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Executive summary 

The climate is changing and these changes may induce severe impacts on both, global and local scales.  

The Public Infrastructure Engineering Vulnerability Committee (PIEVC) established by Engineers 

Canada conducted an assessment of the vulnerability of Canadian Public Infrastructure to changing 

climatic conditions. The major conclusion of the assessment is that water resources infrastructure failures 

due to the climate change will be common across Canada.  As a follow up, the City of London took an 

initiative to evaluate the impacts of climate change on its municipal infrastructure. An original systematic 

procedure is used to gather and examine available data in order to develop an understanding of the 

relevant climate effects and their interactions with infrastructure. The key steps of the procedure include: 

(i) Inventory of infrastructure components; (ii) Data gathering and sufficiency; (iii) Qualitative 

vulnerability assessment; (iv) Quantitative vulnerability assessment; and (v) Prioritization of the 

infrastructure components based on the level of risk. The assessment work is based on the results of the 

previously completed climate change impact study and focuses on infrastructure vulnerability to flooding.  

Assessment methodology requires identification of climate loading on the municipal infrastructure. 

Climate and hydrologic modeling methodology and results are presented in this report as the basis for the 

impact assessment work.  A weather generator model combined with principle component analysis (WG-

PCA) and HEC-HMS hydrologic model are used in this study. The WG-PCA model is used to generate 

two different climate scenarios named: (a) historic scenario and (b) wet scenario, representing the lower 

and the upper bound of potential climate change, respectively.  Generated meteorological data 

(precipitation and temperature) is used with the hydrologic model (HEC-HMS) and transformed into flow 

at multiple locations within the study region.   Lastly, the flow frequency analysis is conducted to provide 

input into a hydraulic model that is used in mapping the floodplains for two climate scenarios considered 

(Sredojevic and Simonovic, 2009). 
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Using 43-years of historical data from 1964 to 2006 at 15 stations in the Upper Thames River basin, 

the WG-PCA generates a feasible future scenario of precipitation and temperature for 200 years – the 

historic climate scenario. The historic data is used to represent the business-as-usual condition that 

assumes there is no change in the social-economic-climatic system in the future. This scenario simulates 

climate change that may occur as a consequence of the already existing conditions and is considered in 

this study as the lower bound of climate change impact on the region under consideration. The second 

climate scenario employs CCSRNIES global climate model (GCM) with B21 emission scenario for time 

slice of 2040-2069 together with the historical data to generate a feasible future scenario we named in this 

work as a wet climate scenario – upper bound of climate change impact on the region under consideration.   

The results demonstrate the WG-PCA regenerates well the 25th, 50th, 75th percentile statistical values of 

precipitation and temperature for the historic scenario. Use of data perturbation process within the 

weather generator model generates data out of the range of values within the observed data. For the wet 

scenario, the WG-PCA generates the future that reflects the monthly climate shift of GCM model used 

(CCSRNIES B21) in the study.  

The generated annual precipitation extreme values for 200 years are processed to extract the largest 

annual flood event for the entire basin and corresponding annual peak flow is used in flood frequency 

analysis. An assumption introduced in this work is that the largest floods are generated from extreme 

precipitation events. Several probability distributions including Gumbel, LP3, and GEV are utilized in 

this study. The flood frequency analysis results obtained using Gumbel distribution for the historic and 

the wet climate scenarios are compared with the current data used by the Upper Thames River 

Conservation Authority (UTRCA) for flood plain management. The difference exists between the current 

data and the data generated for two scenarios, as expected, and the direction of change varies with the 

location in the basin.   

During the work on this study, the major deficiency in observed flow data is noticed across the basin 

– specially for the locations within the City of London. Therefore, continuous monitoring system at the 
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various sites in the basin is needed to provide the accurate hydrologic information that should enhance the 

results of modeling work. If and when the new observed data is collected, the hydrologic modeling 

analysis can enhanced and consequently flood flow frequency analysis can be verified  



- 5 - 

 

Contents 

City of London: Vulnerability of Infrastructure to Climate Change ......................................................- 1 - 

Executive summary .............................................................................................................................- 2 - 

List of Figures ..................................................................................................................................... - 7 - 

List of Tables ...................................................................................................................................... - 9 - 

1. Introduction ................................................................................................................................... - 10 - 

2. Climate modeling .......................................................................................................................... - 12 - 

2.1 The Weather Generator (WG) model ........................................................................................... - 13 - 

2.1.1 The K-NN Weather Generator (WG) algorithm ............................................................. - 13 - 

2.1.2 The WG algorithm with principle component analysis (WG-PCA) ................................ - 16 - 

2.2 The K-NN WG model used in this study ...................................................................................... - 17 - 

2.3 Results of the climate modeling ................................................................................................... - 25 - 

2.3.1 Precipitation .................................................................................................................. - 25 - 

2.3.2 Temperature .................................................................................................................. - 34 - 

2.3.3. Conclusions .................................................................................................................. - 39 - 

3. Hydrologic modeling ..................................................................................................................... - 40 - 

3.1 The HEC-HMS hydrologic model ................................................................................................ - 42 - 

3.2 Input data for the HEC-HMS model ............................................................................................. - 43 - 

3.2.1 Spatial interpolation of model input data (inverse distance method, IDM) ...................... - 43 - 

3.2.2 Temporal disaggregation of model input data ................................................................ - 45 - 

3.3 Delineation of model sub-basins and model calibration ................................................................ - 49 - 

3.3.1 Delineation of the sub-basins within the City of London ................................................ - 50 - 

3.3.2 Model calibration .......................................................................................................... - 54 - 

3.4 Application of the HEC-HMS model to future climate scenarios .................................................. - 66 - 

3.5 Flood frequency analysis ............................................................................................................. - 69 - 

4. Conclusions ................................................................................................................................... - 81 - 



- 6 - 

 

References......................................................................................................................................... - 83 - 

Appendix 1: Flood frequency at various locations .............................................................................. - 87 - 

Appendix 2: HEC-HMS hydrologic model parameters. ...................................................................... - 93 - 

Appendix 3: Description of CD enclosed ........................................................................................... - 96 - 

Appendix 4: List of Previous Reports in Series .................................................................................. - 98 - 



- 7 - 

 

List of Figures 

Figure 2.1 Schematic map of meteorological stations in the basin ...................................................... - 19 - 

Figure 2.3 Maximum temperature corresponding to different Į values at the London station .............. - 22 - 

Figure 2.4 Minimum temperature corresponding to different Į at the London station ......................... - 23 - 

Figure 2.5 Comparison of the generated and the observed precipitation value for the historic scenario ..... - 26 - 

Figure 2.6 Comparison of the generated and the observed precipitation value for the wet scenario ..... - 28 - 

Figure 2.7 Monthly average change in total precipitation at the three representative stations for the wet 
scenario ............................................................................................................................................. - 29 - 

Figure 2.8 Flood occurrence vectors .................................................................................................. - 31 - 

Figure 2.9 Number of annual maximum precipitation events within 200 years ................................... - 33 - 

Figure 2.10 Maximum temperature at the representative stations for the historic scenario .................. - 35 - 

Figure 2.11 Minimum temperature at the representative stations for the historic scenario ................... - 36 - 

Figure 2.12 Maximum temperature at the representative stations for the wet scenario ........................ - 37 - 

Figure 2.13 Minimum temperature at the representative stations for the wet scenario ......................... - 38 - 

Figure 3.1 Three modules of the HEC-HMS model ............................................................................ - 42 - 

Figure 3.2 Hyetographs of an annual extreme event for the historic scenario ...................................... - 47 - 

Figure 3.3 Hyetographs of an annual extreme event for the wet scenario ............................................ - 48 - 

Figure 3.4 HEC-HMS model with 34 sub-basins ................................................................................ - 49 - 

Figure 3.5 Locations used in the sub-watershed delineation process ................................................... - 51 - 

Figure 3.6 Delineation of 4 main sub-watersheds in the City of London ............................................. - 52 - 

Figure 3.7 Delineation of the Thames River into sub-watersheds within the City of London............... - 53 - 

Figure 3.8 The HEC-HMS model structure ........................................................................................ - 53 - 

Figure 3.9 Example of a set of water-surface profiles between section A and B of a channel ............... - 55 - 

Figure 3.10 Relationships between storage and outflow for the sub-watersheds in the basin ............... - 56 - 

Figure 3.11 Relationships between storage and outflow for the main stream (Upper Thames River) ... - 58 - 

Figure 3.12 Calibration results for the main stations in the basin ........................................................ - 60 - 



- 8 - 

 

Figure 3.13 Calibration results for the Byron station (July 2000) ........................................................ - 61 - 

Figure 3.14 Rainfall hyetograph for three creeks ................................................................................ - 63 - 

Figure 3.15 Streamflow check points of the previous sub-watershed study ......................................... - 65 - 

Figure 3.16 Time distribution of 24 hrs SCS synthetic storm .............................................................. - 65 - 

Figure 3.17 Hydrographs of an event for the historic scenario ............................................................ - 67 - 

Figure 3.18 Hydrographs of an event for the wet scenario .................................................................. - 68 - 

Figure 3.19 Procedure of flood frequency analysis ............................................................................. - 70 - 

Figure 3.20 Flood frequency analyses for two climate scenarios ........................................................ - 75 - 

Figure 3.21 Procedure of flood frequency analysis in previous works................................................. - 78 - 

Figure 3.22 Flood frequency for two climate scenarios ...................................................................... - 79 - 

 

 



- 9 - 

 

List of Tables  

Table 2.1 Monthly changes in precipitation and temperature between the historic and the GCM scenarios - 20 - 

Table 2.2 Accuracy of cross-correlation for two WG models ............................................................. - 21 - 

Table 2.3 Seasonal standard deviation for maximum and minimum temperature ................................ - 24 - 

Table 2.4 The MDMP and dispersion (r ) (Julian calendar) ............................................................... - 32 - 

Table 3.1 Characteristics of potential hydrologic models for use in this study .................................... - 41 - 

Table 3.2 Location information for 15 measurement stations in the Upper Thames River basin .......... - 44 - 

Table 3.3 Synthetic storms and peak flows in the sub-basins .............................................................. - 62 - 

Table 3.4 Peak flow (m3/sec) simulation results ................................................................................. - 62 - 

Table 3.5 Peak flow at the Dingman Creek check points .................................................................... - 64 - 

Table 3.6 Goodness-of-fit test for the main locations ......................................................................... - 74 - 

 

 



- 10 - 

 

1. Introduction 

The climate is changing and these changes may induce severe impacts on both, global and local scales.  

