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Executive Summary 

 

This study evaluates NCEP-NCAR reanalyses hydro-climatic data as an initial check for 

assessment of climate change studies and hydrologic modeling on the basin scale. Reanalysis 

data set for daily precipitation, and temperature from the National Centers for Environmental 

Prediction-National Center for Atmospheric Research (NCEP-NCAR) (a) global (NNGR) 

and (b) regional (NARR) reanalysis project are used as input into the semi-distributed 

hydrologic model (HEC-HMS) during the period of 1980-2005. First, the precipitation and 

temperature data are interpolated to selected stations to check for their trends and similarity 

in means and variances. Although NARR shows some over-estimated values, mainly in 

estimating temperature during the summer months, it has been able to capture the trends. 

NNGR, on the other hand, has produced inferior results in many cases, especially in 

generating precipitation when compared with the observed values.  With its improved 

atmospheric analytical ability, NARR appears to have performed better than the NNGR, 

suggesting that with coarse resolution NNGR may not be applied in climate change studies 

for medium or small watersheds. Next, an extensive analysis is performed for assessing the 

performance of the reanalysis data generated flows by comparing it with the observed inputs 

during May-November. The stream flows generated from the NARR dataset show 

encouraging results for simulating summertime low flows with less variability and error.  

NNGR dataset, have proven to be less accurate and highly variable. This study suggests that 

NARR can be adequately used as either an additional source of data or as an alternative to 

observations in data scarce regions.  
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1. Introduction 

1.1 Background 

Hydro-climatic impact refers to the change in near surface climate elements that impact 

human sustenance: precipitation, surface temperature, soil moisture and stream flow (Joseph and 

Nigam 2006; Nigam and Ruiz-Barradas 2006). Nonetheless, precipitation and temperature have 

been used as two main inputs into the hydrologic models. Changes in the precipitation patterns, 

combined with natural and anthropogenically-induced climate variations, have enormous 

ecological, societal and economic impacts. An increased near surface temperature, on the other 

hand, increases the evaporation rates and accelerates the transport of water vapour in the 

atmosphere and thus causes change in the hydrologic cycle.  

Analysis of river basins on the macro-scale aids in the quantification of global water cycle 

contributes to the knowledge of macro-scale hydrologic processes and assists in the coupling of 

atmospheric and hydrologic models to investigate the effects of global climate change 

(Haberlandt and Kite 1998). Despite substantial research efforts, present understanding of the 

local impacts of climate change and variability remain uncertain. Climatologists and hydrologists 

have faced challenges in understanding the link between climatic variability and stream flow. 

1.2 Problem Definition 

Analysis of hydro-climatic variability can provide an insight into the current climatic system, 

thereby supporting a wide range of scientific research studies and applications. These include an 

improved understanding of water budget and assessment of the state of the climate that 

ultimately leads to a satisfactory management of water resources and better emergency planning 
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for extreme events, e.g., floods and droughts (Silva, 2007). Hence, a well distributed hydrometric 

network is very important for capturing the present day climate situation. Unfortunately, progress 

in determining climatic  variability and change suffers due to several limitations: (i) lack of 

spatial coverage over areas of interest, especially in mountainous and many high latitude regions, 

(ii) inaccessibility of sufficiently long data records at daily timescales, (iii) periods of missing 

information, and (iv) lack of consistent, high resolution, quality controlled analyses.  

 As a result, data obtained from weather stations have limited value for the efficient analysis 

of the entire climate system in a region. Moreover, only a few studies have compared daily 

gridded dataset with observed ones (Silva et al 2007; Higgins at al 2007). The present report thus 

focuses on evaluating the performance of the global and regional reanalysis data for (a) climate 

change and (b) hydrologic modeling in the Upper Thames River basin. 

1.3 Reanalysis Project 

On the above instances, gridded databases, such as, data generated by atmospheric-ocean 

coupled global and regional climate models (e.g., AOGCMs and RCMs), and reanalysis data 

such as the National Center for Environmental Prediction – National Center for Atmospheric 

Research (NCEP-NCAR) Global Reanalysis – NNGR (Kalnay et al. 1996) And North American 

Regional Reanalysis – NARR (Mesinger et al. 2006) can be viable additions and/or alternatives 

to alleviate these limitations of limited and inconsistent data, missing information and spatial 

bias resulting from the uneven and unrepresentative spatial domain (Robeson and Ensor 2006; 

Ensor and Robeson 2008).  

The reanalyses are essentially diagnostic atmospheric models, which are used “in concert 

with observations via data assimilation” (Pielke 2002). The reanalysis data are advantageous 
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because they are based on the AOGCMs with a fixed dynamical core, physical parameterizations 

and data assimilation system (Castro et al 2007). A reanalysis is generally a model-run 

constrained by observations. The space and time resolution of the data generated through these 

reanalyses projects are independent of the number of observations, since the areas void of 

observations are filled with dynamically and physically consistent model-generated information. 

Although they provide datasets for any period of time, it is evident that their usefulness crucially 

depends on the quality and distribution of the observations in time and space. At the same time, 

it is important to note that to date, this is the most accurate way of interpolating data in time and 

space as well as a superior way to obtain dynamical consistency between different atmospheric 

variables. It is also more representative because it provides an opportunity to eliminate local 

effects, such as those caused by urbanization (Kalnay and Cai, 2003).  

For any specific region if only few observations are available, the constraints to set for the 

model is considered weak and the model produces datasets based on it’s own variability. When 

enough observations are available, the model is more forced to follow the observed variability 

rather than its own built-in variability. Assuming that different datasets have their own 

variability, there may be instances where at least one of the reanalyses products do not represent 

the correct scenario. Comparing results from at least two reanalyses may offer a more correct 

evaluation of their performances. If the results agree, the observational constraint can be 

considered large enough to force the models to follow the real variability of the atmosphere. 

Conversely, a difference in the results indicates weak constraints set for that spatio-temporal 

domain, thereby indicating that at least one of the products does not represent the correct 

variability. So, a difference in two reanalyses products indicates lack of spatial coverage (Sterl, 

2004). 
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With a satisfactory presentation of any region’s variability, these gridded daily datasets can  

often be used to initialize climatic, ecological or hydrological models (Jolly et al 2005; Kittel et 

al 2004; Ensor and Robeson 2008). More information on the Global and Regional Reanalysis 

project is available in Kalnay et al. (1996) and Mesinger et al. (2006). 

1.4 Outline of the report 

The report is comprised of the following sections: chapter 2 contains the literature review; 

chapter 3 explains the methods applied for the hydrologic modeling; Chapter 4 presents a 

detailed analysis of the results. Finally, chapter 5 describes the conclusions and future 

possibilities of application. 
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2. Literature Review 

 

Several studies have compared the global reanalysis precipitation and temperature data with 

other available databases at different locations around the globe. Neito et al. (2004) compared the 

NNGR data with ECHAM4/OPYC3 and HadCAM3 models to analyze the correspondences 

and/or the discrepancies within the observed winter precipitation data during 1949-2000 for the 

Iberian Peninsula. NNGR precipitation data effectively captured the spatial and temporal 

variability and showed a good agreement with the observed precipitation. Ruiz-Barradas and 

Nigam (2006) found a correlation coefficient of 0.99 when the NNGR data was compared with 

the observed summer precipitation to analyze the inter-annual precipitation variability over the 

Great Plains, United States. However, while Tolika et al. (2006) found an inferior agreement 

between NNGR and observations, they also found a closer inter-annual variability when NNGR 

was compared with the GCMHadAM3P data used in examining the suitability of the averaged 

distributions and the spatial and temporal variability of the winter precipitation in Greece. In 

many applications, the NNGR resolution appeared to be less satisfactory than the observed 

temperature and precipitation, especially in regions where a complex topography (Choi et al 

2009; Tolika et al, 2006; Rusticucci and Kousky, 2002; Haberlandt and Kite, 1998) due to led to 

a coarse resolution (250 km X 250 km) and physical parameterizations (Castro et al 2007).  

