advantages of both methods. Madsen et al. (1997), Buishand et al. (1990), Rasmussen et al. 

(1994) found POT to be a better approach than AMS. While Kartz et al. (2002), Smith (2003), de 

Michele and Salvadori (2005) suggested use of both methods. By definition, AMS approach 

includes the yearly peaks in the observational period while the POT involves all the peak events 

that exceed a given threshold value. The AMS method is more straightforward. If the number of 

annual maxima is small (<100), the obtained estimates may be sensitive to outliers. It is an 

asymptotic method that works well if the number of inputs from which a maximum is 

considered, is large. Jeruskova et al., 2006 showed that convergence to limit any distribution fit 

can be slow. For determining annual maxima, the maxima of 365 daily values are considered. 

The seasonal effect may also play a role. Application of POT is somewhat difficult than the 

AMS because of it’s selection of an appropriate threshold. For a satisfactory stability of the 

obtained results, testing of several threshold values such as 90%, 95% and 98% are 

recommended. Jeruskova et al. (2006) have shown that the POT method may work well for short 

memory series only. For longer data series, the series should be split into several more 

homogeneous groups. Both methods however, have their own disadvantages too; the AMS may 
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neglect certain high values, while the POT may suffer from serial correlation problem (Jervis et 

al., 1936; Langbein, 1949;, Taesombat and Yevjevich, 1978).  

3.2.5 Intensity-Duration-Frequency Analysis  

Rainfall intensity-duration-frequency (IDF) curves are derived from the statistical 

analysis of rainfall events over a period over time and used to capture important characteristics 

of point rainfall for shorter durations. It is considered as a convenient tool for gathering regional 

rainfall information required for municipal storm water management works. Site specific curves 

represent intensity-time relationship for a specific return period from a series of storms.  

Information is summarized by plotting the durations on the horizontal axis, the rate of rainfall 

(intensity in depth per unit of time) on the vertical axis and the curves for each design storm 

return period. Frequency is expressed in terms of return period, T, the average length of time 

between rainfall events that equals or exceed any given magnitude. For each selected duration, 

annual maximum rainfall is extracted from the rainfall data and frequency analysis is performed 

to the annual maximum rainfall to fit a probability distribution for standardizing the 

characteristics of rainfall for each station with varying rainfall record.  

In Canada, Environment Canada is responsible (a) for collection and quality control of 

rainfall data and (b) for providing the rainfall extreme information in the form of IDF curves. 

Gumbel’s Extreme Value distribution is normally used to fit the annual extremes of rainfall using 

AMS method. It is acknowledged here that due to changes in future precipitation extremes, the 

future rainfall may not follow the conventionally used Gumbel’s distribution. It would be 

adequate to consider a generalized extreme value (GEV) distribution. But the inherent 

uncertainties in the responses of AOGCM outputs do not guarantee GEV as the best fit for all 

AOGCMs. Furthermore, fitting of three parameters for the GEV distribution by maximum 
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likelihood method requires considerable computation time, and will be different for different 

AOGCM responses. For simplification, and to comply with Environment Canada’s procedure, 

use of Extreme Value (EV) type 1 which is Gumbel distribution is adopted in this study.  

The Gumbel probability distribution is expressed (Watt et al., 1989): 

                                                                                        (3.14) 

where     represents the magnitude of the   year event,    and    are the mean and standard 

deviation of the annual maximum series, and     is a frequency factor depending on the return 

period,  . The frequency factor     is obtained using the following equation: 

 

   
 √ 

 
           (   (

 

   
))                                                 (3.15) 

 

Meteorological Service of Canada (MSC) uses the above method to calculate rainfall 

frequency for durations of 5, 10, 30 minutes and 1, 2, 6. 12, 24 hours. Since most of the stations 

do not have observed sub-hourly data,   the calculation of the frequencies for periods shorter than 

1 hour may be based on the ratios provided by the World Meteorological Organization (MTO, 

1997): 

Duration (min) 5 10 15 30 

Ratio (n-min to 60-min) 0.29 0.45 0.57 0.79 

  

However, for the present study, durations shorter than 1 hour are not considered.  
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The IDF data is next fitted to a continuous function in order to make the process of IDF data 

interpolation more efficient i.e. if the ratio of any duration is not available, the IDF data is fitted 

to the following three parameter function: 

  
 

(    ) 
                                                                  (3.16) 

where   presents the rainfall intensity in mm/hr,    is the duration of rainfall in minute, 

          are the constants. To obtain optimal values for these three parameters, a reasonable 

value of   is assumed and the values of         are estimated by the least square method. The 

process is repeated to achieve the closest fit of the data (MTO, 1997). Plots of rainfall intensity 

vs. duration for each return period is then produced from the fitted IDF data to equation 3.14.  

 3.2.6 Uncertainty Quantification 

A practical approach to deal with AOGCM and scenario uncertainties originating from 

inadequate information and incomplete knowledge should: (i) be robust with respect to model 

choice; (ii) be statistically consistent in a uniform application across different spatial scales such 

as global, regional or local/watershed scales; (iii) be flexible enough to deal with the variety of 

data; (iv) obtain the maximum information from the sample; and (v) lead to consistent results. 

Most parametric methods do not meet all these requirements. 

Probability Density Function (PDF) is commonly used to describe the nature of data. In 

applications an estimate of the unknown      ( ) based on random sample             

from  ( ) is calculate in the form of    ̂   ̂( ). Probability distribution functions estimated by 

any nonparametric method without prior assumptions can be suitable to quantify AOGCM and 

scenario uncertainties. Several approaches such as kernel methods, orthogonal series methods, 
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penalized-likelihood methods, k-nearest neighbor methods, Bayesian-spline methods, and 

maximum-likelihood or histogram like methods can be found in the literature (Adamowski, 

1985).  

Kernel density estimation method has been widely used as a viable and flexible alternative to 

parametric methods in hydrology (Sharma et al., 1997; Lall, 1995), flood frequency analysis 

(Lall et al., 1993; Adamowski, 1985), and precipitation resampling (Lall et al., 1996) for 

estimating probability density function.  

A kernel density estimate is formed through the convolution of kernels or weight functions 

centered at the empirical frequency distribution of the data. A kernel density estimator involves 

the use of kernel function (K(x)) defined by: 

∫  ( )    
 

  
                                                                                       (3.17) 

A PDF thus, can be used as a kernel function. The Parzen-Rosenbalt kernel density estimate 

  ( ) at x, from a sample of {               } of sample size n can is given by: 

  ̂( )  
 

 
∑

 

 
  (

    

 
) 

                                                                              (3.18) 

where   (
    

 
) and   ( ) is a weight or kernel function required to satisfy criteria such as 

symmetry, finite variance, and integrates to unity. Successful application of any kernel density 

estimation depends more on the choice of the smoothing parameter or bandwidth (h) and the type 

of kernel function K(.), to a lesser extent. Bandwidth for kernel estimation may be evaluated by 

minimizing the deviation of the estimated PDF from the actual one. 
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The behavior of the estimator (equation 3.18) may be analyzed mathematically under the 

assumption that the data sets represent independent realizations from a probability density f(x). 

The basic methodology of the theoretical treatment is to discuss the closeness of estimator  ̂ to 

the true density,  . Successful application of the estimator depends mostly on the choice of a 

kernel and a smoothing parameter or bandwidth. Literatures have found that the choice of 

bandwidth is more critical. A change in kernel bandwidth can dramatically change the shape of 

the kernel estimate (Efromovich, 1999). For each x,  ̂( ) can be thought as a random variable 

because of it’s dependence on            .  Except otherwise stated, ∑ will refer to a sum for 

         and ∫ to an integral over the range (    ). 