The Public Infrastructure Engineering Vulnerability Committee (PIEVC) established by Engineers 

Canada conducted an assessment of the vulnerability of Canadian Public Infrastructure to changing 

climatic conditions. The major conclusion of the assessment is that water resources infrastructure failures 

due to the climate change will be common across Canada. Consequently, the water infrastructure 

vulnerability should be identified as one of four priority areas to be reviewed as part of the first National 

Engineering Assessment.  

The main objective of this study is to provide an engineering assessment of the vulnerability of 

London’s public infrastructure to changing climate conditions.  An original systematic procedure is used 

to gather and examine available data in order to develop an understanding of the relevant climate effects 

and their interactions with infrastructure. The key steps of the procedure are: (i) Inventory of 

infrastructure components; (ii) Data gathering and sufficiency; (iii) Qualitative vulnerability assessment; 

(iv) Quantitative vulnerability assessment; and (v) Prioritization of the infrastructure components based 

on the level of risk. The presented work is based on the results of the previously completed climate 

change impact study and focuses on infrastructure vulnerability to flooding. The elements of 

infrastructure under consideration include: buildings within and adjacent to the flood lines, roads, bridges, 

culverts, wastewater treatment plants, storm water management network, etc. The study is limited to the 

boundaries of the City of London. 

Climate and hydrologic modeling methodology and results are presented in this report as the basis for 

the impact assessment work.  A weather generator model combined with principle component analysis 

(WG-PCA) and HEC-HMS hydrologic model are used in this study. The WG-PCA model is used to 

generate two different climate scenarios: (a) historic scenario and (b) wet scenario. Generated 

meteorological data (precipitation and temperature) is used with the hydrologic model (HEC-HMS) and 



- 11 - 

 

transformed into flow at multiple locations within the city.   Lastly, the flow frequency analysis is 

conducted to provide input into a hydraulic model that is used in mapping the floodplains for two climate 

scenarios considered (Sredojevic and Simonovic, 2009). 

The report is organized in two major parts: (i) the climate model and (ii) the hydrologic model. The 

climate model section starts with the theory of the WG model and the formulation of input data.  Then, 

the results of two different climate scenarios (historic and wet), generated by the WG model are presented. 

In hydrologic model section, the description of the HEC-HMS model, input and output data is provided. 

The presentation of the model calibration and verification follows.  The results of the hydrologic model 

analyses for 2 different scenarios are provided and frequency analysis of flow data is described.  The 

report concludes with insights from the climate and hydrologic analyses.  
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2. Climate modeling  

Stationarity—the idea that natural systems fluctuate within an unchanging variability—is a 

foundational concept in water resources management. The stationarity assumption has long been 

compromised by human disturbances in river basins. Flood risk, water supply, and water quality are 

affected by water infrastructure, channel modifications, drainage works, and land-cover and land-use 

change. Two other (sometimes indistinguishable) challenges to stationarity have been externally forced, 

natural climate changes and low-frequency, internal variability. Planners have tools to adjust their 

analyses for known human disturbances within river basins, and justifiably or not, they generally have 

considered natural change and variability to be sufficiently small to allow stationarity-based water 

resources management. Stationarity is dead because substantial anthropogenic change of Earth’s climate 

is altering the means and extremes of precipitation, evapotranspiration, and rates of discharge of rivers 

(Milly et al, 2008). Warming augments atmospheric humidity and water transport. This increases 

precipitation, and possibly flood risk, where prevailing atmospheric water-vapor fluxes converge. New 

tools are required to address this challenge.  

The General Circulation Models (GCMs) provide the range of feasible future climate scenarios 

employing various emission scenarios categorized into 4 families (A1, A2, B1, and B2) that explore 

economic and technological driving forces, a wide range of demography and green-house gas emissions 

(IPCC, 2000). However, GCMs have inevitable drawback that their spatial resolution is too coarse for 

assessment of regional impacts of climatic change. 

Downscaling procedures, therefore, are necessary to apply at regional scales. A various forms of 

Weather Generators (WG) have been used as a statistical downscaling approach. The WG models can 

take two forms: 1) parametric form (Nicks et al., 1990; Parlange and Katz, 2000), and 2) non-parametric 

form (Sharma et al., 1997; Wilks and Wilby, 1999; Mehrotra and Sharma, 2007). Due to the difficulty of 

parametric weather generators with regards to fitting model parameters and some problems induced by 
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the parameters, the non-parametric methods are preferred in hydrologic practice. Among non-parametric 

methods, the K-NN (K-Nearest Neighbor) technique for generating synthetic weather data has been 

successfully applied in practice (Young, 1994; Lall and Sharma, 1996; Lall et al., 1996; Rajagopalan and 

Lall, 1999; Buishand and Brandsma, 2001; Yates et al., 2003).  

Sharif and Burn (2006) proposed the improved K-NN technique to generate data that will be out of 

the historical range by the introduction of a perturbation process. In addition, Eum and Simonovic (2008) 

extended the work of Sharif and Burn by combining the WG model with the principle component analysis 

to decrease the calculation burden (new model is named WG-PCA). Sharif and Burn (2006), Prodanovic 

and Simonovic (2006a, 2006b), and Eum and Simonovic (2008) have applied K-NN technique 

successfully in the Upper Thames River Basin, Canada using three daily input  meteorological variables 

(precipitation, maximum temperature, and minimum temperature) and same  output variables. They have 

also investigated the accuracy of generated monthly averaged values of meteorological variables. 

Therefore, in this study the improved WG-PCA algorithm has been implemented. It incorporates a 

probability bandwidth (Sharma et al., 1997; Sharma and O’Neill, 2002) that limits generation of 

unacceptable values of meteorological variables. The following sections present the theory of K-NN WG 

model and the improved WG-PCA model used in this study. 

 

2.1 The Weather Generator (WG) model 

2.1.1 The K-NN Weather Generator (WG) algorithm 

The K-NN algorithm starts by randomly generating the day 1, normally Jan 1st, from the observed 

data set and a specified number of days similar in characteristics to the current day. Using resampling 

procedure, one of the days from the data set with similar statistical characteristics with current day is 

selected to represent the weather for the next day. The nearest neighbor algorithm (a) uses a simple 

computational procedure, and (b) preserves well both, temporal and spatial correlation among the input 
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data. Yates et al. (2003) applied K-NN algorithm successfully with three variables to diverse areas of 

United States. Their version of the algorithm has a limitation that the newly generated data stay within the 

range of observed minimum and maximum value.  

Sharif and Burn (2006) modified the K-NN weather generator algorithm of Yates et al. (2003) by 

incorporating a perturbation process for weather variables that generates extremes outside the range of 

historically observed data. The modified K-NN algorithm with p variables and q stations proposed by 

Sharif and Burn (2006) has the following steps:  

1) Calculation of regional means of p variables (x) across all q stations for each day in the historic 

record: 

  },,2,1{,,, ,,2,1 TtxxxX tpttt        (2.1) 

where   },,2,1{
1

1
,, pix

q
x

q

j

j
titi  



     (2.2) 

2) Computation of the potential neighbors of size L = (w + 1) × N − 1 days long for each variable p 

with N years of historical record and selected temporal window of size w. All days within that 

window are selected as potential neighbors to the current feature vector. Among the potential 

neighbors, N data corresponding to the current day are eliminated in the process to prevent the 

possibility of generating the same value as that of the current day.  

3) Computation of the regional means for all potential neighbors selected in step 2) across all q 

stations for each day. 

4) Computation of the covariance matrix, Ct, for day t using the data block of size L × p.  

5)  Random selection of the first time step value for each variable p from all current day values in the 

record of N years.  

6) Computation of the Mahalanobis distance expressed by Eq. (2.3) between the mean vector of the 

current days ( tX ) and the mean vector of all nearest neighbor values (kX ), where k = 1, 2,   , L.  
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   T1
kttktk XXCXXd         (2.3) 

where T represents the transpose matrix operation, and C−1 represents inverse of covariance matrix. 

7) Selection of the number of LK   nearest neighbors out of L potential values. 

8) Sorting the Mahalanobis distance dk from smallest to largest, and retaining the first K neighbors in 

the sorted list (they are referred to as the K Nearest Neighbors). Then, use a discrete probability 

distribution giving higher weights to closest neighbors for resampling out the set of K neighbors 

(Lall and Sharma, 1996). The weights are calculated for each k neighbor using the following Eq. 

(2.4) and (2.5).  
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where k = 1, 2, . . . ,K. Cumulative probabilities, pj, are given by: 





j

i
ij wp

1

        (2.5) 

9) Generating random number u(0,1) and comparing it to the cumulative probability pj to determine 

the nearest neighbor of current day. If p1 < u < pK, then day j for which u is closest to pj is selected. 