The recently released North American Regional Reanalysis (NARR) dataset, developed by 

Mesinger et al. (2006), designed to be “a long term, dynamically consistent, high-resolution, high 

frequency, atmospheric and land surface hydrology dataset for the North American domain”, is a 

major improvement upon the global reanalysis datasets in both resolution and accuracy. 

However, due to the fact that the NARR is a recent product, it has not been widely evaluated. 
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Nigam and Ruiz-Barradas (2006) have made an inter-comparison between two global [40 yr- 

ECMWF Re-Analysis (ERA 40) and NCEP] and regional (NARR) datasets to analyze the hydro-

climatic variability over the Eastern United States and found that the NARR data provided a 

realistic spatial variation of summer and winter precipitation.  

Most of the studies focused on the spatial distributions of the seasonal and/or inter-annual 

variability of hydro-meteorological data. There have been only a few studies relevant to 

hydrologic modeling. Woo and Thorne (2006) used temperature and precipitation data from the 

ERA 40, NNGR and NARR as input to a macro-scale hydrologic model to estimate the 

contribution of snowmelt to discharge in the Liard basin in the Subarctic Canada. They found (i) 

a cold bias resulting in later snowmelt peaks and (ii) that NARR provides a better representation 

of the relative flow contribution from different sections of the basin. Thorne and Woo (2006) 

also applied three sets of climate data: (i) in-situ data from weather stations, (ii) NCEP/NCAR 

Global reanalysis data, and (iii) weather forecast data produced by the Canadian Meteorological 

Centre (CMC) as inputs to a Semi-distributed Land Use-Based Runoff Processes (SLURP) 

model that was used to both  simulate stream flow and to examine how the simulated flow for 

different parts of the basin relates to the measured discharge available for several sub-basins 

within the Liard sub-catchment. Choi et al. (2007; 2009) evaluated the monthly and daily 

reanalysis datasets to examine their potential as an alternative data source for hydrologic 

modeling in Manitoba. Their study revealed a satisfactory performance of the temperature data, 

but a weaker performance of the precipitation data. The study also found a superior performance 

of the NARR precipitation values when compared to that of their NNGR counterparts. Castro et 

al. (2007) applied 53 years of NNGR data with dynamic downscaling using the Regional 

Atmospheric Modeling System (RAMS) to generate regional climate model (RCM) climatology 
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of the contiguous US and Mexico. They compared the RAMS simulated data with that of the 

NARR, the observed precipitation and temperature data, and found a good agreement of the 

NARR data in some parts of the Great Plains. Zhang et al. (2008) applied NNGR data to 

investigate spatial and temporal patterns of the trends of precipitation maxima in the Yangtze 

River basin and found a significant increase in the summer precipitation intensity and changing 

rainfall frequency in the middle and lower reaches of Yangtze River.  

The literature cited above clearly indicates the potentiality of the reanalysis data set to be 

used in hydrologic modeling and/or climate change for studies to replicate the current climate 

regime. The present study is conducted to evaluate the applicability of the global and regional 

reanalysis temperature and precipitation data for hydrologic modeling in the Upper Thames 

River (UTR) basin in Southwestern Ontario, Canada. The quality of the NNGR and NARR data 

is examined by applying them to a semi-distributed rainfall-runoff model based on the 

mechanism of Hydrologic Engineering Center’s Hydraulic Modeling System (HEC-HMS) 

within the basin and then analyzing the performances of the generated output during May-

November. This is, an important step towards examining the impact of climate change on water 

resources with the expectation that if a reanalysis data-driven hydrologic model is successful, it 

can be used interchangeably with station data to validate AOGCMs as a reference baseline in 

deriving the hydrologic impacts of climate change in the study area.   
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3. Methodology 

3.1 Study Area 

The Upper Thames River (UTR) basin (Figure 1) (42
0
35’24’’N, 81

0
8’24’’W), located in 

Southwestern Ontario, Canada, is a 3,500 km
2
 area nested between the Great Lakes Huron and 

Erie. The basin often experiences major hydrologic hazards, such as floods and droughts. The 

basin has a well documented history of flooding events dating back to the 1700s (Prodanovic and 

Simonovic 2006).  

 

 

 

 

 

 

 

 

 

 

Figure 1: Map of the Upper Thames River Basin 
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High flows occur mostly in early March after snowmelt, and then again in July and August as 

a result of summer storms. Khaliq et al (2008) reported that in the Canadian regime, low flow 

conditions show a seasonal behaviour: summer low flow between June to November and winter 

low flow during the December and May periods.  The UTR basin experiences frequent low flow 

conditions between June and September (Prodanovic and Simonovic 2006).  

The population of the basin is 450,000 (2006), of which 350,000 are the residents of the City 

of London. The Thames river basin consists of two majors tributaries of the river Thames: the 

North Branch (1,750 km
2
), flowing southward through Mitchell, St. Mary’s, and eventually into 

London, and the South Branch (1,360 km
2
), flowing through Woodstock, Ingersoll, and east 

London. The Upper Thames River basin receives about 1,000 mm of annual precipitation, 60% 

of which is lost through evaporation and/or evapotranspiration, stored in ponds and wetlands, or 

recharged as groundwater (Prodanovic and Simonovic 2006). Several weather stations around 

the basin provide point measurements of weather variables including daily temperature and 

precipitation. Unfortunately, over the years only a few studies have been conducted for the 

purpose of making a reliable database and providing an adequate spatial coverage of variable 

climatic conditions within the basin. The spatial distribution of the weather stations is also 

sparse, especially in the west side of the basin, and does not cover the entire basin (Figure 2). 

3.2 Data Description 

For comparison, the following data sources were taken into account: 
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3.2.1 Observation 

Daily observed precipitation and temperature data covering the UTR basin (Table 1 and 

Figure 2) for the period of 1980 – 2005 has been collected from Environment Canada 

(http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html).  

 

3.2.2 NCEP-NCAR Global Reanalysis (NNGR) 

 The NCEP-NCAR Global Reanalysis (NNGR) is ‘an assimilated dataset using a state-of-

the-art analysis/forecast system and past data since 1948’ (Kalnay et al. 1996). One interesting 

feature of the data set is that there are no precipitation estimates of sufficient spatial resolution or 

length, and hence no station precipitation data are assimilated directly into the model (Reid et al. 