The discrepancy of the density estimator  ̂ from it’s true density   can be measured by mean 

square error (MSE): 

    ( ̂)    ( ̂( )   ( )                                                                          (3.19) 

By standard elementary properties of mean and variance,  

 

    ( ̂)  {  ( ̂( )   ( )  }       ̂( ),                                                     (3.20) 

the sum of the squared bias and the variance at  . In many applications a trade-off is applied 

between the bias and the variance in equation (3.20); the bias can be reduced by increasing the 

variance and vice versa by adjusting the degree of smoothing.   

It can be obtained by minimizing the mean integrated square error (MISE), a widely used 

measure of global accuracy of  ̂ as an estimator of   (Rosenblatt, 1956; Adamowski, 1985; Scott 

et al., 1981, Jones et al., 1996) defined as:  
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     ( ̂)   ∫ ( ̂( )   ( )                                                             (3.21) 

or in alternative forms, 

    ( ̂)  ∫    ( ̂)    

  ∫ ( ̂( )   ( )     ∫    ( ̂)                                           (3.22) 

which gives the      as the sum of the integrated square bias and the integrated variance. 

Asymptotic analysis provides a simple way of quantifying how the bandwidth h works as a 

smoothing parameter. Under standard assumptions, MISE is approximated by the asymptotic 

mean integrated square error (AIMSE) (Jones et al., 1996): 

     ( )         ( )     (  )(∫    
 ⁄ )

 
                                     (3.23) 

where  ( )  ∫  ( )   and∫     ∫   ( )   , n is sample size, h is bandwidth. The 

first term (integrated variance) is large when h is too small, and the second term (integrated 

squared bias) is large when h is too large. 

The minimizer of      ( ) is easily calculated as: 

     ( )  [
 ( )

  (  )(∫    ) 
]
   

                                                   (3.24) 

In this study the solve-the-equation-plug-in approach is used to derive the data-driven 

bandwidth for estimating the densities. 

The main thought behind the ‘solve the equation plug in’ approach is to plug an estimate of 

the unknown  (  ) in the equation (3.24). The major challenge is to estimate a pilot bandwidth. 
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The ‘solve the equation’ approach proposed by Hall (1980), Sheather (1983, 1986) and later 

refined by Sheather and Jones (1991) is used in this study. The smallest bandwidth, hSJPI is 

considered as the solution of the fixed point equation 

  [
 ( )

  ( ̂ ( )
 )(∫    ) 

]

 

 

                                                                        (3.25) 

A dummy minimizer in the form g(h) is used to provide better representation of  (  ). It is 

done by estimating an analogue of         for estimating  (  ) by  ( ̂ 
 ). 

The minimizer of the asymptotic mean square error (AMSE) is expressed as:  

        { (    )}  ( ) 
  

                                                               (3.26) 

for suitable functional    and   . The expression of   in terms of   comes from solving the 

representation of        for   and substituting to get 

 ( )    { (   )  (    )}  ( )                                                           (3.27) 

for appropriate functionals   ,   . The unknowns  (   ) and  (    ) are estimated by  ( ̂  ) and 

 ( ̂   ), with bandwidths chosen by reference to a parametric family, as for     .  

Many variations have been tested for treatment of   ( ̂  ) and  ( ̂   ).The major contribution 

has been to try to reduce the influence of the normal parametric family even further by using 

pilot kernel estimates instead of normal interference (Jones et al., 1996). Park and Marron (1990) 

has shown the improvements in terms of the asymptotic rate of convergence up to a certain point.     
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4. Results and Discussion 

 

This chapter presents the results of the methodology introduced above for the development of 

IDF curve for 2080s. Results are presented for the City of London.  

  

4.1 Selection of Appropriate Stations 

The number of stations used to generated long sequence of rainfall series influence outputs of 

weather generator. Stations surrounding the point of interest help to capture the spatial and 

temporal characteristics in the region. In cases where only limited data is available, surrounding 

stations may help to add spatial and temporal characteristics of the rainfall values.  Conversely, 

use of too many stations can be computationally expensive and unnecessary; especially for short 

duration rainfall where convective storms are highly localized weather patterns, operating on 

relatively small spatial scales. Stations located too far may affect the performance of weather 

generator.  So regression and cross correlation analysis are performed for identifying important 

stations for London. For regression analysis, the stations are grouped based on selected distances 

from London (Table 3). Regression results for each group are provided in the Appendix A. The 

results are expressed in terms of t-test statistics, p values and the coefficient of determination.   

Results from the Appendix A show significant t-test statistic for all predictors reducing the 

possibility of over-fitting by an insignificant predictor. The term ‘probability value’ (p) denotes 

the results of the testing of hypothesis that the regression coefficient is equal to zero which in 

turn quantifies the importance of the regressor. A result of α in the probability value column for a 

predictor X denotes that with (100) X (1- α)% of confidence one can reject the hypothesis that 
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the coefficient of predictor X is zero. Low or near zero value of α is desirable as it is inversely 

related to the importance of a predictor.  

Table 3: Groups for Regression Analysis based on Distances 

Stations 
Groups based on distances (km) 

0-200 0-175 0-150 0-125 0-100 0-75 0-50 

Barrie WPCC √ 
      

Brantford MOE √ √ √ √ √ √ 
 

Chatham WPCP √ √ √ √ 
   

Delhi √ √ √ √ √ √ 
 

Elora √ √ √ √ √ 
  

Fergus √ √ √ √ 
   

Hamilton A √ √ √ √ √ 
  

Hamilton RBG √ √ √ √ 
   

London Int’l A √ √ √ √ √ √ √ 

Owen Sound MOE √ √ 
     

Sarnia  √ √ √ √ √ 
  

St. Thomas WPCP √ √ √ √ √ √ √ 

Stratford MOE √ √ √ √ √ √ √ 

Toronto √ √ 
     

Toronto Int’l  A √ √ √ 
    

Waterloo A √ √ √ √ √ 
  

Wiarton A √ 
      

Woodstock √ √ √ √ √ √ √ 

Total 18 16 14 13 10 6 4 

 

The t-statistics for the independent variables are equal to their coefficient estimates divided 

by their respective standard errors. In theory, the t-statistic of any one variable may be used to 

test the hypothesis that the true value of the coefficient is zero (which is to say, the variable 

should not be included in the model). In a standard normal distribution, only 5% of the values 

fall outside the range plus-or-minus 2 A low t-statistic (or equivalently, a moderate-to-large 

exceedance probability) for a variable suggests that the SEE would not be adversely affected by 

its removal. The rule-of-thumb in this regard is to remove the least important variable if its t-

statistic is less than 2 in absolute value, and/or the exceedance probability is greater than .05 
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(Minitab help, 2009). From the results it is seen that stations within 100 km distances appear to 

be the best option for London. This can be clearly seen from the coefficient of determination plot 

in Figure 3 where addition of more stations, beyond 100 km distance apparently cannot improve 

the model performance.  

 

 

 

 

 

 

 

 

Figure 3: Performances of Stations based on Distance 

Next, the cross correlation analysis is performed to identify the correlation between the 

stations (Table 4). Results show that stations within 100 km radius are correlated well, with 

correlation greater than 60% for all stations but Elora. However, the regression test shows that 

inclusion of Elora may provide important information to the spatial and temporal pattern of 

London. So it is included for IDF analysis. So finally, nine stations with hourly and daily rainfall 

data from 1965-2001, located within 100 km radius of London station have been selected for 

further analysis.  