On the other hand, if u < p1, then the day corresponding to d1 is selected, and if u = pK, then the day 

corresponding to dK is selected. Once the nearest neighbor is selected, the weather of selected day 

is used for all stations in the region. This is how the K-NN algorithm preserves the cross-

correlation among variables within the region under consideration.  

10) This step is added by Sharif and Burn (2006) to generate variables outside the range of historical 

data by perturbation. First, estimation of (a) a conditional standard deviation ı for K nearest 

neighbors, and (b) bandwidth Ȝ (Sharma et al., 1997) is performed using Eq. (2.6): 

5/106.1  K      (2.6) 

Then, the perturbation process follows according to Eq. (7): 
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ti zxy  ,,      (2.7) 

where j
tix ,  is the value of the weather variable obtained from the original K-NN algorithm; j

tiy ,  is 

the weather variable value from the perturbed set; zt is normally distributed random variable with 

zero mean and unit variance, for day t. To prevent the negative values for bounded variables (i.e. 

precipitation), the largest acceptable value of jj
ta x **, 55.1/    is employed (Sharma and O’Neill, 

2002), where * refers to a bounded weather variable (Sharif and Burn, 2006). If the value of the 

bounded weather variable, computed previously, is still negative, then a new value of zt is 

generated.  

2.1.2 The WG algorithm with principle component analysis (WG-PCA)  

Eum and Simonovic (2008) have improved the K-NN WG model to reduce the dimension of  

Mahalanobis distance matrix expressed by Eq. (2.3).This modification allows the use of various available 

variables without the increase of computational burden. The WG-PCA algorithm reduces the dimension 

of the mean vector of the current days (tX ) and the mean vector of all nearest neighbor values (kX ) in 

Step (6) from previous section. In that way only the variance of the first principle component is required 

to calculate the Mahalanobis distance. The WG-PCA modifies the Step (6) of the algorithm presented in 

the previous section as follows: 

(a) Calculation of eigenvector and eigenvalue for the covariance matrix (Ct). 

(b) Finding the eigenvector related to the largest eigenvalue that explains the largest fraction of the 

variance described by the p variables. 

(c) Calculation of the first principle component with the eigenvector found in step (b) using Eq. (2.8) 

and Eq. (2.9): 

EX ttPC         (2.8) 

EX kkPC         (2.9) 
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where PCt and PCk are the values of current day and the nearest neighbor transferred by the 

eigenvector from step (b), respectively; and E is the eigenvector related to the largest eigenvalue.  

After calculating the PCt and PCk with one-dimensional matrix obtained by Eq (2.8) and (2.9), the 

Mahalanobis distance is computed using Eq. (2.10):  

  },,2,1{)(Var/2 KkPCPCd ktk  PC     (2.10) 

where Var(PC) represents the variance of the first principle component for the K nearest neighbors. 

The perturbation process introduced by Sharif and Burn (2006) may generate high (or low) values of 

meteorological variables that are not acceptable in practice.  Previous studies (Sharif and Burn, 2006; 

Eum and Simonovic, 2008) have employed the bandwidth corresponding to the probability of generating 

a negative value for precipitation. However, no procedure was in place for unacceptably high (or low) 

value of temperature. Therefore, in this study we investigate impacts of the bandwidth corresponding to 

several Į probability values for temperature as shown in Eq. (2.11).  
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where, '  is a transformed bandwidth, low
iy  and high

iy is a low and a high bound for variable yi, 

respectively.  

2.2 The K-NN WG model used in this study 

This study employs daily precipitation, maximum temperature, and minimum temperature for 15 

stations in the basin (Fig. 2.1) for the period from 1964 to 2006 (N = 43) to generate feasible future 

weather scenarios using the WG-PCA model described in the previous section. Among 15 stations used in 

this study, only three locations are selected to show the comparison of WG results in this report (data for 
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other locations are available upon request): (1) Stratford for illustrating the characteristic of the northern 

part of the basin, (2) London for south-western part, and (3) Woodstock for south-eastern part of the basin. 

For application of the WG-PCA, this study used the temporal window of 14 days (w = 14) and 43 years of 

historical data - 569 days as the potential neighbors (L = (w + 1) × N – 1 = 569) for each variable.  

This study incorporated a GCM climate change scenario with the WG-PCA model to represent the 

upper bound of climate change that may occur in the region.  Based on the results of the previous research 

study (as documented by Prodanovic and Simonovic, 2006a) the CCSRNIES B21 scenario provided by 

the Canadian Climate Impacts Scenarios group at the University of Victoria (http://www.cics.uvic.ca) has 

been selected to investigate the impacts on high flows in the Upper Thames River basin and named wet 

climate scenario in this report. This study employs the CCSRNIES B21 (wet) scenario for the time slice 

of 2040-2069 representing climate condition for the 2050s. To include the impact of climate change  in 

the K-NN WG model, the observed historical data is modified by adding (in the case of temperature) or 

multiplying (in the case of precipitation) the average change between the reference scenario and the future 

climate scenario to the regional observed historical data at a specific station. The monthly change for the 

wet scenario for precipitation and temperature variables is shown in Table 2.1. The wet scenario shows 

the increase in precipitation during the period from January to September.  Specially, the precipitation 

during the spring season from March to June is significantly higher. Note that temperature for wet 

scenarios is higher for all months (reflection of global warming). 
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Figure 2.1 Schematic map of meteorological stations in the basin 
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Table 2.1 Monthly changes in precipitation and temperature between the historic and the GCM scenarios 

Month 
Wet 

Precipitation 
(Percentage change) 

Temperature 
(Difference in °C ) 

Jan 0.1767 4.43 

Feb 0.0638 3.29 

Mar 0.1507 4.52 

Apr 0.2284 5.78 

May 0.2414 4.50 

Jun 0.1855 3.32 

Jul 0.0503 3.59 

Aug 0.0788 4.09 

Sep 0.0427 2.11 

Oct -0.1151 3.11 

Nov -0.1555 4.64 

Dec -0.031 1.43 

 

To avoid generation of negative precipitation value at a station, the previous study regenerated a 

random number for that station until positive values are obtained. This study uses the same random 

number for all stations in order to minimize the bias. Table 2.2 shows the sum of square error for monthly 

cross-correlation of precipitation. By employing the same random number at all stations, monthly cross-

correlation is improved for 40.2 %. Figure 2.2 shows the results of cross-correlation analysis for the two 

WG-PCA models.  

In addition, this study introduces a bandwidth Ȝ for various probability level Į values for temperature 

variables to alleviate generation of unacceptably high or low values of temperature. Five Į values: 6 %, 

5%, 4%, 1%, and 0.05 % are tested in this study. Then, the seasonal daily temperatures are compared as 

shown in Figure 2.3 and Figure 2.4. 
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Table 2.2 Accuracy of cross-correlation for two WG models 

Contents 
 WG used in earlier 

study 
WG used in this study 

Sum of square error 0.42 0.25 

Improvement (%) - 40.2 
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Figure 2.2 Cross-correlation results for data obtained by two WG models 
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Figure 2.3 Maximum temperature corresponding to different Į values at the London station 
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Figure 2.4 Minimum temperature corresponding to different Į at the London station 
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As expected, the variability of daily temperature value decreases with decrease in  Į value, but the 

level of decrease  varies with season. In specific, the impact of bandwidth introduction is more significant 

during spring and autumn.  In the perturbation process of the K-NN algorithm, a variable is generated by 

combination of a bandwidth, a standard deviation, and a random number as shown in Eq. (2.7) in previous 

section. In addition, a bandwidth is inversely proportional to a standard deviation as shown in Eq. (2.12). 

Therefore, a larger standard deviation makes a bandwidth smaller and consequently the variability of a 

variable is smaller.  

iia zx  /        (2.12) 

Table 2.3 shows the standard deviation of the observed historical data for four seasons at the three 

representative stations. Compared to other seasons, spring and autumn seasons are more sensitive to a 

bandwidth (have larger standard deviations). On the basis of these results, this study selected the 

bandwidth corresponding to probability  Į=0.01 (1%).   

 

Table 2.3 Seasonal standard deviation for maximum and minimum temperature  

Variable Station Spring Summer Autumn Winter 

Maximum 
Temperature 

London 8.7 4.0 7.9 5.6 

Stratford 8.8 4.2 8.1 5.5 

Woodstock 8.7 4.1 8.0 5.5 

Minimum 
Temperature 

London 6.9 4.1 6.4 6.6 

Stratford 7.3 4.2 6.5 6.5 

Woodstock 7.0 4.2 6.5 6.7 

 

The WG-PCA model (improved as discussed above) has been used with two climate scenarios that 

define the range of potential climate change within the region of interest. The baseline (lower bound)of 
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climate change is represented using the observed historic data with perturbation.  The upper bound of 

potential climate change is represented using the wet scenario that is obtained by combining historic data 

with the GCM output, CCSRNIES B21. In this study 200-year of weather data (precipitation, minimum 

and maximum temperature) is generated to be used as input into the hydrologic model.  

2.3 Results of the climate modeling  

Climate modeling performed in this study results in 200 years of daily values for three meteorological 

variables: 1) precipitation; 2) maximum temperature; and 3) minimum temperature, for the historic and 

wet climate scenarios. All variables generated by the WG-PCA model are compared with the observed 

historical data for verification purposes. The discussion of the comparison follows.  