2001). It is provided 4 times daily at 6 hour interval, daily and monthly values of over 80 

climatic variables on 2.5° × 2.5° grid. The global reanalysis data for this project is made 

available through the Physical Sciences Division of the Earth System Research Laboratory of the 

National Oceanic and Atmospheric Administration (NOAA) 

(http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html).

http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html
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Table 1: Weather Stations in Upper Thames River Basin 

 

Data source: National Climate Data and Information Archive of Environment Canada                              

(http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html) 

 

3.2.3 North American Regional Reanalysis (NARR) 

 The NARR is an extension of the global reanalysis, which uses a very high resolution 

Eta model (0.3° × 0.3°, 32 km grid spacing, 45 layers) spatially) with the Regional Data 

Assimilation System (RDAS). Most of the variables are collected 8 times daily; daily and 

monthly means are also available at 29 pressure levels.  Unlike its global counterpart, the 

NARR dataset has been developed by assimilating high quality and detailed precipitation 

observations into the atmospheric analysis, which consequently made the forcing to the land 

surface model component of the system more accurate. As such, a much improved analysis 

of land hydrology and land-atmosphere interaction has been become possible (Nigam and 

Ruiz-Barradas 2006). However, one significant weakness of the NARR data when applied in 

Canadian regions is that the daily gauge-based data it uses for assimilation is sparse (1 degree 

grid), which is may be insufficient for the model to perform as expected 

Seria

l 

Station 

Name 

Location  

Variables Latitude 

(
0
N) 

Longitude 

(
0
W) 

Elevation 

(m) 

1 Blyth 43.72 81.38 350.50 Prec, Tmax, Tmin, Tmean 

2 Dorchester 43.00 81.03 271.30 Prec 

3 Exeter 43.35 81.50 262.10 Prec, Tmax, Tmin, Tmean 

4 Foldens 43.02 80.78 328.00 Prec, Tmax, Tmin, Tmean 

5 Glen Allan 43.68 80.71 400.00 Prec, Tmax, Tmin, Tmean 

6 London A 43.03 80.15 278.00 Prec 

7 St. Thomas 42.78 81.17 209.10 Prec, Tmin, Tmean 

8 Stratford 43.37 81.00 345.00 Prec, Tmax, Tmin, Tmean 

9 
Waterloo-

Wellington 
43.46 81.38 

317.00 Prec, Tmax, Tmean 

10 Woodstock 43.14 80.77 281.90 Prec, Tmax, Tmin, Tmean 

11 Wroxeter 43.86 81.15 335.00 Prec 
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(www.emc.ncep.noaa.gov/mmb/rreanl/narr.ppt). NARR data for this study has been made 

available through the Data Access Integration of the Canadian Climate Change Scenarios 

Network of Environment Canada.  

In order to assess the reanalysis data, the daily accumulated precipitation rate and the 

daily maximum, minimum and mean temperatures have been considered. Data for each 

variable has been collected for the period 1980 – 2005. The NNGR and NARR precipitation 

rate (kg m
-2

 s
-1

) data has been converted to the daily total (mm day
-1

). As suggested by Reid 

et al. (2001) and Choi et al. (2007), precipitation values less than 0.5 mm/day
-1

 have been 

considered zero in order to compare with the observed precipitation.   

Figure 2 and Table 1 present the details of 11 stations located within and around the 

Upper Thames river basin. Some parts of the basin are poorly covered due to the lack of 

weather stations in those areas. In some cases, stations are missing records over several 

months of the entire study period. For any station with more than 15% of missing records for 

a specific month, that month has been eliminated from both station and reanalysis datasets in 

order to maintain consistency.  

 

 

 

 

 

 

 



13 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Location of the Weather Stations, NNGR and NARR Grid Points within the Upper 

Thames River Basin 

3.3 Continuous Hydrologic Model 

The continuous based hydrologic model captures land based physical processes of the 

hydrologic cycle (Bennett 1988). It takes the soil moisture balance into consideration over a 

long term period and is useful mostly for simulating the daily, monthly and seasonal rainfall 

runoff processes for the basins with a large amount of pervious lands (Ponce 1989). The 
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continuous model needs detailed information of long term moisture losses due to evaporation 

and evapotranspiration. A typical continuous hydrologic model constitutes a combination of 

methods to describe conversion of excess rainfall into direct runoff, baseflow, 

channel/reservoir routing, together with losses due to movement of water through vegetation, 

surface, soil and ground water (Ponce 1989). The continuous hydrologic model component 

used in this study is based on the United States Army Corps of Engineers, Hydrologic 

Engineering Center’s Hydrologic Modeling System (HEC-HMS).  

The HEC-HMS is designed for rainfall-runoff modeling for solving a wide range of 

problems at diverse geographic locations, although most of its applications have been limited 

to North American basins. HEC-HMS has been successfully used for around three decades 

and is recognized by the hydrologic community (Prodanovic, 2008). The model consists of 

three modules: (i) meteorologic module (which includes methods describing precipitation 

and/or evaporation); (ii) basin module (consisting of methods describing the physical 

properties of a catchment); and (iii) control module (where start and end times of a 

simulation are specified). The meteorologic and basin modules consist of a collection of 

methods allowing the user to specify and describe climatic and physical properties of the 

basin. For example, different loss methods (i.e., representing evaporation and/or 

evapotranspiration) are available depending on whether  the user wishes to study the short 

(event) or long (continuous) term hydrologic characteristics of the basin. Detailed 

information about the structure of the model is available in USACE (2006). 
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3.4 Model Setup 

The hydrologic model applied to the Upper Thames River basin is described in Cunderlik 

and Simonovic (2004, 2005). Figure 3 presents the model structure with each box 

representing each module that captures physical processes acting in the basin.  

The snow module: Precipitation and temperature from various sources are used as inputs 

in the hydrologic model. The regularly spaced reanalysis database is interpolated to the 

irregularly spaced sub-catchments within the basin that take precipitation as input. In this 

study, the Inverse Distance Weighting (IDW) method has been used for interpolating 

precipitation and temperature reanalysis data from their respective grids to station grids. This 

method is widely used and recommended by the United States Army Corps of Engineers 

(Prodanovic and Simonovic 2007).  The interpolated precipitation and temperature data is 

integrated into the snow module to separate the solid (snow) and liquid (rainfall) forms of 

precipitation. The snow module uses the meteorological data to compute snow accumulation 

and melt by degree-day method (Cunderlik and Simonovic 2004). The interpolated sub-basin 

precipitation and temperature values are separated into their solid and liquid forms of 

precipitation in the snow module. The snowfall is subjected to an accumulation and melt 

algorithm and produces snowmelt. It is then added to the liquid precipitation (or rainfall) and 

thus produces a new variable: ‘adjusted precipitation’. The following sets of equations are 

used in this process:  
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Figure 3: Flow Chart of Continuous Hydrologic Modeling using Reanalyses Data 
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The measured amount of precipitation (mm/day)    is categorized as rain and snow by the 

following equation:  

     

    
}         ……………………………………. (3.1) 

      [
       

       
]

        

}               …………………(3.2) 

    
     

}         ……………………………………..(3.3) 

Where,          represent the measured amount of snow and rain, respectively (mm/day), 

            represents number of days with precipitation, while            and 

          refer to the minimum and maximum temperature for snowfall and snowmelt, 

respectively.   

The snowmelt is then subjected to an accumulation and melt algorithm and is eventually 

converted into snowmelt. The daily amount of snow melt is calculated as: 

              …………………………………….. (3.4) 

Where    represents a parameter for melt rate (mm/
0
C/day) set to 4.0.    is a critical 

parameter for melt and is set to zero.  

Previously obtained snowmelt is then accumulated with the converted snowmelt by the 

following equation: 
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          …………………………………………… (3.5) 

If snowmelt occurs (i.e. if      ) and if the accumulated snowmelt       , implying 

that only a portion of the accumulated snow melts, it  is represented by: 

         ……………………………………………... (3.6) 

        ……………………………………………… (3.7) 

Where,    represents adjusted precipitation [mm/day].  