Both historical daily and hourly data contains missing values. Inverse distance weighted 

methods is applied to fill the missing values.   
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Table 4: Cross-Correlation Results for Stations Within 200 km Distance from London 

Stations 

Distance 

(km) 
  

Lag 
  

-2 -1 0 1 2 

London A 0 -0.004 0.094 1.000 0.094 -0.004 

Waterloo A 78 -0.004 0.063 0.729 0.097 0.000 

Woodstock 33 0.003 0.273 0.723 0.022 -0.012 

Sarnia 93 0.018 0.131 0.676 0.054 -0.014 

Hamilton A 100 0.003 0.050 0.670 0.136 -0.008 

Delhi CS 52 -0.004 0.236 0.657 0.020 -0.014 

Brantford MOE 75 0.000 0.249 0.645 0.026 -0.019 

Stratford MOE 39 -0.005 0.263 0.633 0.028 -0.004 

Hamilton RBG 106 0.002 0.214 0.618 0.037 -0.008 

Toronto Int’l A 142 -0.002 0.043 0.610 0.125 0.000 

St. Thomas WPCP 28 -0.009 0.344 0.609 0.030 -0.008 

Fergus 102 -0.005 0.203 0.564 0.033 -0.009 

Toronto 158 -0.005 0.158 0.564 0.028 -0.012 

Elora 91 -0.002 0.199 0.550 0.066 0.002 

Chatham WPCP 113 -0.006 0.278 0.488 0.008 -0.013 

Barrie 190 -0.010 0.122 0.461 0.062 -0.007 

Wiarton A 190 -0.021 0.049 0.454 0.101 -0.009 

Owen Sound 173 -0.024 0.146 0.373 0.047 -0.005 

 

4.2 Development of Climate Change Scenarios 

Climate change scenarios from AOGCM outputs (Table 2) are used to condition the input 

data using the weather generator. Outputs from AOGCMs for 1961-1990 represent baseline 

climate against which the future climate change scenarios for 2071-2099 (2080s) have been 

computed. 

Based on the AOGCM data, change fields for each scenario is calculated as the difference 

between the monthly mean precipitation from their 1961-1990 mean.  
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This difference is then multiplied with the locally observed station data to generate climate 

change scenarios appropriate for the City of London at a daily time scale.  As an example, if the 

change field for the month of July and August are 10% and -5%, all daily July and August 

rainfall values are multiplied by a factor of 1.05 and 0.95, respectively.  This newly modified 

data is then used with the weather generator to generate daily time series of any preferred length 

for different scenarios. For this study, 27 different climate scenarios are developed which 

represent different realizations of future. Comparison of  1961-1990 mean historical observed 

rainfall with those developed from different scenarios for base climate reveal that significant bias 

still exit in the base climate which is used to initialize the future climate; which means the bias 

may be carried out in the downscaled output. Table 5 (a) presents a comparison between the 

monthly mean precipitation from different AOGCM scenarios and historical observed values. 

Mean monthly precipitation vary significantly for between months for all models.  

Table 5 (a): Monthly Mean Precipitation (mm) from Different AOGCMs for 1965-1990 

Scenarios/month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Observed 2.28 2.21 2.51 2.65 2.48 2.80 2.46 2.79 3.04 2.66 3.17 3.16 

CGCM3T47 1.99 1.95 2.25 2.71 2.88 2.66 2.12 2.11 2.35 2.29 2.88 2.73 

CGCM3T63 2.14 1.80 2.45 2.84 3.69 3.42 3.00 2.40 2.30 2.87 2.67 2.93 

CSIROMK3 1.94 2.16 2.44 2.97 3.28 2.64 2.42 1.80 1.72 2.31 2.42 2.21 

ECHAM5OM 3.01 3.63 3.62 4.11 4.33 4.41 3.58 3.47 3.32 2.47 2.99 3.09 

ECHO-G 2.08 2.10 2.49 3.43 4.45 3.66 3.82 3.18 2.59 2.67 2.92 2.21 

GFDLCM2.1 2.46 2.83 2.86 2.90 3.54 3.19 3.23 3.04 3.36 2.29 2.83 2.62 

GISSAOM 2.04 2.22 2.51 2.79 2.54 2.21 2.59 2.91 3.18 3.04 2.57 2.56 

MIROC3.2_HIRES 2.88 2.56 2.97 3.32 3.01 3.23 3.76 3.34 3.40 2.90 3.28 3.14 

MIROC3.2_MEDRES 2.21 2.57 2.64 2.86 2.92 3.49 3.71 3.00 2.96 2.47 2.52 2.40 

CCSRNIES_B21 1.84 2.24 2.86 3.25 3.63 4.18 4.77 3.52 2.07 1.40 1.73 2.05 

CSIROMk2b_B11 1.51 1.53 1.74 2.34 2.50 3.21 3.26 2.20 1.71 1.88 1.79 1.64 

 

4.3 Verification of the IDF Generation Methods 

Once preparation of data is complete, daily weather generator described in section 3.2.1 is 
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used to simulate a sequence of rainfall for all stations. For the verification purpose, the 

perturbation of the weather generator described in section 3.3.1 is kept off in order to replicate 

the exact scenario as the historical, observed, one.  

This study uses 10 stations for the period of 1965-2003 (N=39) to simulate different rainfall 

scenarios. Employing the temporal window of 14 days (w=14) and 39 years of historic data 

(N=39), 584 days are considered as potential neighbors (L=(w+1) x N-1=584). Each case is 

simulated three times thus generating 117 years of simulated output. It is expected that such 

length of output is sufficient enough to estimate event with return period of 100 years.  

In order to test the output of the weather generator, the box and whisker plots for monthly 

historical simulated rainfall are created (Figure 4).  

 

 

 

 

 

 

 

 

 

 

Figure 4: Box and Whiskers Plot of Simulated Monthly Rainfall in London  
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observed means are shown in terms of line plot to assess the ability of the weather generator to 

reproduce the temporal and spatial character of rainfall for the City of London. From the Figure 

4, it is seen that the model has been able to replicate the historic observed pattern adequately. 

Next, the daily rainfall is disaggregated into hourly values using the method described in 

section 3.2.3. The comparison of the performance of the historic simulated hourly values with 

the observed hourly data is presented in terms of frequency plots (Figure 5).  

 

 

 

 

 

 

 

 

 

 

Figure 5: Frequency Plots of Observed (Obs) and Simulated (Sim) Hourly Rainfall 

 

The frequency of small range rainfall is slightly over-estimated and the mid range rainfall is 

slightly under-estimated by the disaggregation model. Overall, the frequency of the extreme 

rainfall is captured well. 

Finally, the annual maximum rainfall for 1, 2, 6, 12 and 24 hour durations is generated to fit 

Gumbel distribution for calculating return periods. These are then compared with the IDF 

information obtained from Environment Canada (EC) (Table 6). It should be noted that the 

363024181260

900

800

700

600

500

400

300

200

100

0

363024181260

Obs

Hourly Precipitation (mm)

F
re

q
u

e
n

c
y

Sim



44 
 

Environment Canada uses rainfall data from 1943-2001 to develop IDF curves for London. 

However, hourly data is available only from 1961; data prior to 1961 may exist in paper form 

and are not available. For the present study, the hourly rainfall data for London is further reduced 

down to 1965 for matching rainfall data from other nearby stations to be used for multi-site 

weather generator.  