2.3.1 Precipitation  

The WG-PCA model is first used with 43 years of observed data (1964 to 2006) to simulate the future 

– historic climate scenario – in which is the current climate assumed to provide the basis for future change. 

This scenario, as pointed earlier, is considered to provide the lower bound of potential climate change. 

The underlining assumption in this scenario is that neither mitigation nor adaptation measures will be 

introduced into the social-economic-climatic  system and the future state of the system will be the 

consequence of already existing conditions within the system (concentration of green-house gasses, 

population growth, land use, etc.). Figure 2.5 shows the comparison between the generated and observed 

precipitation data for the historic scenario. The synthetic data generated using WG-PCA model are shown 

using the box plot while dots represent the percentile values of the observed  data corresponding to the 

minimum, 25th, 50th, 75th, and maximum are , from the bottom to the top, respectively. The median value 

of the observed historical data is shown as the solid line. The results confirm that the WG-PCA 

regenerates well the percentile values of the observed data, specially the 25th, 50th, 75th percentile value. In 

addition, due to the implementation of the perturbation step in the WG-PCA algorithm the generated data 

includes values outside of the observed minimum and maximum value.   
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(c) Woodstock 

Figure 2.5 Comparison of the generated and the observed precipitation value for the historic scenario 
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The second phase of the climate modeling analysis uses WG-PCA with the wet climate scenario that 

combines CCSRNIES B21 GCM output with the observed data. Figure 2.6 shows the precipitation results 

for the wet scenario. According to the climate shift as shown in Table 2.1, the amount of precipitation 

from January to September is increased. Most often floods in the Upper Thames River basin result from 

the combination of snowmelt and intensive precipitation during the period between December and April. 

In addition, the summer frontal storms may produce severe flooding too.  

Figure 2.7 presents the average monthly change of total precipitation at the three representative stations 

selected in this study for the wet scenario. The significant change is observed during the spring season, 

from March to June, with the highest change occurring in May. It is clear that the increase in precipitation 

may be the cause of increase in frequency and severity of floods under the wet climate scenario.  
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(c) Woodstock 

Figure 2.6 Comparison of the generated and the observed precipitation value for the wet scenario  
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Figure 2.7 Monthly average change in total precipitation at the three representative stations for the wet 

scenario 
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Further comparison between the generated and observed data has been done using the maximum 

precipitation seasonality analysis to investigate the change in timing of the maximum precipitation 

occurrence. The main advantage of this approach is that the date data used in the maximum precipitation 

seasonality are practically error-free and are more robust than precipitation magnitude data. The 

maximum precipitation seasonality is conducted by means of directional statistics (directional mean and 

variance) that use individual dates of the maximum precipitation occurrence as a directional variable 

(Fisher, 1993).  

The Julian day of the maximum precipitation occurrence (Dayi) is converted to an angular value (și) 

using Eq. (2.13): 

 




 20
2

 i
D

ii N
Day       (2.13) 

 

where Nd is the number of days in a year. From Eq. (2.13), a date of the maximum precipitation 

occurrence represents a vector with unit magnitude and a direction given by și. This study selects the 

annual maximum precipitation events on the basis of the total precipitation amount calculated at each 

station using a 5 day moving window and assuming that the annual maximum precipitation results in 

annual maximum flood. Fig. 2.8 shows the maximum precipitation occurrence vectors calculated using 

Eq. (2.13). In the historic scenario, maximum precipitations are occurring mainly from October to 

December and July to September due to winter snow storms and summer storms, respectively. For the 

wet scenario, on the other hand, floods are concentrated mainly within the period from March to October.   
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Figure 2.8 Maximum precipitation occurrence vectors 

 

The directional mean ( ) and the mean day of maximum precipitation (MDMP) are calculated as shown 

in Eq. (2.14) and (2.15). 




2
MDMP;0;tan 1 DN

x
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y
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where n is the number of samples for a given site. A convenient measure of dispersion (variability) of the 

individual dates of the maximum precipitation occurrence around the mean value can be defined as shown 

in Eq. (2.16) where the variable r  represents a dimensionless dispersion measure. Because the higher 

value of dispersion indicates less variability, r is used as a measure of lack of dispersion.  

22
yxr         (2.16) 

The MDMP and dispersion (r ) are calculated using Eq. (2.14) and (2.16) and the Julian calendar. Table 

2.4 shows the results for two climate scenarios. In table 2.4, “All stations” shows the annual peak 
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precipitation amount calculated by adding the precipitation at all stations within the region. “London” 

shows the annual precipitation peak value for the London station only.  

 

Table 2.4 The MDMP and dispersion (r ) (Julian calendar) 

Station 
MDMP r  

Historic Wet Historic Wet 

All stations 
262.7 

(Sep. 20th) 
194.8 

(Jul. 14th) 
0.26 0.31 

London 
242.7 

(Aug. 31st) 
180.9 

(Jun. 30th) 
0.20 0.30 

Stratford 
234.6 

(Aug. 23rd) 
188.3 

(Jul. 8th) 
0.28 0.29 

Woodstock 
223.3 

(Aug. 12th) 
186.9 

(Jul. 6th) 
0.25 0.32 

 

The results show that the mean day of maximum precipitation (MDMP) for the historic scenario is 53.1 

days later on average than for the wet scenario while the dispersion is lower than for the wet scenario. 

That means that the range of the maximum precipitation occurrence day for the historic scenario is wider 

and the maximum precipitation could occur earlier due to the climate change. Figure 2.9 shows monthly 

distribution of maximum precipitation occurrence for 200 years. As the results of MDF and dispersion in 

Table 2.4 show, the time of the maximum precipitation occurrence for the historic scenario is spread out 

from March to December and mainly from August to December. On the other hand, the the maximum 

precipitation occurrence for the wet scenario is concentrated mainly to spring (April to June) and summer 

(August to September).  
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(a) Historic scenario 
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(b) Wet scenario 

Figure 2.9 Number of annual maximum precipitation events within 200 years 
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2.3.2 Temperature  

In addition to precipitation, maximum and minimum temperature at 15 stations is generated in this 

study for the period of 200 years using the WG-PCA model. The results of comparison between generated 

and observed maximum and minimum temperature for the historic climate scenario are shown in Figures 

2.10 for maximum temperature and 2.11 for minimum temperature, respectively. The results for the wet 

climate scenario are shown in Figures 2.12 and 2.13. The increase in temperature is observed for all 

months in the case of the wet climate scenario. This is the indication that the WG-PCA model generates 

temperature with desired statistical attributes. Maximum and minimum temperature is higher by 5.7 °C 

and 5.2°C on average over all months, respectively. IPCC (2007) reports that warming of the winter 

months is faster than warming of the summer months. Results of our study confirm the findings of IPCC. 

The average increase in maximum temperature in winter season (November to April) is 6.2 °C and in 

summer season (May to October) is 5.2°C for the representative stations The change in minimum 

temperature for the two seasons is 5.9 °C and 4.6°C, respectively. These results, therefore, prove that 

climate change impact on temperature is more significant during the winter season, 1.15 °C on average, 

than during the summer season. 
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(b) Stratford 
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(c) Woodstock 

Figure 2.10 Maximum temperature at the representative stations for the historic scenario 
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(c) Woodstock 

Figure 2.11 Minimum temperature at the representative stations for the historic scenario 
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(c) Woodstock 

Figure 2.12 Maximum temperature at the representative stations for the wet scenario 
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(c) Woodstock 

Figure 2.13 Minimum temperature at the representative stations for the wet scenario 
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2.3.3. Conclusions 

Based on the analysis of climate modeling results we conclude that all the meteorological variables 

considered in this study are satisfactorily generated. Therefore, they can be used to assess the 

vulnerability of municipal infrastructure for the City of London.  The results for historic and wet climate 

scenarios show that both meteorological variables, precipitation and temperature, increase during the 

spring season (March to June). Therefore, more frequent and more severe flooding, resulting from the 

snowmelt and precipitation, might be expected in the future. 
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3. Hydrologic modeling  

The meteorological variables generated by the WG-PCA model, precipitation and temperature in this 

study, are used as input into a hydrologic model to further assess the impacts of climate change on the 

hydrologic conditions in the basin. Hydrologic models are mathematical representations of rainfall-runoff 

processes within a basin. They provide essential information, such as peak flow and total run-off, for each 

sub-basin and support for the water resources management activities in the basin. Therefore, the selection 

of an appropriate hydrologic model is a very important step in the climate change impacts assessment 

process.  Results of the hydrologic modeling are directly used in hydraulic analyses that finally provide 

for the assessment of vulnerability of infra-structure to climate change in a basin.  