If all accumulated snow melts,  

        ……………………………………………… (3.8) 

Lastly, if no snowmelt takes place, 

           …………………………………………………....(3.9) 

The loss module: The adjusted precipitation is further used as input into the precipitation loss 

module to obtain losses. Among the different methods of calculating losses available in HEC-

HMS, the five layer soil moisture accounting (SMA) algorithm, developed by Leavesley et al. 

(1983), is chosen for continuous modeling of complex infiltration and evapotranspiration 

environments. The loss module is the most complicated component as it simultaneously takes a 

large number of processes into consideration.  
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 Figure 4: HEC-HMS Continuous Hydrologic Model at Upper Thames River Basin  

 

The losses module (Figure 4) uses a series of conceptual reservoirs to represent the storage 

and movement of water in each sub-catchment of the basin. The storage reservoirs are: (i) 

canopy interception; (ii) surface interception; (iii) soil profile; and (iv) a number of ground water 

Legend: 

Junctions (JR)                                                          

Reservoirs   

Sub-basins 

Sink 
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layers (only two shown here). The inflow and outflow rates between the reservoirs regulate the 

amount of water stored in each conceptual reservoir. These include evapotranspiration, 

infiltration, percolation, surface runoff and ground water flow. 

The canopy storage layer includes the precipitation captured by vegetation (such as trees, 

shrubs, bushes, grasses, etc); furthermore, precipitation is the only inflow that can fill this storage 

volume. When precipitation occurs, it fills this storage layer first, provided it is not already at 

capacity. The only process that can remove the moisture out of this layer is the process of 

evapotranspiration. After filling the canopy layer, precipitation begins to fill the surface storage, 

and/or to infiltrate into the soil. The surface storage layer represents the volume of water held by 

shallow depressions and cracks on the ground surface. The storage of water in this layer (in 

addition to precipitation excess from the canopy) is capable of infiltrating the soil, provided the 

soil is not fully saturated. The inflow to the surface storage layer refers to water that does not 

infiltrate the soil layer; it is a combination of the precipitation excess from the canopy layer, and 

its own volume that is left over after infiltration has taken place. The outflow from this layer 

consists of evaporation and surface runoff. Surface runoff refers to the flow produced when the 

surface storage layer is at capacity, and thus it cannot absorb water that has not already been  

infiltrated. During large precipitation events, the canopy and surface storage layer fill quickly, 

thus producing high amounts of surface excess (as infiltration alone is not usually sufficient for  

absorbing all surplus precipitation). The soil profile storage corresponds to the top layer of the 

soil. Water that infiltrates is the only inflow to this layer, while the outflows represent 

percolation to the lower ground water layer and evapotranspiration. The soil storage is further 

divided into two zones: the upper zone and the tension zone. The former is that portion of the 

soil layer that can lose water to both percolation and evapotranspiration, while the latter is one 
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that loses water only through evaporation, but not percolation (Bennett, 1998). This is because 

the upper zone represents water held in the pores of the soil (which can freely percolate and/or 

evaporate), while the tension zone constitutes water held by capillary tension, thus making it 

difficult to flow and move but can evaporate. It should be mentioned that evapotranspiration 

rates from the soil vary, as it is more difficult to remove water held by capillary tension than 

water held between the pores of the soil.   

Evapotranspiration is the process that removes moisture from canopy, surface, and soil 

profile storage. In the Soil Moisture Accounting algorithm, evapotranspiration can only occur 

during periods free of precipitation. Potential evapotranspiration is calculated based on 

maximum regional monthly evapotranspiration rates (specified by the user), multiplied by a pan 

coefficient. Actual evapotranspiration rates are realized through a loss of moisture, first from the 

canopy, second from the surface, and lastly from the soil storage. However, actual 

evapotranspiration rates can never exceed their potential value. The water that percolates from 

the soil profile storage is used as an input to the ground water layer immediately beneath it. The 

outflows from this layer represent the ground water flow (one that is returned to the stream 

channel as baseflow), and a further percolation to either another ground water layer or as deep 

percolation— representing water entering a deep aquifer. 

The equations for the Soil Moisture Algorithm are well documented and can be found in Bennett 

(1998). 

Transform and Routing Modules: The transfer module uses Clark’s Method (USACE 2006) 

to convert the surface excess obtained from the SMA algorithm into the direct runoff. The 

resultant surface runoff is joined with the baseflow to produce direct runoff. The direct runoff is 

then added into the flood routing module to calculate the generation of a flood wave by using 
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modified plus method ultimately producing channel stream flow (USACE 2006). A series of 

linear reservoir method is used to transform lateral ground water flow (obtained from SMA 

algorithm) into baseflow.  

The hydrologic model applied to the Upper Thames River basin has been properly calibrated 

and verified with extensive sensitivity analyses [Cunderlik and Simonovic (2004, 2005)]. The 

model consists of thirty-two special units, twenty one river reaches and three flood control 

reservoirs (Wildwood, Fanshawe and Pittock) (Figure 4). Each sub-basin in Figure 4 is 

represented by rectangles and is provided with interpolated reanalyses data. The outputs of each 

sub basin are flow hydrographs joined by junctions (circles) where the flows are added together. 

River reaches represent the major rivers and streams in the basin and are shown as thick lines 

connected between two junctions. The routing module described above is applied to each river 

reach, and thus acts as a passage of a flood wave as it moves through the river system. Reservoirs 

are depicted as triangles and the same routing rules are applied here. 

 The model is seasonal in nature with different parameters referring to the summer and winter 

seasons. The parameter sets for the summer and winter seasons are presented in Cunderlik and 

Simonovic (2004) and Prodanovic and Simonovic (2007). 

3.5 Performance Evaluation and Uncertainty Estimation 

Quantitative assessments of the degree to which the simulated data match the observed data 

are used to provide an evaluation of the model’s predictive abilities. It utilizes numerous 

statistics and techniques. Goodness–of-fit (correlation coefficient, r and coefficient of 

determination, R
2
) or relative error measurements are mostly used to assess the ability of the 

model. Unfortunately, they only describe the degree of collinearity between the observed and 
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predicted values and provide a biased presentation of the efficiency of the model (Willmott 1981; 

Willmott et al. 1985; Kessler and Neas 1994; Legates and Davis 1997). Furthermore, they are 

oversensitive to extreme values and insensitive to additive and proportional differences between 

predicted and observed values (Legates and McCabe 1999). As a result, other statistics such as 

absolute error measures (root mean square, RMSE or mean absolute error, MAE) in terms of the 

units of the variables are developed to examine the association between observed and simulated 

data. In order for a complete assessment of the model performance, it is important to include at 

least one goodness-of-fit measure (r or R
2
) and at least one absolute error measures (RMSE or 

MAE) along with additional supplemental information such as a comparison between the 

observed and simulated mean and standard deviations (Legates and McCabe 1999; Willmott et 

al. 1985). In this study, apart from RMSE, MAE and r, normalized mean square (NMSE) and 

relative bias have also been used to assess the accuracy of the estimates. The NMSE measures 

the average magnitude of the errors in the predicted dataset without considering their direction, 

whereas the relative bias provides the deviation of the simulations from observations.  

Because of the existing model and data errors, it is necessary to use appropriate criteria for 

estimating the relevant uncertainties (Sorooshian et al. 1993). In this study, only data uncertainty 

arising from the (i) inconsistency and non-homogeneity and (ii) inadequate representation of the 

reanalysis data due to space and time limitations has been assessed. The Probability Density 

Function (PDF) provides the most complete and ideal description of uncertainty. However, in 

most practical problems such a probability function cannot be derived precisely (Tung 1996). 