Table 6 (a): Comparison of Extreme Rainfall in London in terms of Depth (mm)  

Historic Unperturbed (1965-2003) Return Period, T years 

Duration, hrs 2 5 10 25 50 100 

1 21.80 30.38 36.06 43.24 48.56 53.85 

2 28.05 40.11 48.09 58.18 65.66 73.09 

6 36.41 49.90 58.83 70.11 78.49 86.80 

12 42.61 56.33 65.41 76.89 85.40 93.86 

24 49.70 64.63 74.52 87.01 96.28 105.48 

EC (1943-2003) Return Period, T years 

Duration, hrs 2 5 10 25 50 100 

1 24.40 35.30 42.50 51.60 58.30 65.00 

2 29.60 41.60 49.50 59.60 67.00 74.40 

6 36.70 48.20 55.80 65.40 72.50 79.60 

12 43.00 54.70 62.50 72.40 79.70 87.00 

24 51.30 66.80 77.10 90.00 99.60 109.20 

 

Table 6 (a) presents the intensity-duration-frequency data obtained from the historic 

unperturbed scenario together with the IDF data generated by EC. The results obtained are 

compared in terms of the relative differences using the following relationship: 

 

                    
|     |
     

 

                               (3.28) 
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Table 6 (b) presents the relative difference of rainfall intensity between the historic 

unperturbed and the EC data. The short duration rainfall (1 hr) is underestimated by the historic 

unperturbed scenario, while the intermediate (2, 6, 12 hrs) and longer (24 hrs) duration rainfalls 

are able to closely replicate the EC generated intensities for all return periods. Overall, the 

performance of the historic unperturbed scenario is satisfactory. 

 

Table 6 (b): Relative Difference between EC IDF Information and Historic Unperturbed 

Scenario 

Duration, min 
Return Period, years 

2 5 10 25 50 100 

60 11.25 14.98 16.39 17.63 18.22 18.76 

120 5.38 3.66 2.89 2.42 2.02 1.78 

360 0.80 3.46 5.29 6.96 7.93 8.65 

720 0.91 2.94 4.56 6.02 6.91 7.58 

1440 3.18 3.30 3.40 3.37 3.39 3.46 

 

 

4.4 IDF Results for Future Climate 

The perturbation process inside the weather generator is added (described in section 3.2.1) to 

generate IDF information using the historical observed rainfall. This scenario called ‘historical 

perturbed’ assumes that the future climate will continue to change as the consequence of already 

altered green house gas concentrations in the atmosphere, ignoring any future change in green 

house gas emissions.  

The daily weather generator output, after being disaggregated into hourly rainfall, is next 

used to generate intensity duration frequency data for 27 different scenarios presented in Table 4 
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to create different realizations of future climate using different AOGCM responses. Appendix D 

presents the IDF data obtained using climate scenarios in terms of intensity.   

The difference in the AOGCM scenarios relative to the historic perturbed scenario is 

summarized in Table 7.   

Table 7: Percent Differences between Historic Perturbed, Wet and Dry Scenarios 

ECHAM5AOM_A1B (Wet Scenario) and Historic Perturbed 

Duration, min 

Return Period, years 

2 5 10 25 50 100 

60 62.68 69.56 72.42 75.00 76.44 77.60 

120 60.64 65.84 67.98 69.91 70.99 71.86 

360 65.13 77.09 82.29 87.12 89.88 92.13 

720 66.03 77.77 83.09 88.17 91.13 93.57 

1440 63.22 72.99 77.42 81.63 84.07 86.09 

MIROC3MEDRES_A2 (Dry Scenario) and Historic Perturbed 

Duration, min 

Return Periods, years 

2 5 10 25 50 100 

60 -6.79 -2.90 -1.28 0.18 0.99 1.65 

120 -12.70 -15.09 -16.07 -16.96 -17.45 -17.85 

360 -7.06 -6.60 -6.40 -6.21 -6.10 -6.02 

720 -0.68 1.66 2.72 3.73 4.32 4.81 

1440 -0.44 -0.10 0.05 0.20 0.28 0.35 

 

The model results show variable results, with wide range of increase in extreme rainfall. 

ECHAM5AOM A1B appears to be the wettest while MIROC3.2MEDRES A2 being the driest of 

all. The wettest ECHAM5AOM A1B model shows more than 60% increase in rainfall compared 

to historic perturbed scenario. While the driest MIROC3.2 MEDRES A2 scenario shows slight 

decrease in precipitation intensity than the historic perturbed scenario. The difference between 

the wettest and the driest scenario ranges from 70% to 92% indicating huge range of uncertainty 
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among the realizations of AOGCMs. A comparison of different AOGCMs for specific duration 

is presented in Figure 6.  
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Figure 6: IDF Plots of AOGCM Scenarios for Different Durations 

20

40

60

80

100

120

0 20 40 60 80 100 120

D
ep

th
, 
m

m
 

1 hr 

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

6 hr 

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

2 hr 

20

60

100

140

180

220

260

0 20 40 60 80 100 120

Return Period, yrs 

24 hr 

20

60

100

140

180

220

0 20 40 60 80 100 120

D
ep

th
, 
m

m
 

Return Period, yrs 

12 hr 



49 
 

4.5 Uncertainty Quantification of IDF Results 

 

Because of the inherent uncertainties, the newly developed IDF curves from different 

AOGCMs are unable to provide an accurate estimate of future extreme rainfall, but they 

establish a significant fact: the future climate will not be the same as the historic one. Previous 

studies (Simonovic and Peck, 2009; Prodanovic and Simonovic, 2007) have generated updated 

IDF information for the City of London for 2050s (2041-2070) based on a single scenario 

(CCSRNIES B21) selected from the upper range of all scenarios presented in this study. In 

presence of uncertainties presented in section 4.4, adoption of one single scenario may suffer 

from under/over-estimation of the risks, which may have significant implications for the storm 

water management and design practice.  

So, a kernel estimator based on the data driven plug-in approach described in section 3.2.6 is 

applied next to quantify the uncertainty arising from different AOGCM scenarios.  Due to the 

fact that unlike other uncertainty estimation methods, kernel estimator provides variable weights 

at each point of interest, weights are calculated from the mean of all AOGCM data for 

presentation purpose.  The weight function is calculated by modifying equation 3.18 as follows: 

 (      )  

    

 

∑
    

 
 
   

 

 

where,  for any time period   ,   represents any data point within the ranges of generated data 

for which kernel estimator is applied,    is the AOGCM simulated data,    is the plug-in 

bandwidth , and              = number of AOGCM models and scenarios considered =27. 
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The mean of total sample size     is considered as the data point from which the distance will 

be measured, where             years of simulated IDF data= 117.  

Figure 7 and Appendix E present the IDF curves incorporating the most useful information 

from the AOGCM scenarios. In this case, four scenarios have been selected: the ‘historical 

perturbed’ scenario as future state ignoring climate change, ‘ECHAM5AOM A1B’ scenario as 

the wettest scenario, ‘MIROC3MEDRES A2’ as the driest and the ‘resultant’ scenario as the 

scenario incorporating uncertainties from all AOGCM models and scenarios. The IDF curves of 

these selected scenarios for all durations for specific durations are presented in Appendix E.  