This study investigates the advantages and drawbacks of several hydrologic model candidates 

considered for use in this study. Table 3.1 shows the comparison of the models frequently used in the 

North America. Among these models, the HEC-HMS is acceptable over all criteria used in the selection 

process. In addition, Cunderlik and Simonovic (2004; 2005) have developed and successfully applied the 

two versions of the HEC-HMS model for the Upper Thames River basin: 1) continuous model and 2) 

event model. In spite of the fact that HEC-HMS is not “the best” model for the use in urban watersheds, 

(i) availability of the calibrated model for the Upper Thames River basin, (ii) limited modelling time and 

resources available for the study, and (iii) limited flow data for most sub-watersheds within the City of 

London boundaries, led to the selection of this model for the use in our study. Selection of the HEC-HMS 

model for hydrologic analyses in this study has some other advantages too:  previously developed model 

structure, shorter model development time, easy modification of   model structure, etc.  
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Table 3.1 Characteristics of potential hydrologic models for use in this study  

Criterion HEC-HMS  SWMM MIKE11 OTTHYMO 

Temporal scale Flexible*  Flexible Flexible 
Flexible 
(limited 

window size) 

Spatial scale Flexible**  Small Area Flexible Flexible 

Processes modeled: 

Event simulation 
Yes Yes Yes Yes 

Continuous simulation Yes Yes Yes No 

Snow acc. and melt Yes Yes Yes Yes 

Interception and 
Infiltration 

Yes Yes Yes Yes 

Evapotranspiration Yes Yes Yes Yes 

Reservoir routing Yes Yes Yes Yes 

Cost Public Domain Public Domain USD 10,000 
The first  
copy for 
$2,999 

Set-up time Medium Long Medium Medium 

Expertise Medium High High Medium 

Technical support 
Annual 

subscription 

Third-party 
vendors 

 

DHI software 
support center 

On-line help 
System 

Documentation Good Good Good  

Ease of use Medium Difficult  Medium Medium 

* the time scale can range from one minute to one month 

**  the spatial scale can range from small to large 
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3.1 The HEC-HMS hydrologic model  

The hydrologic model employed in this study is a semi-distributed model based on the US 

Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS version 3.3) that consists of 

three modules as shown in Figure 3.1: (i) meteorologic module (ii) basin module; and (iii) control module. 

The meteorologic module is a place for the user to describe basin input processes such as the hourly or 

daily precipitation data, evapotranspiration and others. The basin module is for describing the main 

physical processes occurring within a basin such as reservoirs and sub-basins. Lastly, the control module 

is used to set the starting (and ending) dates and time horizon to simulate.  

 

 
Figure 3.1 Three modules of the HEC-HMS model 

 

HEC–HMS hydrologic model can be used as event-driven or continuous-process model depending on the 

goal of a study. The main goal of this study is to assess the impacts of climate change, specifically 

flooding, on the municipal infrastructure for the City of London. Previous work in the Upper Thames 

River Basin concluded that “The increased precipitation scenario (called wet scenario in this 

report) is identified as the critical scenario for the assessment of risks associated with the 

occurrence of floods in the basin” (Cunderlik and Simonovic, 2007, page 574). In addition they 
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state that “A single-event hydrologic modeling should be used for simulating storm and frontal 

rainfall induced floods” (Cunderlik and Simonovic, 2004, page 26). Therefore, the event-driven 

HEC-HMS model is used in this assessment. Event-driven models are designed to simulate basin 

response for individual precipitation-runoff events, so generally moisture balance accounting 

process is simplified and evapotranspiration is not included in the model. Their emphasis is 

placed on infiltration and surface runoff, and their main objective is the evaluation of direct 

runoff. They have serious limitations in estimating runoff from the snowmelt.  The event model 

is however, well suited for the analysis of extreme flood events as requested in this study.  

3.2 Input data for the HEC-HMS model 

The weather generator (WG) model, presented earlier, generates daily precipitation and temperature 

variables at 15 stations within the Upper Thames River basin. However, the HEC-HMS requires extreme 

precipitation data with at least hourly resolution. In addition, spatial resolution of model input data has to 

be adjusted too. The meteorological input data (precipitation) is available at 15 stations within the basin 

and required for each sub-basin in the Upper Thames River basin.  Therefore, the temporal disaggregation 

and the spatial interpolation schemes are implemented to provide the necessary input data.   

3.2.1 Spatial interpolation of model input data (inverse distance method, IDM) 

The spatial interpolation uses the inverse distance method (IDM), quite common in the hydrologic 

practice (Lapen and Hayhoe, 2003). IDM takes a higher weighting factor for target locations closer to the 

measurement locations. Eq. (3.1) shows how the interpolated data at a given location Z, is calculated from 

the measured data. 
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where Zi is known observed data value at a station i, di is the distance from the station i to the required 

location, and p is the exponent. The higher value of p , the more weight  is placed on the stations closer to 

the required location. Normally, the value of p = 2 is used in practice. So, the same value has been 

adopted in this study.  The spatial interpolation, based on the inverse distance method and the location 

information for 15 measurement stations as shown in Table 3.2, is applied to obtain the meteorological 

data for each sub-basin. 

 

Table 3.2 Location information for 15 measurement stations in the Upper Thames River basin  

Station Latitude Longitude 

Blyth 43.72 -81.37 

Dorchester 43.00 -81.02 

Embro 43.25 -80.92 

Exeter 43.35 -81.50 

Foldens 43.02 -80.77 

Fullarton 43.38 -81.20 

Glen Allan 43.67 -80.72 

Ilderton 43.05 -81.42 

London 43.02 -81.15 

St Thomas 42.77 -81.21 

Stratford 43.37 -81.00 

Tavistock 43.32 -80.82 

Waterlood 43.47 -80.52 

Woodstock 43.13 -80.77 

Wroxeter 43.87 -81.15 
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3.2.2 Temporal disaggregation of model input data 

The weather generator model used in the study produces meteorological variables with daily temporal 

resolution that is not sufficient for intense rapidly changing storms. The disaggregation procedure is 

implemented to convert daily data into hourly. The method of fragments (Svanidze, 1977) has been used 

as the most popular method for disaggregation of precipitation data.  The main idea of the method is that 

the fragments are the hourly fractions of daily precipitation, thus they sum to unity as shown in Eq. (3.2).  
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,       (3.2) 

where pi represents a new disaggregated precipitation value, wi is a fragment to be calculated for hour i, oi 

is a hourly data from the observed hourly time series chosen to produce fragments, and n is the number of 

hours in the time series (e.g. 12 hours or 24 hours).  In our case n = 24. 

For producing accurate hourly data from a daily data by fragments, the choice of the observed hourly 

time series is a key task. Therefore, Srikanthan and McMahon (1982) suggested choosing the series that 

most closely matches with characteristics of data being disaggregated, e.g. total precipitation. Choosing a 

closely matching set of fragments will ensure that precipitation events are generated with the proper 

shapes and characteristics. Another issue with method of fragments is the repetition of series in the case 

of short observation period. Porter and Pink (1991) proposed a method of synthetic fragments to 

overcome the repetition using K-NN method. Wòjcik and Buishand (2003) proposed another method that 

chooses a randomly selected fragment set from the k closest matches instead of choosing only one 

fragment set that the most closely matches. Wey (2006) suggested a new method of fragments to properly 

reproduce the characteristics of the original observed data, e.g. seasonality. Her work has been used in the 

climate change impact study conducted for the Upper Thames River basin and used as the background for 

the work presented here. Wey (2006) disaggregated only days which receive more than 25 mm of rain in 
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order to reduce the computational burden. Following the work of Wey (2006), this study disaggregates 

daily data into hourly using the following procedure: 

 

1. Extract the events from the observed historical hourly data set from 1984 to 2003. Events are 

considered separate if there is no-precipitation between them for more than 5 hours. 

2. When a precipitation value is different from zero, i.e., precipitation event occurs, select 

neighbors from the historical events extracted in Step 1 on the basis of total precipitation. The 

ratios of lower bound and upper bound for total precipitation to select the neighbors are 0.8 

and 1.2, respectively. In addition, the temporal window is 60 days, e.g. if current day is 15th 

Jan, then temporal window is from 1st Jan to 30th Jan. All days within the temporal window are 

regarded as potential neighbors to the current feature vector. 

3. Select a historical event among the neighbors using random process. 

4. According to the hourly time sequence of the selected historical event, disaggregate a daily 

precipitation value into hourly using Eq. (3.2). 

 

This study generates daily data for 200 years and in any given year there are a number of events. The 

main objective of this study is to perform the flood frequency analysis of extreme annual flood events. 

Therefore, we select 5-day annual extreme event that produces the largest annual event (200 events 

altogether) for the entire basin.  Fig. 3.2 and Fig. 3.3 show the extreme flood hyetographs at six stations 

that represent upper, middle, and low regional characteristics in the basin. The results for other stations 

are available upon request. 
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Figure 3.2 Hyetographs of an annual extreme event for the historic scenario 
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Figure 3.3 Hyetographs of an annual extreme event for the wet scenario 
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3.3 Delineation of model sub-basins and model calibration  

Cunderlik and Simonovic (2004) have developed the HEC-HMS model with 34 sub-basins (Figure 

3.4) for the Upper Thames River basin and successfully applied the model to assess climate change 

impacts on the main control points in the basin. The aim of this study is to assess the vulnerability of 

municipal infrastructure to climate change in the City of London, which requires detailed description of 

the hydrologic conditions within the City of London. The procedure implemented here involves nesting of 

additional sub-basins (for better spatial resolution within the City boundaries) into original model 

structure that includes 34 sub-basins for the whole basin. The watershed delineation process in the City of 

London includes the Medway Creek, Stoney Creek, Pottersburg Creek, Dingman Creek as well as the 

main Thames river channel. 

 

Figure 3.4 HEC-HMS model with 34 sub-basins  
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3.3.1 Delineation of the sub-basins within the City of London 

To establish the proper spatial model resolution within the City of London, all locations that require 

streamflow data are identified by the City and combined with the required locations for the hydraulic 

model (HEC-RAS) used for calculation of water surface elevation.  Figure 3.5 (a) shows points of the 

interest to the City (stars) and the City boundary (dotted line). Figure 3.5 (b) shows all the locations 

required for hydraulic model analyses.   