Another well known approach to characterize uncertainties is to express it in terms of a 

reliability domain, such as the confidence interval or quartile plot with some specific 

probabilistic confidence. The estimation of uncertainties in terms of the model errors and 
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quartiles around the mean and variances has been conducted by several authors for the purpose 

of analysis (Khan et al. 2006). However, the confidence interval has inherent limitation due to 

it’s inability to directly combine the confidence intervals of individual contributing random 

components to provide an overall confidence interval of the system (Tung 1996). Hence, a useful 

alternative is used by calculating the variance and mean, as a measure of   the dispersion of the 

variable of interest. In this study, the uncertainty in the simulated discharges has been assessed in 

terms of model errors and percentile plots in the estimates of mean and variances. The process 

consists of several steps. Twenty six years of daily discharge during May-November obtained 

from the observed, NNGR and NARR hydro-climatic data have been taken into consideration. 

At first, the presentation of the uncertainties has been plotted using box and whisker plots where 

the bottom and top end of the box indicate the 1
st
 quartile (25

th
 percentile) and 3

rd
 quartile (75

th
 

percentile) of the dataset for the low flows during May-November, with their median in between. 

This is a common approach for assessing the data quality and model capability and has been used 

by Prodanovic (2008) and Sharif and Burn (2006). Next, errors in the estimates of means and 

variances of low flows have been evaluated using a non-parametric statistical hypothesis test at a 

95% confidence interval. One of the best non-parametric methods for constructing a hypothesis 

test p value for the difference of two population means is the Wilcoxon rank-sum test (Khan et 

al. 2006). It is used to check if the two sets of observations come from the same distribution. For 

hypothesis testing, both samples are combined into a single ordered sample and ranks are then 

assigned to the sample values from smallest to the largest, irrespective of the source of the 

samples. A smaller sum of the samples provides the indication that the values of that specific 

population tend to be smaller than the other population and hence, the null hypothesis of no 

differences between populations may be rejected (Conover, 1980). The second test to be applied 
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is the modified version of Levene’s test (Levene 1980) for testing the equality of two sample 

population variances as proposed by Brown and Forsythe (1974). This method considers the 

distances of the observations from their sample median rather than their sample mean, which 

makes the test more robust with data following a skewed distribution.  
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4. Results and Discussion 

 

The analyses of the results are divided into two parts: Firstly, the performances of the 

temperature and precipitation data interpolated to the stations around the Upper Thames River 

basin from the NNGR and NARR datasets are examined; Secondly, a trend analysis has been 

performed to see whether the reanalysis dataset is capable of capturing the yearly temperature 

trend of the observations. Student’s t and F tests are performed to check for the similarity of 

means and variances for both data types with respect to observations. Next, changes in 

temperature anomalies over the years are compared. For precipitation, the performances of both 

datasets have been analyzed in terms of goodness-of-fit. The cumulative precipitation of selected 

stations during the year of 2000 is computed.  

The second part of the analysis contains an evaluation and comparison of the daily discharge 

generated by the HEC-HMS model. The results for three stream gauges within the basin: Byron, 

Ingersoll and St. Mary’s are presented.  First, performances of the NNGR and NARR inputs into 

the hydrologic model have been compared with the statistical goodness-of-fit measures: the root 

mean square error (RMSE), correlation coefficient (r), normalized mean squared error (NMSE), 

mean absolute error (MAE) and relative bias (RB). The outputs (daily discharge) have been 

assessed by flow comparison graphs, scatter plots and confidence interval plots. Because of the 

existing model and data errors, it is necessary to use appropriate criteria for estimating the 

relevant uncertainties (Sorooshian, 1993). In this study, only data uncertainty arising from (i) the 

inconsistency and non-homogeneity and (ii) the inadequate representation of the reanalysis data 

due to space and time limitations has been assessed. The errors arising from the data sources are 

evaluated by estimating the means and variances. 



27 
 

4.1 Reanalyses Data Performance Results  

 

The abilities of the NNGR and NARR to capture the inter-annual variability of temperature 

and precipitation are presented in this section on a station-by-station basis. These stations are 

situated within and around the Upper Thames River basin.  

 

4.1.1 Temperature 

Table 2 presents the quality of daily temperature data from NNGR and NARR with respect to 

the observations in terms of bias and correlation. Correlations are above 0.95 in the case of both 

datasets, which indicates that the values are closer to the observations in terms of goodness-of-

fit. For all stations, the biases between the datasets are within 20%.   

 

Table 2: Comparison of Mean Daily Temperature from Observations and Reanalyses Data for 

1980-2005 

 

 

 

 

 

 

 

 

Figure 5 presents mean monthly temperature at selected stations in the basin. Both reanalysis 

datasets demonstrate a tendency to over-estimate the observed values, especially during summer. 

Stations 

 

Mean 

 

Mean Bias Correlation 

Observed NNGR NARR NNGR NARR NNGR NARR 

Exeter 7.76 8.18 9.25 5.46 19.25 0.98 0.97 

Foldens 7.93 8.43 9.21 6.42 16.15 0.98 0.98 

Glen Allan 6.70 7.97 7.72 19.00 15.31 0.98 0.98 

St. Thomas 8.60 8.59 9.32 -0.18 8.33 0.98 0.97 

Stratford 7.42 8.26 8.48 11.39 14.30 0.98 0.98 

Waterloo-Wellington 6.96 8.13 8.62 16.87 23.81 0.98 0.98 

Woodstock 7.77 8.37 8.70 7.69 11.96 0.98 0.98 
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NNGR has repeatedly under-predicted temperature during early spring and winter, thereby 

indicating higher biases. Except spring and summer, they seem to be in fairly close agreement 

with observed temperature. NNGR shows a comparatively higher degree of consistency during 

late spring and fall. Although NARR overestimates throughout the year, it has been able to 

capture the monthly trend for all stations with a bias within 20%, except for March where biases 

are very high. Except for the above discrepancies, the agreement confirms the findings from 

previous studies and shows that both NNGR and NARR satisfactorily capture the observed intra-

seasonal and annual fluctuations (Kalnay and Cai, 2003, Kalnay et al., 2006, Pielke et al., 2007). 

Next, statistical tests are performed on the monthly temperature to determine whether the 

reanalyses data produces monthly climatological data and yearly trends that are representative of 

the true climatology and trends. To test the null hypothesis that the reanalysis and observations 

render consistent monthly means and variances, student’s t test and the F test are performed. If 

the test indicates a rejection of the null hypothesis at the p=0.05 level, then the means or 

variances are considered to be statistically different. This procedure uses the null hypothesis that 

the difference between two population means is equal to a hypothesized value             . 

For the purpose of the test, the following hypotheses are established: 

              (the mean temperature from both observations and NNGR (G) or NARR 

(R) are equal) 

             (the mean temperature from both observations and NNGR (G) or NARR 

(R) are different) 
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Figure 5: Mean monthly temperature between observed (EC) and NNGR/NARR 

 

 

Figure 5: Mean Monthly Temperature between Observed (EC) and NNGR/NARR 
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Table 3 (a) presents the student’s t test static results for the similarity of means, assuming 

equal variances for all three datasets. The results are presented in terms of the estimates of 

differences between the observed and NNGR/NARR means, the 95% confidence interval for 

the differences and the hypothesis results (t and p values). Confidence intervals are calculated 

for the selected stations. The range includes 0 values suggesting that there are no differences 

in means. The probability (p) values for all cases are greater than the chosen α level (0.05), 

which indicates that there is no evidence of  a different mean in the three datasets.  