Table 9 presents the percent difference between the historical perturbed and resultant scenarios 

for 2080s. From the Table 9 it is seen that due to the changing climate, the intensity of rainfall is 

expected to increase by 20-40 % in 2071-2099.  
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Figure 7: Comparison of IDF Plots for Different Scenarios 
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Table 9: Difference between Historical Perturbed and the ‘Resultant’ Scenario for 2080s 

Duration (min) 
Return Period, yrs 

2  5  10  25  50  100  

60 21.76 25.29 26.76 28.08 28.82 29.42 

120 17.40 21.41 23.06 24.55 25.38 26.04 

360 20.85 27.32 30.14 32.75 34.25 35.47 

720 22.20 28.94 31.99 34.91 36.61 38.01 

1440 20.63 25.77 28.10 30.32 31.60 32.67 

 

Finally, the probabilities of extreme rainfall for all return periods are presented in 

terms of cumulative distribution plots. First, IDF plot of the resultant scenario is created 

(Figure 8).  

 

 

 

 

 

 

 

 

 

 

Figure 8: IDF Plot for Resultant Scenario 
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8 and 9 are combined to gather probabilities for any specific storm for any specific return 

period. For example, if the depth of 6 hour (360 min) storm for 5 year return period is 75 

mm (Figure 8), the maximum probability of this specific storm can be counted as 

approximately 0.66 (Figure 9 and so on. This additional probability information will 

allow users to use the updated IDF information with more confidence.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 (a): Probability based IDF Curve of 1 and 2 Hour Duration 
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Figure 9 (b): Probability based IDF Curve of 6, 12, 24 Hour Duration 
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5. Conclusions 

 

This study presents the methodology for updating of rainfall IDF curves for the City of London 

incorporating uncertainties associated with the use of different AOGCMs.  The analysis of the 

annual maximum rainfall for developing intensity-duration-frequency plots for the City of 

London under climate change has resulted in important findings. Overall, two objectives have 

been achieved by this study: first, an extensive investigation of the possible realizations of future 

climate from 29 scenarios developed from AOGCM models and scenarios are performed using a 

downscaling based disaggregation approach. A nonparametric K-Nearest Neighbor multi-site 

weather generator operating on a daily time step is used to produce long sequence of rainfall 

data. The use of perturbation scheme has overcome the limitation of assumptions of stationarity 

by generating data beyond the range of the input. The downscaled daily outputs are 

disaggregated into hourly values by a non-parametric nearest neighbor based disaggregation 

scheme. Annual maximum series of rainfall are fitted to Gumbel distribution to develop IDF 

curves for 1, 2, 6, 12 and 24 hour durations for 2, 5, 10, 25, 50 and 100 years of return periods. 

Next, the associated uncertainties are estimated using non-parametric kernel estimation approach 

and the resultant IDF curve is developed based on a probabilistic approach.  

The basic findings from the study are presented as follows: 

 The rainfall patterns in the City of London will most certainly change in future due to 

climate change. 
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 Generation of future IDF information based on single site is limited. Incorporating a 

multi-site weather generator to produce sequences of future rainfall offers a more reliable 

approach for  providing better spatial and temporal characteristics of rainfall patterns. 

 Adoption of a single scenario for developing IDF information only provides a single 

realization of the future; application of a multi-model approach can provide more 

realistic information about the future climate. 

 Use of the wettest or the driest scenario may be useful to capture the upper and lower 

bound scenario of the future climate change; however, single use of any of these 

scenarios may suffer from over/underestimation of the rainfall extremes with serious 

implications on storm water management practice and the development of design 

standards. 

 Although the scenarios developed from different scenarios indicate large uncertainty 

associated with the global climate models, all of them indicate increase in intensity of 

future rainfall with a varying degree. 

 A kernel based plug-in estimation approach is able to incorporate the uncertainties 

arising from different AOGCM models and to provide a more acceptable change in 

future rainfall extremes. The resultant scenario indicates approximately 20-40% changes 

in different duration rainfall for all return period. 

 Use of a probability based intensity-duration-frequency curve is encouraged in order to 

apply the updated IDF information with higher level of confidence. 
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APPENDIX A: Regression Test Results 

 

Regression Results for Stations Within 0-200 km Radius Distance 

Predictor t-Statistic Probability (p) 

Hamilton RBG -8.52 0.000 

Hamilton A 20.54 0.000 

Fergus -3.91 0.000 

Elora -4.17 0.000 

Delhi 10.71 0.000 

Chatham WPCP 0.27 0.791 

Brantford MOE -6.15 0.000 

Woodstock 26.58 0.000 

Waterloo A 28.64 0.000 

St. Thomas WPCP 10.53 0.000 

Stratford MOE 8.06 0.000 

Sarnia 25.15 0.000 

Barrie 3.92 0.000 

Owensound -2.82 0.005 

Wiarton 7.49 0.000 

Toronto City -4.75 0.000 

Toronto Int’l A 4.69 0.000 
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Regression Results for Stations Within 0-175 km Radius Distance 

 

 

 

 

 

 

 

 

 

 

 

 

Regression Results for Stations Within 0-150 km Radius Distance 

Predictor t-Statistic Probability (p) 

Woodstock 26.36 0.000 

St. Thomas WPCP 9.96 0.000 

Stratford MOE 8.92 0.000 

Delhi 10.83 0.000 

Brantford MOE -6.50 0.000 

Waterloo A 29.82 0.000 

Sarnia 25.97 0.000 

Elora -4.01 0.000 

Hamilton A  21.43 0.000 

Hamilton RBG -11.26 0.000 

Fergus -3.62 0.000 

Chatham WPCP 0.33 0.743 

Toronto Int’l A 4.36 0.000 

 

Predictor t-Statistic Probability (p) 

Woodstock 26.43 0.000 

St. Thomas WPCP 9.97 0.000 

Stratford MOE 8.34 0.000 

Delhi 10.81 0.000 

Brantford MOE -6.42 0.000 

Waterloo A 29.85 0.000 

Sarnia 25.80 0.000 

Elora -4.05 0.000 

Hamilton A 21.40 0.000 

Hamilton RBG -11.24 0.000 

Fergus -3.96 0.000 

Chatham WPCP 0.22 0.829 

Toronto Int’l A 4.29 0.000 

Owensound 2.38 0.017 
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Regression Results for Stations Within 0-125 km Radius Distance 

Predictor t-Statistic Probability (p) 

Woodstock 26.30 0.000 

St. Thomas WPCP 9.86 0.000 

Stratford MOE 8.77 0.000 

Delhi 10.63 0.000 

Brantford MOE -6.76 0.000 

Waterloo A 34.25 0.000 

Sarnia 26.30 0.000 

Elora -3.68 0.000 

Hamilton A 23.70 0.000 

Hamilton RBG -10.81 0.000 

Fergus -3.30 0.001 

Chatham WPCP 0.19 0.853 

 

 

 

Regression Results for Stations Within 0-100 km Radius Distance 

Predictor t-Statistic Probability (p) 

Woodstock 25.76 0.000 

St. Thomas WPCP 10.17 0.000 

Stratford MOE 7.79 0.000 

Delhi 9.41 0.000 

Brantford MOE -10.98 0.000 

Waterloo A 34.39 0.000 

Sarnia 25.85 0.000 

Elora -8.26 0.000 

Hamilton A 21.60 0.000 
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Regression Results for Stations Within 0-75 km Radius Distance 

Predictor t-Statistic Probability (p) 

Woodstock 30.19 0.000 

St. Thomas WPCP 10.22 0.000 

Stratford MOE 13.99 0.000 

Delhi 15.71 0.000 

Brantford MOE 2.27 0.023 

 

 

Regression Results for Stations Within 0-50 km Radius Distance 

 

Predictor t-Statistic Probability (p) 

Woodstock 40.28 0.000 

St. Thomas WPCP 19.86 0.000 

Stratford MOE 16.68 0.000 
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APPENDIX B: SRES Emission Scenarios 

 

 

 

 

 

 

 

 

Figure A1: SRES Emission Scenarios (Nakicenovic et al, 2000)  

A1B: In scenario A1B, the storyline includes rapid economic expansion and globalization, a 

population peaking at 9 billion in 2050, and a balanced emphasis on a wide range of energy 

sources (Nakicenovic et al, 2000).  