Taking into consideration all locations of interest the territory of the City has been delineated into 

sub-watersheds as shown in Fig. 3.6 and Fig. 3.7. There are four major sub-watersheds in the city: 

Medway Creek, Stoney Creek, Pottersburg Creek, and Dingman Creek, which are divided into 5, 6, 4, and 

16 sub-watersheds, respectively (Fig. 3.6). In addition to four sub-watersheds, this study also delineates 

the main river basin within the city. At the end, the complete HEC-HMS model used in this study consists 

of 72 sub-basins, 45 reaches, 49 junctions, and 3 reservoirs (Fig. 3.8).  
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(a) Locations of interest to the City of London 

  

(b) Locations that require flow data for hydraulic analyses 

Figure 3.5 Locations used in the sub-watershed delineation process  
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 (a) Medway Cr. (b) Stoney Cr. 

 

   

 (c) Pottersburg Cr. (d) Dingman Cr. 

Figure 3.6 Delineation of 4 main sub-watersheds in the City of London 
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Figure 3.7 Delineation of the Thames River into sub-watersheds within the City of London 

 

Figure 3.8 The HEC-HMS model structure 
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3.3.2 Model calibration 

This study modified the HEC-HMS model of Cunderlik and Simonovic (2004) with the more detailed 

spatial resolution within the City of London boundaries. Model modifications require calibration of 

parameters to allow for accurate calculation of streamflow. Cunderlik and Simonovic (2004) performed a 

detailed investigation of rainfall events suitable for calibration. They selected an hourly rainfall event 

from to July 05 to July 16 of 2000 that covered almost over the entire basin. However, the observed 

streamflow data for the basin are limited to only few station gauges at Medway, Ealing, Dingman, and 

Byron stations. There are no measured streamflow data available for the Stoney and the Pottersburg Creek 

during the July 2000 event. The Stoney Creek is affected by the backwater effect from the North Thames 

River, which further complicates the selection of proper measurement data for calibration. The Upper 

Thames River Conservation Authority (UTRCA), therefore, recommends for Stoney Creek the flood 

event of October 4 – 7 in 2006 that is not affected by the backwater effect.  

The HEC-HMS model provides several methods for river routing including Modified Puls, 

Muskingum, lag, kinematic wave, and Muskingum-Cunge (US Army Corps of Engineer, 2008). In this 

study, the Modified Puls method known as storage routing or level pool routing is used. It is based on a 

finite approximation of the continuity equation. For the Modified Puls method, the continuity equation is 

written as Eq. (3.3). 

t

S
OI t

tt 


        (3.3) 

where tI is the average upstream flow (inflow to reach) during a period ǻt; tO  is the average 

downstream flow (outflow from reach) during a period ǻt; and ǻSt is change in storage in the reach 

during time t. Eq. (3.3) can be rearranged to isolate the unknown variables by a simple backward 

differencing scheme as shown in Eq. (3.4). 
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where It-1 and I t are inflow hydrograph ordinates at times t-1 and t, respectively; Ot-1 and Ot are outflow 

hydrograph ordinates at times t-1 and t, respectively; and St-1 and St represent storage in reach at times t-1 

and t, respectively. In Eq. (3.4), terms on the left hand side are unknown, two unknown variables at time 

t: St and Ot. Therefore, a functional relationship equation between storage and outflow is required to solve 

Eq. (3.4). In this study, relationships between storage and outflow are defined for all newly added reaches 

utilizing the results of the UTRCA hydraulic model, HEC-RAS, calculations as shown in Figure 3.9. The 

flow areas and the amount of outflows for each cross-section are calculated from the HEC-RAS 

simulations corresponding to the various flows. The relationship between storage and outflow then can be 

derived from the outflow and the storage of a certain channel section calculated from multiplying the 

average flow area with the length of the channel section. Figures 3.10 and 3.11 show some of the 

relationships developed in this study. 

 

 

Figure 3.9 Example of a set of water-surface profiles between section A and B of a channel 
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Figure 3.10 Relationships between storage and outflow for the sub-watersheds in the basin 
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Figure 3.10 (continued) 
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Figure 3.11 Relationships between storage and outflow for the main stream (Upper Thames River) 
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Two events, October 4-7, 2006 event for the Stoney Creek andJuly 5-16, 2000 for other sub-basins, 

are used to calibrate the HEC-HMS model parameters including time of concentration, storage coefficient, 

initial discharge, initial loss, and so on. The HEC-HMS provides two optimization schemes of calibration 

of model parameters: Nelder Mead and universal gradient search. This study used the Nelder Mead 

scheme to optimize the parameters for the basin. Figure 3.12 shows the calibration results for each station 

with available observation data.  Since there are no available measurements for the Pottersburg Creek, the 

Ealing station located on the South Thames is used to check the calibration result for the Pottersburg 

Creek. The comparison between simulated and observed flows illustrates that all model parameters are 

calibrated well.  In addition to the sub-watersheds, this study re-calibrated the parameters for the Thames 

River and compared the simulation result with the observed data at the Byron station for the July 2000 

flood event. Comparison results shown in Fig. 3.13 demonstrate that the HEC-HMS model developed in 

this study is calibrated (to the best level under data limitation) for use in further hydrologic analyses.  
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Figure 3.12 Calibration results for the main stations in the basin 
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Figure 3.13 Calibration results for the Byron station (July 2000) 
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In order to further verify the HEC-HMS model developed in this study the simulation of synthetic 

storms used in the previous sub-watershed studies (Paragon Engineering Limited, 1995a; 1995b; Soil-Eng 

Limited, 1995, Delcan, 2005) has been done. Table 3.3 and Fig.3.14 show the characteristics of synthetic 

storms, the control points and the Chicago temporal distribution of precipitation with different duration 

time, respectively, for the three sub-watersheds: Medway, Stoney, and Pottersburg. The peak flow is 

computed using the OTTHYMO model (Clarifica Inc., 2002). Table 3.4 shows the comparison of the 

results obtained with the OTTHYMO model with the results of the HEC-HMS model using the same 

synthetic flood events. This comparison shows acceptable agreement in spite of the fact that these results 

are obtained using a very different approach.  

Table 3.3 Synthetic storms and peak flows in the sub-basins 

Creek 

Storm Peak flow (m3/sec) 

Total precipitation  
(mm) 

Duration  
(hour) 

Distribution 
Check point A 

(Point of interest) 
End of Creek 

Medway 25.00 4 Chicago 7.9 7.9 

Pottersburg  83.22  6 Chicago 25.6 104.0 

 Stoney 66.11 3 Chicago 24.0 25.7 

 

Table 3.4 Peak flow (m3/sec) simulation results  

Sub-watershed 
Point A Outlet 

OTTHYMO HEC-HMS OTTHYMO HEC-HMS 

Medway  7.9 7.7 7.9 7.8 

Pottersburg 25.6 54.7 104.0 93.3 

Stoney 24.0 29.0 25.7 37.0 
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Figure 3.14 Rainfall hyetograph for three creeks 
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Drainage area of the Dingman Creek is the largest in the City of London, which implies that this basin is 

of the highest importance for this study. Fig. 3.15 represents the check points (M1 to M23) of the sub-

watershed study conducted in 2005 by Delcan (2005). Therefore, in this study eight check points are 

selected (M1, M2, M3, M8, M9, M10, M14, and M17) and an  attempt is made to provide the comparison 

of simulation results obtained by the HEC-HMS model with those obtained by the SWMHYMO model 

used in the previous study (Delcan, 2005). This comparison is based on 24 hrs SCS synthetic storm 

shown in Fig. 3.16.The results of this comparison for eight points selected in Table 3.5 show reasonable 

agreement in most cases. 

From the model verification it is concluded that the HEC-HMS model is calibrated very well and is 

suitable for the hydrologic analyses using precipitation events generated by the WG model for two 

climate scenarios.   

 

Table 3.5 Peak flow at the Dingman Creek check points  

 
M1 M2 M3 M8 

SWM 
HYMO 

HMS 
SWM 

HYMO 
HMS 

SWM 
HYMO 

HMS 
SWM 

HYMO 
HMS 

Peak flow 
(m3/sec) 

19.1 21.6 30.2 38.0 41.0 58.6 91.6 106.7 

 
M9 M10 M14 M17 

SWM 
HYMO 

HMS 
SWM 

HYMO 
HMS 

SWM 
HYMO 

HMS 
SWM 

HYMO 
HMS 

Peak flow 
(m3/sec) 

91.6 97.4 116.0 98.2 130.4 108.3 122.2 118.2 
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Figure 3.15 Streamflow check points of the previous sub-watershed study (Delcan, 2005) 
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Figure 3.16 Time distribution of 24 hrs SCS synthetic storm  
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3.4 Application of the HEC-HMS model to future climate scenarios 

The WG model provides as input for hydrologic analyses 200 years of daily precipitation data for two 

climate scenarios, historic and wet. First, the disaggregation is used to convert daily data into hourly. 

Then the hydrologic model, HEC-HMS, is used to convert climate input into flow data within the City of 

London. The annual extreme precipitation events for each of 200 years are selected and used as input into 

the HEC-HMS model.  