The t test performed above assumes equal variances for all datasets to be tested. It is 

more powerful than the unequal variance assumptions, but can result in serious errors if the 

variances are not equal. Therefore, it is important to test whether the variances of all datasets 

are equal. Accordingly F tests are subsequently performed to determine whether the 

variances of two different datasets are significantly different. This procedure uses the null 

hypothesis that the two variances are equal, i.e.       
    

        

The following hypotheses are thus established: 

      
      

  (the observations and the NNGR (G) or NARR (R) have equal variances ) 

      
      

  (the observations have variances less than the NNGR (G) or NARR (R)) 

Table 3 (b) presents the hypothesis test results of the F test for both reanalyses datasets. 

Like the t test results, the p values for the F test also appear to be greater than 0.05, which 

fails to reject the null hypothesis of the variances being equal. Thus, it is reasonable to 

assume that the observations and NNGR/NARR have equal variances in F test. 
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Table 3(a): t Test Static Results for Mean Monthly Temperature during 1980-2005 

 
 

Station 

Modified t-Test Static 

Difference 
95% CI for 

differences 
T p Difference 

95% CI for 

differences 
T p 

NNGR NARR 

Woodstock -0.597 (-2.154, 0.960) -0.75 0.452 -0.597 (-2.154,0.960) -0.75 0.452 

St. Thomas 0.016 (-1.511, 1.543) 0.02 0.983 -0.71 (-2.229, 0.810) -0.92 0.359 

Folden -0.509 (-2.069, 1.051) -0.64 0.522 -1.275 (-2.852, 0.302) -1.59 0.113 

Exeter -0.424 (-1.992, 1.143) -0.53 0.595 -1.484 (-3.074, 0.106) -1.83 0.067 

Glen Allan -1.274 (-2.858, 0.310) -1.58 0.115 -1.02 (-2.618, 0.577) -1.25 0.21 

Stratford -0.844 (-2.399, 0.712) -1.07 0.287 -1.052 (-2.635, 0.531) -1.3 0.192 

Waterloo-

Wellington 
-1.174 (-2.738, 0.391) -1.47 0.141 -1.649 

(-3.241, -

0.057) 
-2.03 0.042 

 
 

 

Table 3(b): F Test Static Results for Mean Monthly Temperature during 1980-2005 

 

 

Station 

F test static 

Test static P value Test static P value 

NNGR NARR 

Woodstock 1.71 0.191 2.74 0.099 

St. Thomas 3.49 0.062 3.36 0.067 

Folden 1.05 0.437 2.01 0.157 

Exeter 2.54 0.112 4.17 0.052 

Glen Allan 1.45 0.23 1.63 0.203 

Stratford 2.85 0.092 4.98 0.06 

Waterloo-

Wellington 
2.97 0.085 4.97 0.06 

 

 

 A trend analysis has also been tested to determine whether the reanalyses database is 

consistent with the true trend based on the observations. Although reanalysis trends cannot 

provide reliable estimates of the true atmospheric trends, it is important to check whether the 

distribution of the reanalyses trends provide a reasonable representation of the expected 

range of atmospheric trends. Comparison of yearly temperature trends in Table 4 shows that 

in case of NNGR, for all stations but Exeter, a weak negative trend per year (-0.0085 to -

0.1577) is prominent indicating a slow cooling trend. It is just opposite of the observations. 
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NARR, on other hand, has been able to capture the increased temperature trend with less than 

25% error except for Exeter.  

 

 

Table 4: Comparison of Trend Analysis Results for 1980-2005 

 

Station 
Trends 

Observed NNGR NARR % Bias NNGR % Bias NARR 

Folden 0.0452 -0.0085 0.0525 -118.81 16.15 

Glen Allan 0.0356 -0.005972 0.0443 -116.78 24.44 

Exeter 0.0543 0.0011 0.0334 -97.97 -38.49 

Stratford 0.0611 -0.007048 0.0495 -111.54 -18.99 

St. Thomas 0.0456 -0.006348 0.0556 -113.92 21.93 

Waterloo-Wellington 0.0341 -0.003548 0.0361 -110.40 5.87 

Woodstock 0.0428 -0.01577 0.0407 -136.85 -4.91 

 

 

Next, temperature anomaly charts are compared (Figures 6 a through c) for the summer 

(June-July-August) and winter (December-January-February) months to check the yearly 

differences that obtain during the period of 1980-2005. The values below 0 represent the 

years when the mean temperature was underestimated by the reanalysis data, whereas the 

values above 0 years represent the years in which the temperatures were over-estimated. 

Anomaly charts are particularly useful to assess the magnitudes of temperature changes. The 

results from different stations are consistent with the evaluated performances shown above 

which indicate an over-prediction during summer months and variable predictions during 

winter.  
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Figure 6 (a): Changes in Temperature Anomalies over Woodstock during June-July-August and December-January-February during 

1980-2005 
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Figure 6 (b): Changes in Temperature Anomalies over St. Thomas during June-July-August and December-January-February during 

1980-2005 

20032000199719941991198819851982

4

2

0

-2

-4

-6

-8

Year

T
e

m
p

e
ra

tu
re

 A
n

o
m

a
lie

s
 (

d
e

g
C

) 
D

e
c

NNGR

NARR

St. Thomas

20032000199719941991198819851982

5.0

2.5

0.0

-2.5

-5.0

Year

T
e

m
p

ra
tu

re
 A

n
o

m
a

lie
s
 (

d
e

g
C

) 
Ja

n

0

NNGR

NARR

St. Thomas

20032000199719941991198819851982

5.0

2.5

0.0

-2.5

-5.0

Year

T
e

m
p

e
ra

tu
re

 A
n

o
m

a
lie

s
 (

d
e

g
C

) 
Fe

b

0

NNGR

NARR

St. Thomas

20032000199719941991198819851982

4

3

2

1

0

-1

-2

Year

T
e

m
p

e
ra

tu
re

 A
n

o
m

a
lie

s
 (

d
e

g
C

) 
Ju

n
e

0

NNGR

NARR

St. Thomas

20032000199719941991198819851982

5

4

3

2

1

0

-1

-2

Year

T
e

m
p

e
ra

tu
re

 A
n

o
m

a
lie

s
 (

d
e

g
C

) 
Ju

ly

0

NNGR

NARR

St Thomas

20032000199719941991198819851982

6

5

4

3

2

1

0

-1

-2

Year

T
e

m
p

e
ra

tu
re

 A
n

o
m

a
lie

s
 (

d
e

g
C

) 
A

u
g

0

NNGR

NARR

St. Thomas



35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 (c): Changes in Temperature Anomalies over Folden during June-July-August and December-January-February during 1980-

2005  
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Table 5: Comparison of Mean Daily Precipitation from Observations and Reanalyses Data 

for 1980-2005 

 

4.1.2 Precipitation 

Precipitation, generally have higher variances than temperature and is more difficult to 

simulate. Table 5 presents the statistics of mean daily precipitation calculated for selected 

stations around the Upper Thames River basin. The variance within the observed 

precipitation ranges from 64.48 to 78.03, while the variance of NNGR varies from 24.67 to 

45.79.  

The and mean bias from NNGR varies between -15.81% and -32.10% with respect to 

observations, suggesting that it is not  able to capture the variability of the precipitation in the 

region. For NARR, the variance is much higher with values ranging between 29.47 and 71.33 

and a mean bias of -5.75 to -31.64%. 