B1: The storyline for the B1 scenario is much like A1B in terms of population and globalization; 

however there are changes toward a service and information economy with more resource 

efficient and clean technologies. Emphasis is put on finding global solutions for 

sustainability (Nakicenovic et al, 2000).  

A2: For scenario A2, the storyline consists of a world of independently operating nations with a 

constantly increasing population and economic development on a regional level. 
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Technological advances in this storyline occur more slowly due to the divisions between 

nations (Nakicenovic et al, 2000). 
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APPENDIX C: Atmosphere-Ocean General Circulation Models 

 

Criteria for Selecting Climate Scenarios 

Five criteria that should be met by climate scenarios if they are to be useful for impact 

researchers and policy makers are suggested by IPCC and are quoted here: 

 Criterion 1: Consistency with global projections. They should be consistent with a broad 

range of global warming projections based on increased concentrations of greenhouse gases. 

This range is variously cited as 1.4°C to 5.8°C by 2100, or 1.5°C to 4.5°C for a doubling of 

atmospheric CO2 concentration (otherwise known as the "equilibrium climate sensitivity").  

 Criterion 2: Physical plausibility. They should be physically plausible; that is, they 

should not violate the basic laws of physics. Hence, changes in one region should be physically 

consistent with those in another region and globally. In addition, the combination of changes in 

different variables (which are often correlated with each other) should be physically consistent.  

 Criterion 3: Applicability in impact assessments. They should describe changes in a 

sufficient number of variables on a spatial and temporal scale that allows for impact assessment. 

For example, impact models may require input data on variables such as precipitation, solar 

radiation, temperature, humidity and wind speed at spatial scales ranging from global to site 

and at temporal scales ranging from annual means to daily or hourly values.  

 Criterion 4: Representative. They should be representative of the potential range of 

future regional climate change. Only in this way can a realistic range of possible impacts be 

estimated.  

 Criterion 5: Accessibility. They should be straightforward to obtain, interpret and apply 

for impact assessment. Many impact assessment projects include a separate scenario 
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development component which specifically aims to address this last point. The DDC and this 

guidance document are also designed to help meet this need.  

 

Challenges in using AOGCMs 

GCMs depict the climate using a three dimensional grid over the globe (Figure), typically 

having a horizontal resolution of between 250 and 600 km, 10 to 20 vertical layers in the 

atmosphere and sometimes as many as 30 layers in the oceans. Their resolution is thus quite 

coarse relative to the scale of exposure units in most impact assessments, hence only partially 

fulfilling criterion 3. Moreover, many physical processes, such as those related to clouds, also 

occur at smaller scales and cannot be properly modeled. Instead, their known properties must be 

averaged over the larger scale in a technique known as parameterization. This is one source of 

uncertainty in GCM-based simulations of future climate. Others relate to the simulation of 

various feedback mechanisms in models concerning, for example, water vapor and warming, 

clouds and radiation, ocean circulation and ice and snow albedo. For this reason, GCMs may 

simulate quite different responses to the same forcing, simply because of the way certain 

processes and feedbacks are modeled. 

However, while these differences in response are usually consistent with the climate 

sensitivity range described in criterion 1, they are unlikely to satisfy criterion 4 concerning the 

uncertainty range of regional projections. Even the selection of all the available GCM 

experiments would not guarantee a representative range, due to other uncertainties that GCMs 

do not fully address, especially the range in estimates of future atmospheric composition. 
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Figure: 3-Dimensional Representation of Climate Models (Climate Research Unit website, 2011) 

(from http://www.cru.uea.ac.uk/cru/info/modelcc/ retrieved on 3/01/2011) 

 

 

 

 

http://www.cru.uea.ac.uk/cru/info/modelcc/
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Canadian Coupled Global Climate Model 

The third generation Coupled Global Climate Model (CGCM3) was created in 2005 by the 

Canadian Centre for Climate Modelling and Analysis (CCCma) in Victoria, BC for use in the 

IPCC 4
th

 assessment report to run complex mathematical equations which describe the earth’s 

atmospheric and oceanic processes. The CGCM3 climate model includes four major 

components: an atmospheric general circulation model, an ocean general circulation model, a 

thermodynamic sea-ice model, and a land surface model (Hengeveld, 2000) and consists of two 

resolutions, T47 and T63. The T47 version has a surface grid whose spatial resolution is roughly 

3.75 degrees lat/lon and 31 levels in the vertical. The ocean grid shares the same land mask as 

the atmosphere, but has four ocean grid cells underlying every atmospheric grid cell. The ocean 

resolution in this case is roughly 1.85 degrees, with 29 levels in the vertical. 

The T63 version has a surface grid whose spatial resolution is roughly 2.8 degrees 

latitude/longitude and 31 levels in the vertical. As before the ocean grid shares the same land 

mask as the atmosphere, but in this case there are 6 ocean grids underlying every atmospheric 

grid cell. The ocean resolution is therefore approximately 1.4 degrees in longitude and 0.94 

degrees in latitude. This provides slightly better resolution of zonal currents in the Tropics, more 

nearly isotropic resolution at mid latitudes, and somewhat reduced problems with converging 

meridians in the Arctic. 

 

(Compiled from http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=1299529F-1) 
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Commonwealth Scientific and Industrial Research Organization’s Mk3.5 Climate Systems 

Model  

 Australia’s Commonwealth Scientific and Industrial Research Organization created the 

AOGCM CSIROMK3.5, which is an improved version of the MK climate systems model. The 

model consists of several components: atmosphere, land surface, ocean and polar ice. The 

dynamic framework of the atmospheric model is based upon the spectral method with the 

equations cast in the flux form that conservs predicted variables. The atmospheric moisture 

variables (vapour, water and ice) are advected by a Semi-Lagrangian Transport (SLT) algorithm 

(McGregor 1993). The most recent version (MK3.5) has included a representation of the Great 

Lakes and changes in land surface scheme and it’s representation of surface albedo under 

freezing than it’s previous versions. The MK3.5 version provides improved information by 

including the spatially varying eddy transfer coefficients (Visbeck et al, 1997) and the Kraus-

Turner mixed layer (1967) scheme. Improvements have also been done in it’s oceanic behavior 

in the high latitude Southern ocean, where the stratification and circulation are generally more 

realistic than the prior models. The spatial resolution of the model is 1.875 × 1.875.  

 Compiled from (http://www.cawcr.gov.au/publications/technicalreports/CTR_021.pdf) 

 

 

 

 

 



77 
 

Max Planck Institute for Meteorology’s ECHAM5AOM Model 

ECHAM5 is the 5th generation of the ECHAM general circulation model. Depending on the 

configuration the model resolves the atmosphere up to 10 hPa for tropospheric studies, or up to 

0.01 hPa for middle atmosphere studies. The current version differ in the vertical extent of the 

atmosphere as well as the relevant processes than it’s earlier versions. It is capable of hosting 

sub-models (chemistry, aerosol and vegetation) going beyond the meteorological processes of a 

AOGCM. The model can be used as a part of a coupled ocean GCM, in assimilation by linear 

relaxation and as a standalone column model. 