Using the selected 200 annual extreme precipitation events, this study simulates 200 flood events for 

two climate scenarios, total of 400 flood events.  For each flood event, the streamflow values are 

calculated for each sub-basin and each control point. Each simulation run is done using 5-day time 

horizon.  The simulation results provide the essential hydrologic information for each sub-basin and each 

control point for two climates and 200 years.  Within the region of interest we have identified 171 

locations of interest.  From 171 locations, Figures 3.17 and 3.18 illustrate the simulation results for an 

event at six locations (Stoney, Dingman, Medway, Ealing, Forks, and Byron stations) for the historic and 

the wet climate scenarios, respectively. Three locations (Stoney, Dingman, and Medway stations) are 

selected to show the hydrograph for the sub-watersheds within the City of London and other three 

locations, i.e. Ealing, Forks, and Byron stations, are selected to present the results for the South Branch, 

North Branch and the main Thames, respectively.  
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Figure 3.17 Hydrographs of an event for the historic scenario 
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Figure 3.18 Hydrographs of an event for the wet scenario 
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3.5 Flood frequency analysis 

Extreme precipitation events and corresponding floods can cause loss of life, damage to environment 

and significant material damage to population that may be affected by flooding. Therefore, the likelihood 

or probability of such severe events is the basic information for flood plain management, flood control 

design, and operations of flood protection infrastructure (Maidment, 1992). The frequency analysis is 

used to relate the magnitude of extreme events to their frequency of occurrence.  

The results of the hydrologic analyses (using the HEC-HMS model) in this study are used as input 

into the hydraulic model (HEC-RAS) that calculates flood water levels to be used in flood plain 

management. For flood frequency analysis, annual extreme values should be fit to the appropriate extreme 

value statistical distributions such as Gumbel (less used nowadays) or Log Pearson III. The procedure of 

frequency analysis conducted in this study is illustrated in Fig. 3.19. First, the WG model is used to 

generate daily climate data for 200 years. Then, disaggregation scheme is employed to produce hourly 

data.  Next step is to extract the annual extreme precipitation data.  The annual extreme precipitation data 

is selected on the basis of 5-day total precipitation to capture the temporal variability of extreme 

precipitation events for 15 stations in the basin. 5-day moving window is selected on the basis of historic 

data analysis. Each extreme precipitation event, then, is simulated using the HEC-HMS hydrologic model 

to calculate the hydrographs at the points of interest within the basin. In the follow up step the annual 

peak flow is extracted from each flood hydrograph.  In this study, 200 annual peak flow values at each 

location of interest are collected and used in the flood frequency analysis.  
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Figure 3.19 Procedure of flood frequency analysis 
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The annual peak flow values calculated by the HEC-HMS for successive 200 years can be considered 

to be independent and identically distributed. The flow data is fitted to the probability distribution to 

define the exceedance probability. In hydrology, the return period is more often used than the exceedance 

probability, e.g. 100-year flood. In general, xp is the T-year flood for 

p
T




1

1
        (3.5) 

where p is cumulative probability defined from the distribution with parameters that describe the 

character of the probability distribution of a random variable. Moments and quantiles are used to describe 

the location or central tendency of a random variable. The mean ( X ) and variance ( 2
X ), second 

moment about the mean, of a random variable X are defined as in Eq. (3.6) and Eq. (3.7), respectively. 

 

][E XX         (3.6) 

])[(E)(Var 22
XX XX         (3.7) 

 

The parameter estimation of a probability distribution is required to produce frequencies beyond the range 

of the available data.  

There are several general approaches available for estimation of parameters: the method of moments, 

the method of L moment, and the maximum likelihood method. The maximum likelihood method 

provides very good statistical properties for large samples. This study used the method of L moment for 

parameter estimation of distribution. The first L-moment estimator ( 1 ) is the mean as shown in Eq. (3.6). 

The second L moment (2 ) is a description of scale based on the expected difference between two 

randomly selected observations in Eq.(3.7). 

 )2|2()2|1(2 E
2

1
XX        (3.7) 
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where X(i|n) is the ith largest observation in a sample size n. L-moment measures of skewness and kurtosis 

are  

 )3|3()3|2()3|1(3 2E
3

1
XXX        (3.8) 

 )4|4()4|3()4|2()4|1(4 33E
4

1
XXXX      (3.9) 

 

Sample estimators of L moments, therefore, are linear combinations of the ranked observation. As a result, 

L-moment estimators of the dimensionless coefficient of variation and skewness are almost unbiased 

while the product-moment estimators of the coefficients of variation and skewness are highly biased and 

variable in small samples. L moments can be written as functions of probability-weighted moments 

(PWMs) defined as Eq. (3.10).  

 

 r
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where F(X) is cumulative density function for X. The first estimator b0 of 0 is the sample mean (X ). 

Other unbiased PWM estimators of r for r 1 are 
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For any distribution, L moments are easily calculated from Eq. (3.14). 
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Using Eq. (3.14), estimates of the i  are obtained by replacing the unknown r by sample estimatorsrb . 

For the Gumbel distribution, for example, the estimators of L moments are represented by Eq.(3.15). 
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      (3.15) 

 

In this study, three probability distributions for extreme events are used: Gumbel, Generalized Extreme 

Value (GEV), and Log-Pearson type III. Fig. 3.20 shows the results of the flood frequency analysis for 

two climate scenarios (historic and wet scenarios) at the main locations in the basin and three probability 

distributions. From the visual inspection of the results it is evident that each probability distribution 

provides different flood frequency.  In previous studies for flood plain management (Delcan, 2005), flood 

frequency is calculated from the peak obtained using the Chicago time distribution with the precipitation 

depth selected from the Intensity-Duration-Frequency (IDF) curves developed by Gumbel distribution. In 

addition, the Gumbel distribution is fit to the most of main locations in the basin as shown in Table 3.6 

although other distributions (i.e., GEV and LP III) are also acceptable. Therefore, the Gumbel distribution 

is used in this study in an attempt to compare the results of flood frequency analysis in this study with 

those used in the current flood plain management by the City of London.  
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Table 3.6 Goodness-of-fit test for the main locations 

 

Test 
Distri-
butions 

Folks North South Dingman Medway Stoney 
Potters- 

burg 

Chi-
square 
Test 

Gumbel 20.48 46.24 16.00 10.40 13.44 17.28 19.04 

GEV 11.84 42.24 16.96 14.24 19.20 18.40 14.72 

LP III 14.40 36.32 9.29 32.16 15.36 16.46 4.80 

P-value 

Gumbel 0.0838 0.0001 0.2492 0.5811 0.3379 0.1868 0.1219 

GEV 0.4586 0.0001 0.1512 0.2856 0.0838 0.1041 0.2571 

LP III 0.2757 0.0003 0.6784 0.0023 0.2222 0.1711 0.9644 
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Figure 3.20 Flood frequency analyses for two climate scenarios 
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Figure 3.20 (Continued) 
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Fig. 3.22 provides the comparative presentation of flood frequency obtained using the Gumbel 

distribution and denoted as historic and wet, respectively. As expected, the flood frequency line for the 

wet scenario is shifted upward from the line for the historic scenario due to climate change impacts. 

Interestingly, the current flood flows used to build floodplain map in the previous works at some points 

(South Thames and Medway station) are overestimated as compared to the flood flows corresponding to 

the historic and wet climate scenarios while the flood flows are underestimated at the North Thames, 

Stoney and Pottersburg stations. For Forks and Dingman station, however, the flood frequency of the 

historic climate scenario is similar to the current and the wet scenario provides higher flood flows as 

expected.  

In the previous work (Paragon Engineering Limited, 1995a; 1995b; Soil-Eng Limited, 1995, Delcan, 

2005), only the IDF curve for the London station is used to calculate flood frequency for the whole 

territory of the City of London not reflecting the spatial heterogeneity of precipitation in the basin. 

However, in this study 15 stations available in the basin are used to properly capture the spatial 

heterogeneity of climate variables. In addition, previous flood frequency analysis is done using the peak 

flow from the IDF curve for one station, i.e. it is assumed that the return period for a precipitation event is 

equal to the return period of a corresponding flood – linear relationship.  However, the hydrologic 

literature is pointing to the high level of non-linearity in this relationship (Pinol et al., 1997; Ceballos and 

Schnabel, 1998), difference can be up to 3 - 48% (Latron et al., 2008). In this study the flood flow 

frequency is calculated directly from the annual peak flow data simulated by the hydrologic model, not 

from the frequency of precipitation data.  Due to the methodological difference the flood frequency 

results of this study should not be directly compared with the previous studies. The results of this study, 

as well as the previous work, should be verified by increasing flow monitoring in the basin.  Based on the 

observed flow data that are currently insufficient, the hydrologic model can be improved and more 

accurately calibrated for all sub-basins. Consequently, the more accurate flood frequency can be obtained. 
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Figure 3.21 Procedure for flood frequency analysis used in the previous works 
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Figure 3.22 Flood frequency for two climate scenarios  



- 80 - 

 

 

 

 

0

30

60

90

120

150

180

0 50 100 150 200 250

Pe
ak

 F
lo

w
 (m

3 /
se

c)

Return Periods

Historic (Gumbel)

Wet (Gumbel)

 

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

Pe
ak

 F
lo

w
 (m

3 /
se

c)

Return Periods

Historic (Gumbel)

Wet (Gumbel)

 

 (e)Dingman station (f) Medway station 

0

10

20

30

40

50

60

0 50 100 150 200 250

Pe
ak

 F
lo

w
 (m

3 /
se

c)

Return Periods

Historic (Gumbel)

Wet (Gumbel)

   

0

20

40

60

80

100

120

0 50 100 150 200 250

Pe
ak

 F
lo

w
 (m

3 /
se

c)

Return Periods

Historic (Gumbel)

Wet (Gumbel)

 

 (g) Stoney station (f) Pottersburg (Sta. 5.51) 

Figure3.22 (Continued) 
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4. Conclusions 

This report provides the description of the background analyses for the study “City of London: 

Vulnerability of the municipal infrastructure to climate change”. As the first background report this 

document provides description of the climate and hydrologic modeling.  