The correlation values are much lower than the temperature, and they also show greater 

variability by station. The correlation values between observation and NNGR is also below 

0.4 except for London station. While for NARR, the correlation appeared higher than the 

NNGR which implies a higher station-to-station correlation around the grid points in terms of 

Station 

  

  

Mean 

  

  

Variance 

  

Mean Bias Correlation 

Obs NNGR NARR Obs NNGR NARR NNGR NARR NNGR NARR 

Dorchester 7.76 6.53 7.17 75.00 30.00 67.68 -15.81 -7.64 0.36 0.48 

Blyth 8.77 5.95 5.99 73.91 24.67 43.43 -32.10 -31.64 0.33 0.40 

LondonA 7.95 6.00 6.46 78.03 45.79 29.47 -24.52 -18.71 0.50 0.50 

Exeter 7.96 6.11 6.23 65.60 25.73 46.17 -23.25 -21.73 0.35 0.42 

Foldens 7.99 6.69 6.93 75.28 31.83 62.92 -16.28 -13.22 0.36 0.51 

Glen Allan 7.29 6.12 6.84 64.48 25.54 56.06 -16.07 -6.11 0.37 0.46 

St. Thomas 8.28 6.47 6.03 77.21 29.68 44.33 -21.89 -27.23 0.32 0.48 

Stratford 7.80 6.32 7.35 59.81 27.35 71.33 -18.98 -5.75 0.37 0.45 

Woodstock 8.19 6.62 7.15 76.65 31.03 68.13 -19.22 -12.78 0.37 0.51 
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the goodness-of-fit measure. The inter-station variability in the mean bias and correlation 

may be related to the individual station locations with respect to local geographic features.  

Figures 7 (a), (b), and Appendix A present the cumulative daily precipitation graphs of 

NARR and NNGR at different stations for the year 2000. In Stratford, Woodstock and 

Waterloo-Wellington, NARR is fairly close to the observed precipitation. In London, 

however, NNGR data perform slightly better. Interestingly, the gap between the observed 

and estimated data widens from summer for London, Stratford, St. Thomas, Wroxeter while 

in Folden, Waterloo-Wellington and Woodstock the datasets followed the observed values 

closely throughout the year. 
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Figure 7 (a): Comparison of Cumulative Daily Precipitation in 2000 for London (Top) and 

Folden (Bottom) 
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Figure 7 (b): Comparison of Cumulative Daily Precipitation in 2000 for Waterloo-

Wellington (Top) and Woodstock (Bottom) 
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4.2 Hydrological Model Results 

4.2.1 Performance Evaluation 

Table 6 compares the statistical performance measures of the daily discharge 

obtained during January 1980- December 2005 for evaluating the performances of the 

reanalyses data. The root-mean-square-error for both NNGR and NARR varies considerably, 

from 4.00 m
3
/s (NNGR) and 3.44 m

3
/s (NARR) at Ingersoll to 28.1 m

3
/s (NNGR) and 24.37 

m
3
/s (NARR) at Byron. The correlation coefficients produced by NARR (0.59-0.65) are 

significantly higher than those produced by NNGR (0.41-0.44). The normalized mean square 

error is also slightly higher in the case of NNGR. The absolute mean error is differentiable 

both in terms of the data types and locations. NNGR produces higher errors. It also appears 

that the MAE measure is lowest at locations where more than one sub-basin is contributing to 

the total runoff. The values of the relative bias differ greatly at the selected locations, with 

the NARR, unlike its counterpart, producing a negative bias. The bias produced by the 

NNGR data is much higher, ranging from 26% to 45% to that of -12% to -7% from NARR. 

Apparently, Byron is the outlet of the basin with a contributing area of 3,110 km
2
 (Cunderlik 

and Simonovic, 2004) and with 32 sub-basins. The poor model performance at Byron can be 

attributed to the fact that this part suffers from inadequate meteorological data, which may 

have restricted a more satisfactory representation of the daily discharge values.  

Table 6: Comparison of Performance Statistics at Selected Locations within the Basin 

Locations 

NNGR NARR 

RMSE 

(m
3
/s) 

r 
NMSE 

(1/ m
3
/s) 

MAE 

(m
3
/s) 

RBias 

(%) 

RMSE 

(m
3
/s) 

r 
NMSE 

(1/ m
3
/s) 

MAE 

(m
3
/s) 

RBias 

(%) 

Byron 28.097 0.44 1.03 15.73 31 24.37 0.65 0.77 9.95 -12 

Ingersoll 4.2875 0.41 1.25 2.62 45 3.44 0.63 0.80 1.57 -7 

St. Marys 10.08 0.44 0.97 5.23 26 10.04 0.59 0.97 3.72 -9 
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4.2.2 Flow Comparison Plots 

Figures 8 and 9 present flow comparison graphs during June-August, 2001-2005. The 

modeled hydrograph from the reanalysis data does not provide a good fit to the observed 

data. Peaks are not captured by using either NNGR or NARR, though   some biased peaks 

are generated by NNGR during the low flow periods. The hydrographs generated by the 

NARR data for low flows are better than the NNGR data. NNGR produces more biased 

results in both locations, even for low flows. The model performance for low flow improves 

with the increase of contributing area. NNGR has systematically overestimated the peaks 

during summer; NARR has not shown systematic bias in most of the periods except for the 

year 2002. 

 

 

 

 

 

 

 

 

 

Figure 8: Daily Hydrographs Obtained from Various Data Sources during June-August, 

2001-2005 at Byron 
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 Figure 9: Daily Hydrographs Obtained from Various Data Sources during 

June-August, 2001-2005 at St. Marys 

 

Figures 10 (a), (b), and Appendix B present a comparison of the scatter plots between 

precipitation and associated flows during May-August, 1980-2005 at Byron, Ingersoll and St. 

Mary’s. The higher flows show significantly scattered patterns; low flows are in better 

agreement with precipitation because the low flows are more directly linked with the deficit 

of precipitation. NNGR generated flows, however, show relatively less concurrence than 

NARR. This may be explained by the level of bias present in the dataset.  
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Figure 10 (a): Scatter Plots of Precipitation and Flow (May-August, 1980-2005) at Byron 
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Figure 10 (b): Scatter Plots of Precipitation and Flow (May-August, 1980-2005) at St. Mary 
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4.2.3 Error Evaluation in terms of Box and Whiskers plot 

Figures 11 (a) and (b) present the box plots of the monthly discharge at Byron and St. 

Mary’s during May-November, 1980-2005. Although the model has been applied on daily 

data, the statistics from the daily data have been aggregated into a monthly scale to facilitate 

the presentation of results. Summer discharge shows variability in the estimated means. From 

the plots of Byron, it can be seen that the historical mean of the mean discharge deviates 

significantly from the median for NNGR except for October for NNGR. While NARR has 

been consistent and has been able to adequately present the observed discharge. NNGR, 

however, has suffered from a significant overestimation during most of the months 

considered in the study (excluding October and November). Some values during September 

through November are above the top whiskers, i.e., considered as outliers. In most months, 

the monthly average discharge from the observed dataset falls below the 25
th

 percentile value 

of NNGR flows. The performance of NARR is, however, very satisfactory and suffers from 

only minor underestimations. In most cases, the mean observed discharge is close to the 

NARR median (except in October). Although in few years the NARR discharge appeared 

outside the top whisker’s range (outliers), those are, however, very few compared to the 

entire dataset.    
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Figure 11 (a): Box Plots of Monthly Discharge during May-November, 1980-2005 at Byron 
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Figure 11 (b): Box Plots of Monthly Discharge during May-November, 1980-2005 at St. 