For integrations to start, the model requires several files. These file contain information for 

the description of the initial or re-start state of the atmosphere (boundary conditions at the 

surface, the ozone distribution and tables of constants of LW radiation schemes), the description 

of assumed conditions during the integration, e.g. sea surface temperature, or the initialization of 

parameterizations. 

 

(Compiled from http://www.mpimet.mpg.de/en/science/models/echam/echam5.html) 
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Meteorological Institute, University of Bonn Meteorological Research Institute of KMA 

Model and Data Groupe at MPI-M’s ECHO-G Model 

 

The climate model ECHO-G (Legutke and Voss, 1999) is a coupled climate model consisting 

of the atmospheric model ECHAM4 (Roeckner et al., 1996) and the ocean model HOPE (Wolff 

et al., 1997).  

The ECHAM4-model is based on primitive equations. The prognostic variables are vorticity, 

divergence, logarithm of surface pressure, temperature, specific humidity, mixing ratio of total 

cloud water and optionally a number of trace gases and aerosols.The vertical extension is up to a 

pressure level of 10 hPa, which corresponds to a height of approximately 30km. A hybrid sigma-

pressure coordinate system is used with 19 irregularly ordered levels and with highest resolution 

in the atmospheric boundary layer. The bottom level is placed at a height of about 30m above the 

surface corresponding approximately to the surface layer. In this study the ECHAM4 model has 

a horizontal resolution of about 3.75lat x 3.75lon. 

The ocean model HOPE (Hamburg Ocean Primitive Equation) is an ocean general circulation 

model (OGCM) based on primitive equations with the representation of thermodynamic 

processes. It is a non-eddy resolving circulation model. HOPE-G has a horizontal resolution of 

approximately 2.8lat x 2.8lon with a grid refinement in the tropical regions over a band from 

10N to 10S. This meridional grid refinement reaches a value of 0.5 at the equator allowing for a 

more realistic representation of ENSO variability in the tropical Pacific Ocean . The ocean model 

has 20 vertical, irregularly ordered layers. 

The coupling as well as the interpolation between the atmosphere and the ocean model is 

controlled by the coupling software OASIS (Terray et al., 1998). Concerning the coupling 

http://www.meteo.uni-bonn.de/
http://www.meteo.uni-bonn.de/
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dynamics, at a distinct frequency the atmospheric component of the model passes heat, fresh 

water and momentum to the ocean and gets information about surface conditions of the ocean. 

This frequency is equal for all exchange fields and describes a 'coupled time step'. The fields that 

are exchanged are averaged over the last coupled time step. Further aspects of the exchange 

processes are flux corrections due to the interactive coupling between ocean and atmosphere in 

order to prevent climate drift. These heat- and freshwater fluxes were diagnosed in a coupled 

spin-up integration. Accordingly, the sea-surface-temperature and sea-surface salinity were 

restored to their climatological observed values. This flux adjustment is constant in time and its 

global average vanishes. 

Quoted from (http://coast.gkss.de/staff/wagner/midhol/model/model_des.html) 
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Goddard Institute for Space Studies’ Atmospheric Ocean Model 

 The North American Space Association and the Goddard Institute for Space Studies 

developed the GISS-AOM climate model, first in 1995 and then a revised version was created 

with smaller grids in 2004 for the IPCC 4
th

 assessment report. The model requires two kinds of 

input, specified parameters and prognostic variables, and generates two kinds of output, climate 

diagnostics and prognostic variables. The specified input parameters include physical constants, 

the Earth's orbital parameters, the Earth's atmospheric constituents, the Earth's topography, the 

Earth's surface distribution of ocean, glacial ice, or vegetation, and many others. The time 

varying prognostic variables include fluid mass, horizontal velocity, heat, water vapor, salt, and 

subsurface mass and energy fields. The resolution for the model is 4 longitude by 3 latitude 

(PCMDI, 2005). The atmospheric grid has 12 vertical layers (PCMDI, 2005).  

 

Model for Interdisciplinary Research on Climate version 3.2 

The Japanese Model for Interdisciplinary Research on Climate version 3.2 (MIROC3.2) was 

developed in two resolutions: the high resolution (MIROC3.2HIRES) in 1.125 × 1.125 grid 

and the medium resolution (MIROC3.2MEDRES) in 2.8 × 2.8 grid. For present study, two 

emissions scenarios from MIROC3.2HIRES (A1B and B1) and three scenarios (A1B, A2 and 

B1) from MIROC3.2MEDRES were used. 
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APPENDIX D: Comparison of Future IDF Results in terms of 

Intensities (mm/hr) 

Historic Perturbed Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 25.87 35.16 41.32 49.09 54.85 60.57 

120 17.39 23.73 27.92 33.22 37.16 41.06 

360 7.26 9.54 11.05 12.96 14.38 15.78 

720 4.31 5.49 6.28 7.28 8.01 8.75 

1440 2.50 3.20 3.66 4.25 4.68 5.11 

 

CGCM3T47_A1B Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 25.53 34.84 41.00 48.79 54.57 60.31 

120 16.95 24.17 28.96 35.00 39.48 43.94 

360 7.28 10.21 12.15 14.60 16.42 18.23 

720 4.43 5.98 7.02 8.32 9.29 10.25 

1440 2.54 3.42 4.00 4.73 5.28 5.82 

 

CGCM3T47_B1 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 26.38 36.86 43.80 52.56 59.06 65.52 

120 16.08 21.28 24.71 29.05 32.28 35.47 

360 7.06 9.20 10.62 12.41 13.73 15.05 

720 4.34 5.61 6.46 7.52 8.31 9.10 

1440 2.46 3.20 3.69 4.31 4.76 5.22 

 

CGCM3T47_A2 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 25.77 36.90 44.26 53.57 60.47 67.32 

120 16.25 22.00 25.80 30.61 34.17 37.71 

360 7.21 9.98 11.81 14.12 15.84 17.54 

720 4.51 6.22 7.35 8.79 9.85 10.91 

1440 2.61 3.58 4.22 5.03 5.63 6.22 
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CGCM3T63_A1B Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 31.57 44.95 53.80 64.99 73.30 81.53 

120 21.14 32.40 39.85 49.27 56.25 63.19 

360 9.07 13.56 16.53 20.29 23.08 25.84 

720 5.70 7.93 9.41 11.27 12.65 14.02 

1440 3.35 4.57 5.38 6.41 7.16 7.92 

 

CGCM3T63_B1 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 28.35 38.69 45.53 54.18 60.60 66.96 

120 18.81 27.89 33.90 41.49 47.12 52.71 

360 7.96 11.56 13.94 16.95 19.19 21.40 

720 4.95 6.75 7.94 9.44 10.56 11.67 

1440 2.85 3.86 4.53 5.37 6.00 6.62 

 

CGCM3T63_A2 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 29.92 39.66 46.11 54.26 60.31 66.31 

120 19.95 27.44 32.40 38.66 43.31 47.92 

360 8.69 11.68 13.66 16.16 18.02 19.86 

720 5.27 6.82 7.86 9.16 10.13 11.09 

1440 3.04 3.91 4.48 5.21 5.75 6.29 

 

CSIROMK3.5_A1B Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 24.45 33.08 38.80 46.02 51.38 56.70 

120 15.40 20.81 24.38 28.91 32.26 35.59 

360 6.72 9.11 10.69 12.69 14.17 15.64 

720 4.12 5.55 6.50 7.70 8.59 9.47 

1440 2.42 3.29 3.86 4.59 5.13 5.67 

 

CSIROMK3.5_B1 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 27.45 39.40 47.30 57.29 64.71 72.06 

120 16.86 23.46 27.82 33.34 37.44 41.50 

360 7.30 9.91 11.64 13.82 15.44 17.05 

720 4.43 5.97 6.99 8.28 9.24 10.19 

1440 2.53 3.38 3.94 4.65 5.17 5.70 
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CSIROMK3.5_A2 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 28.73 41.01 49.13 59.40 67.02 74.59 

120 18.13 24.83 29.28 34.89 39.05 43.18 

360 7.76 10.42 12.19 14.42 16.07 17.72 

720 4.70 6.29 7.34 8.66 9.64 10.62 

1440 2.64 3.53 4.12 4.86 5.41 5.95 

 

ECHAM5AOM_A1B Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 42.09 59.63 71.23 85.90 96.78 107.58 

120 27.94 39.35 46.91 56.45 63.53 70.56 

360 11.99 16.90 20.15 24.26 27.30 30.33 

720 7.15 9.77 11.50 13.69 15.32 16.93 

1440 4.09 5.54 6.50 7.71 8.61 9.51 

 

ECHAM5AOM_B1 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 39.63 52.45 60.94 71.66 79.62 87.52 

120 25.10 33.75 39.48 46.72 52.09 57.42 

360 10.91 14.13 16.26 18.95 20.95 22.93 

720 6.58 8.26 9.37 10.78 11.82 12.85 

1440 3.78 4.74 5.37 6.17 6.76 7.35 

 

ECHAM5AOM_A2 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 39.65 52.29 60.65 71.22 79.06 86.85 

120 26.54 36.07 42.38 50.36 56.27 62.15 

360 11.59 15.46 18.03 21.27 23.67 26.05 

720 6.79 8.77 10.08 11.73 12.96 14.17 

1440 3.88 5.03 5.79 6.76 7.47 8.18 

 

ECHO-G_A1B Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 34.85 48.38 57.33 68.65 77.05 85.39 

120 22.18 30.94 36.74 44.06 49.49 54.89 

360 9.48 13.10 15.49 18.52 20.77 23.00 

720 5.53 7.56 8.90 10.60 11.86 13.11 

1440 3.16 4.26 4.99 5.91 6.60 7.28 
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ECHO-G_B1 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 34.35 49.95 60.28 73.33 83.02 92.63 

120 21.54 30.52 36.47 43.98 49.55 55.08 

360 9.29 12.90 15.29 18.30 20.54 22.76 

720 5.36 7.48 8.89 10.67 11.99 13.30 

1440 3.04 4.15 4.89 5.82 6.52 7.20 

 

ECHO-G_A2 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 34.49 49.16 58.87 71.14 80.25 89.28 

120 22.29 31.94 38.34 46.41 52.41 58.36 

360 9.58 13.19 15.58 18.60 20.84 23.06 

720 5.59 7.46 8.69 10.25 11.41 12.55 

1440 3.24 4.21 4.86 5.68 6.28 6.89 

 

GFDLCM2.1_A1B Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 32.50 44.43 52.33 62.31 69.72 77.07 

120 20.75 27.68 32.27 38.07 42.38 46.65 

360 9.14 11.98 13.85 16.23 17.99 19.74 

720 5.60 7.23 8.32 9.69 10.70 11.71 

1440 3.20 4.10 4.69 5.45 6.00 6.56 

 

GFDLCM2.1_B1 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 33.63 48.66 58.61 71.18 80.51 89.77 

120 21.32 30.52 36.61 44.31 50.02 55.68 

360 9.22 13.30 15.99 19.40 21.92 24.43 

720 5.61 7.92 9.45 11.38 12.82 14.24 

1440 3.20 4.45 5.28 6.33 7.11 7.88 

 

GFDLCM2.1_A2 Return Periods, T yrs 

Duration 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 31.88 44.60 53.02 63.65 71.54 79.38 

120 20.29 28.65 34.17 41.16 46.34 51.48 

360 8.98 12.54 14.90 17.89 20.10 22.29 

720 5.37 7.33 8.63 10.26 11.48 12.68 

1440 3.08 4.20 4.94 5.88 6.57 7.26 
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GISSAOM_A1B Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 32.64 45.34 53.75 64.37 72.25 80.08 

120 21.91 32.53 39.55 48.43 55.02 61.56 

360 9.23 13.52 16.36 19.95 22.61 25.25 

720 5.40 7.56 9.00 10.81 12.16 13.49 

1440 3.08 4.24 5.01 5.98 6.70 7.41 

 

GISSAOM_B1 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 29.39 39.40 46.03 54.41 60.62 66.78 

120 19.40 27.11 32.21 38.66 43.45 48.20 

360 8.13 11.05 12.99 15.44 17.25 19.05 

720 4.91 6.35 7.30 8.50 9.40 10.28 

1440 2.80 3.61 4.15 4.83 5.34 5.84 

 

MIROC3HIRES_A1B Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 28.29 39.68 47.22 56.74 63.81 70.82 

120 18.04 24.66 29.05 34.59 38.70 42.78 

360 7.86 10.31 11.92 13.97 15.48 16.99 

720 4.78 6.20 7.13 8.32 9.19 10.06 

1440 2.72 3.54 4.07 4.75 5.26 5.76 

 

MIROC3HIRES_B1 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 32.24 44.09 51.93 61.84 69.20 76.49 

120 20.89 30.13 36.26 43.99 49.73 55.43 

360 8.77 12.33 14.69 17.67 19.88 22.07 

720 5.17 6.88 8.01 9.44 10.50 11.56 

1440 2.98 3.91 4.53 5.31 5.89 6.47 

 

MIROC3MEDRES_A1B Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 27.16 39.84 48.24 58.85 66.72 74.54 

120 17.30 25.17 30.38 36.97 41.86 46.71 

360 7.75 11.26 13.58 16.51 18.69 20.84 

720 4.65 6.70 8.06 9.77 11.04 12.31 

1440 2.70 3.75 4.45 5.34 5.99 6.64 
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MIROC3MEDRES_B1 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 31.13 43.16 51.13 61.20 68.67 76.09 

120 19.90 27.66 32.79 39.28 44.09 48.87 

360 8.58 11.64 13.66 16.21 18.11 19.99 

720 5.15 6.77 7.83 9.18 10.18 11.17 

1440 2.94 3.78 4.35 5.05 5.58 6.10 

 

MIROC3MEDRES_A2 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 24.12 34.15 40.79 49.17 55.40 61.57 

120 15.18 20.15 23.44 27.59 30.67 33.73 

360 6.75 8.91 10.35 12.16 13.50 14.83 

720 4.28 5.59 6.45 7.55 8.36 9.17 

1440 2.49 3.20 3.66 4.25 4.69 5.13 

 

CCSRNIES_B21 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 40.08 57.19 68.52 82.84 93.46 104.01 

120 25.63 38.11 46.37 56.81 64.55 72.24 

360 10.93 15.56 18.62 22.49 25.36 28.21 

720 6.36 8.70 10.26 12.22 13.67 15.11 

1440 3.62 4.91 5.75 6.83 7.62 8.41 

 

CSIROMK2b_B11 Return Periods, T yrs 

Duration (min) 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

60 26.68 39.56 48.09 58.86 66.86 74.79 

120 17.63 26.21 31.89 39.08 44.40 49.69 

360 7.29 10.59 12.78 15.53 17.58 19.61 

720 4.19 5.89 7.02 8.45 9.51 10.56 

1440 2.35 3.25 3.85 4.60 5.16 5.71 
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APEPNDIX E: IDF Plots of Selected Scenarios 
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