Marys  
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4.2.4 Error Evaluation in terms of Means and Variances 

Table 7 presents the results of the non-parametric Wilcoxon rank-sum test performed 

for evaluating errors in the estimation of the mean daily flow values for May-November, 

1980-2005.  The statistical significance test results (p values) reveal that at a 95% confidence 

level, errors at the Byron location are higher in NNGR for all months (p<0.05) except during 

October, and in NARR the errors are significant during only  three months. Similar results 

can be seen at St. Mary’s as well, where NARR produced higher errors in three months while 

NNGR errors were high in all seven months.  

Table 7: Test Results (p values) of the Wilcoxon Rank Test at 95% Confidence Level 

Month 
Byron St. Marys 

NARR NNGR NARR NNGR 

May 0.08 0.00 0.76 0.00 

Jun 0.87 0.00 0.23 0.00 

Jul 0.53 0.00 0.13 0.00 

Aug 0.00 0.00 0.02 0.00 

Sep 0.76 0.00 0.31 0.00 

Oct 0.01 0.95 0.00 0.00 

Nov 0.00 0.00 0.00 0.00 

  

 

Next, Levene’s test is used at the Byron and St. Mary’s locations to evaluate the quality 

of the variances between the flows generated by the observed and reanalysis data  at a 95% 

confidence interval. The results are presented in Table 8. In the case of Byron, the variance 

test results of NNGR reveal that for all months except two, all the p values  fall  below 0.05; 

the case is even worse in St. Mary’s, with only one month above the threshold p level 

(>0.05), suggesting that  the observed and NNGR generated flow variances are statistically 

different. For NARR, however, the p values for five months are found to be above 0.05, 

indicating the equality of variances for those months. These test results confirm that the 
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variability of the NARR generated flows can be considered equal to the observed flows in 

general, but NNGR generated flows cannot be considered equal at the 95% confidence level. 

Table 8: Test results (p values) of the Levene’s Test at 95% Confidence Level 

 

Month 
Byron St. Marys 

NARR NNGR NARR NNGR 

May 0.04 0.77 0.04 0.09 

Jun 0.10 0.00 0.02 0.00 

Jul 0.44 0.00 0.47 0.00 

Aug 0.65 0.00 0.10 0.00 

Sep 0.08 0.91 0.02 0.02 

Oct 0.00 0.00 0.00 0.00 

Nov 0.99 0.00 0.91 0.00 
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5. Conclusion 

 

In mountainous, remote regions, or even in stations with large amounts of missing data, 

the task of hydrologic modeling continues to be a major challenge due to the overall lack of 

observed data. In a rapidly changing climate, this is becoming a major concern because to 

investigate the hydrologic impact of climate change it is important to model the present 

climate accurately in order to account for future changes. With their more refined spatial and 

temporal coverage, the NCEP reanalysis data have the potential to be used effectively in data 

scarce regions (Reid et al. 2001). In order to take advantage of these data, there is, however, a 

need for accurate synopsis of the climate conditions. Because the reanalysis dataset is 

produced by assimilating observed weather information, including surface temperature, into a 

numerical weather forecast system, it  can be thought of as the product of an advanced 

interpolation scheme (numerical weather model) which takes into account important factors, 

such as topography and land cover (Choi et al. 2009). In this paper, the performance of the 

NCEP global and regional reanalysis data under present climate conditions for precipitation 

and temperatures are verified with selected stations around the Upper Thames River basin in  

Southwestern Ontario, Canada. NARR has been able to capture the real scenario over 1980-

2005 by capturing the temperature trends, with some over-estimation during the summer 

months. The means and the variances of both datasets do appear to be similar when evaluated 

by t and F tests. The results for computing precipitation at several stations show variable 

results While in some stations the reanalysis dataset performed well, for a couple of stations 

both of them appeared to suffer from underestimation and overestimation, thereby 
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necessitating  a careful check before their application. The overall goodness of fit results 

indicate a better performance by NARR when compared to NNGR.  

The present study has demonstrated that the NARR data can be a feasible substitute to the 

observed weather stations data. It is, however, important to keep in mind the limitation of 

NARR data: (i) the daily gauged data NARR uses for assimilation, comes in 1 degree grid 

which may be insufficient for the model to perform well; (ii) The weather station data 

represent point information while NARR provides areal averages in 32 km X 32 km grid; 

even within these area, there can be considerable variations of climate, which can be, 

however, more prominent in complex topographies. The latter is, however, not considered a 

major drawback as in hydrologic modeling where it is more important to get an areal 

representation rather than a point precipitation (Choi et al, 2009).   

For this study, the meteorological inputs from the above data sources are used with the 

semi-distributed continuous rainfall-runoff model developed based on the computational 

engine of HEC-HMS for the period 1980-2005. The differences between the two datasets 

appear to be more prominent from the following analysis: first, the comparison of their 

relative bias shows that NNGR is associated with a more significant bias than its NARR 

counterpart. The NARR, correlatively, produced an insignificant negative bias at all 

locations, which may be due to insufficient meteorological inputs that have restricted the 

representation of the real basin conditions. Secondly, the flow hydrographs show that NNGR 

is associated with some biases that lead to shifts at the peaks away from their original time of 

occurrence. This can be the result of (a) the continuous model calibration for low flow 

conditions, and/or (b) the sparse grid points, especially from NNGR. In the case of NARR, 

the model performance for low flow improves at downstream locations with the increase of 
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the contributing basin area. Although there are under- and over-estimations, NARR has not 

shown any systematic bias. The comparisons of the precipitation and flow scatter plots 

support the above explanation: higher flows are scattered from their fitted lines while the 

precipitation and low flows appeared to be in better agreement. Thirdly, the box plots present 

a clear distinction between the two reanalysis datasets: the NARR have successfully followed 

the trend, while the performance of NNGR has been inferior. The errors associated with the 

generated flows and that are derived from estimating means and variances have been further 

tested using the non-parametric Wilcoxon rank sum test and Levene’s test. Both tests indicate 

that NARR leads to less error. Its variability is also shown to be closer to the observed 

variability for most of the months at the 95% confidence level.  

Based on the following observations, it can be concluded that the differences in 

simulating discharge using NARR and NNGR data sets lies in their inherent process of 

generating precipitations. NARR data are produced by assimilating high quality and detailed 

precipitation observations into the atmospheric analysis, thus making the forcing into the 

land surface model component of the system more accurate by enabling the interaction of the 

land hydrology and land-atmosphere, which has not been considered in NNGR. The coarser 

grid of NNGR may also have limited its performance. Considering the satisfactory 

performance of NARR, and also the drawbacks of NARR data over some parts of the 

Canadian landscape, it is suggested that a thorough investigation should be carried out for its 

application in both climate and hydrologic impact studies. Future work aims at including 

other atmospheric variables from NARR data for climate change modelling to improve its 

performance in generating any future impacts of climate change. From a hydrologic 

modelling point of view, it will be interesting to compare results from NARR with the newly 
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developed 10-km gridded Canadian daily dataset (Hutchinson et al. 2009) to achieve a more 

accurate source of alternative database for hydrologic modeling in the study area.  
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APPENDIX A: Cumulative Precipitation for 2000 
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APPENDIX B: Scatter plots of precipitation and flow (May-

August, 1980-2005) at Ingersoll 
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