The climate modeling is performed using the WG model that provides two precipitation and 

temperature scenarios named historic and wet. The historic scenario is assumed to be the lower bound of 

the potential future climate state, whereas the wet scenario represents the upper bound. The generated 

climate scenarios are transformed into the hydrologic variables using the HEC-HMS model to further 

assess the climate change impacts on the hydrologic conditions in the basin. Lastly, the frequency 

analysis is performed to provide flood flow frequency (return period) at various locations within the basin 

where flood data is required for further floodplain analyses. 

Using 43 years of historic data from 1964 to 2006 at 15 stations in the basin, the WG-PCA model 

generates a feasible future scenario of precipitation and temperature as the historic scenario. In addition, 

this study employs one GCM data set (CCSRNIES B21) for time slice of 2040-2069 to generate a feasible 

future scenario as the wet scenario.  

The results of climate modeling demonstrate that the WG-PCA model reproduces very well the 

historic statistical values (25th, 50th, 75th percentile). It also provides the wider range of values for climate 

variables by the implementation of perturbation process that generates data outside the bounds of the 

observed values. According to the monthly climate shift of the GCM data used with the wet climate 

scenario, the amount of precipitation from January to September (9 months) is higher. The significant 

changes are observed during the spring season from March to June and the highest change occurs in May. 

These results indicate that more severe and more frequent floods may occur during this period under the 

wet climate scenario.   
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In addition to precipitation, this study generates maximum and minimum temperature at 15 stations 

within the basin. Maximum and minimum temperature for the wet scenario increases by 5.7 °C and 5.2°C 

on average over all months due to the climate change. The change of maximum temperature for the winter 

season (6.2 °C) is larger than for the summer season (5.2°C), which indicates that floods resulting from 

the combined effect of snowmelt and precipitation might occur more frequently in the future.  

The weather generator (WG) model results are spatially and temporally disaggregated for use with the 

hydrologic model. The HEC-HMS hydrologic model is developed with 72 sub-basins, 45 reaches, 49 

junctions, and 3 reservoirs. It is used to simulate the annual extreme events for 200 years and provide the 

annual peak flows for flood frequency analysis.  

Several probability distributions (Gumbel, LP3, and GEV) are tested for flood flow frequency 

analysis. The Gumbel distribution is selected for use with the historic and the wet climate scenarios. 

Results of the analyses are compared with the current flood flow frequency used by the Upper Thames 

River Conservation Authority (UTRCA) for flood plain management. Direct comparison of the results is 

not possible due to the major methodological difference between this study and previous work.   

This study developed the hydrologic model with the insufficient amount of observed data for various 

sub-basins. This deficiency caused the difficulty in model calibration and resulted in limited ability of the 

model to accurately describe the hydrologic response of the system to an event. Therefore, continuous 

monitoring system at the various sites in the basin is needed to provide the accurate observed hydrologic 

information. These observations will be very valuable for the verification of flood frequency analyses 

performed in this study.   
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Appendix 1: Flood frequency at various locations 

1. 100 yr frequency (Unit: m3/sec) 

River 

Number of 
River 

Station in 
HEC-
RAS(1) 

Historic 
(1) 

Wet 
(2) 

UTRCA 
(3) 

Difference 
between Historic 

and UTRCA 
(1) – (3) 

Difference 
between Wet 
and UTRCA 

(2) – (3) 

Ballymonte  2511.324 11.5 12.6 5.4 6.1 7.2 

Ballymonte  788.7309 16.0 17.6 6.5 9.5 11.1 
Northdale  1114.278 1.1 1.2 1.0 0.1 0.2 

Northdale  457.1955 3.5 4.0 2.6 0.9 1.4 
Powell Drain 1355.036 2.6 2.9 2.6 -0.1 0.3 

Powell Drain 699.343 3.1 3.5 2.8 0.3 0.7 

Powell Drain 269.5363 7.8 8.8 5.9 1.9 2.9 
Stoney Creek 10028.42 15.9 19.8 8.4 7.5 11.4 

Stoney Creek 9182.6 17.1 19.1 8.4 8.7 10.7 
Stoney Creek 6862.462 23.7 26.5 8.4 15.3 18.1 

Stoney Creek 6242.931 41.0 45.4 14.3 26.7 31.1 

Stoney Creek 4736.068 42.3 46.9 13.3 29.0 33.6 
Stoney Creek 2881.127 51.3 57.1 14.3 37.0 42.8 

Stoney Creek 1564.418 55.9 62.2 31.0 24.9 31.2 
Pottersburg 14213.43 33.42 39.81 18.8 14.6 21.0 
Pottersburg 9600.814 68.17 79.41 20.1 48.1 59.3 
Pottersburg 8049.473 74.86 86.95 30.75 44.1 56.2 
Pottersburg 6780.69 83.28 96.42 50.49 32.8 45.9 
Pottersburg 5799.997 85.51 98.47 55.47 30.0 43.0 
Pottersburg 2696.997 109.71 125.87 55.5 54.2 70.4 
Pottersburg 1771.452 120.69 138.31 73 47.7 65.3 
Pottersburg 899.4334 123.45 141.43 89.6 33.9 51.8 

South Thames 10634.24 572.7 660.0 705.7 -133.0 -45.6 
North Thames  14281.62 842.5 1056.6 745.0 97.5 311.6 

North Thames 4364.224 902.4 1099.5 815.0 87.4 284.5 

Main Thames  11187.99 1412.3 1656.0 1489.0 -76.7 167.0 
Medway Creek 12534.02 64.1 66.4 157.1 -93.0 -90.7 
(1) represents the distance from the end of river  
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River 

Number of 
River 

Station in 
HEC-
RAS* 

Historic 
(1) 

Wet 
(2) 

UTRCA 
(3) 

Difference 
between Historic 

and UTRCA 
(1) – (3) 

Difference 
between Wet 
and UTRCA 

(2) – (3) 

Medway Creek 8340.125 65.8 68.3 166.0 -100.1 -97.7 

Medway Creek 6814.245 65.8 68.3 165.5 -99.7 -97.3 

Medway Creek 4401.77 68.8 70.6 165.7 -96.8 -95.1 

Medway Creek 2502.589 71.0 72.1 168.6 -97.6 -96.4 

Mud Creek  2397.303 0.8 0.8 6.7 -6.0 -5.9 

Mud Creek  1400.737 3.9 4.3 15.5 -11.6 -11.3 

Mud Creek  655.1806 6.3 6.9 15.5 -9.2 -8.6 

Mud Creek  263.5877 9.4 10.2 20.1 -10.7 -9.8 

Dingman (Main) 29643.436 71.5 80.8 25.7 45.8 55.1 

Dingman(Main) 29282.363 71.7 81.1 26.7 45.0 54.4 

Dingman(Main) 28760.541 71.4 80.8 28.3 43.1 52.5 

Dingman(Main) 27123.502 74.7 84.4 31.2 43.5 53.2 

Dingman(Main) 24269.293 87.4 98.0 34.0 53.4 64.0 

Dingman(Main) 22443.02 106.2 119.4 72.0 34.2 47.4 

Dingman(Main) 18841.631 105.9 118.8 80.3 25.6 38.5 

Dingman(Main) 17717.428 113.0 126.4 90.0 23.0 36.4 

Dingman(Main) 15770.021 110.5 123.6 112.3 -1.8 11.3 

Dingman(Main) 12864.36 110.1 123.1 113.7 -3.6 9.4 

Dingman(Main) 5712.2881 118.9 133.1 127.8 -8.9 5.3 

Dingman(Trib.6) 2622.8225 6.4 7.2 0.9 5.5 6.3 

Dingman (Trib.5) 1429.6442 7.7 8.6 48.6 -40.9 -40.0 

Dingman (Trib.5) 2181.5747 12.1 13.5 57.7 -45.6 -44.2 

Dingman (Trib.4) 895.04858 2.5 2.7 5.2 -2.7 -2.5 

Dingman (Trib.4) 2394.6248 11.6 12.6 5.2 6.4 7.4 

Dingman (Trib.4) 2006.9204 12.1 13.2 6.1 6.0 7.1 

Dingman (Trib.4) 751.81909 13.5 14.8 11.0 2.5 3.8 

Dingman (Trib.4) 588.14539 18.3 20.0 11.0 7.3 9.0 

Dingman (Trib.3) 4832.0176 2.2 2.4 9.4 -7.2 -7.0 

Dingman (Trib.3) 3164.4568 7.1 7.7 8.6 -1.5 -0.9 

Dingman (Trib.3) 1062.6754 10.7 11.6 10.4 0.3 1.2 

Dingman (Trib.11) 3514.9307 5.2 5.4 4.0 1.2 1.4 

Dingman (Trib.11) 610.84808 12.1 12.7 8.1 4.0 4.6 

Dingman (Trib.2) 5177.5825 3.3 3.6 14.4 -11.1 -10.8 

Dingman (Trib.2) 3926.3052 5.8 6.2 21.2 -15.4 -15.0 
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River 

Number of 
River 

Station in 
HEC-
RAS* 

Historic 
(1) 

Wet 
(2) 

UTRCA 
(3) 

Difference 
between Historic 

and UTRCA 
(1) – (3) 

Difference 
between Wet 
and UTRCA 

(2) – (3) 

Dingman (Trib.2) 1458.7761 8.4 9.0 23.8 -15.4 -14.8 

Dingman (Trib.10) 784.34576 5.4 5.8 5.0 0.4 0.8 

Dingman (Trib.9) 1649.277 0.8 0.8 4.3 -3.5 -3.5 

Dingman (Trib.8) 1354.2716 3.3 3.5 4.5 -1.2 -1.0 

Dingman (Trib.7) 2297.6155 5.3 5.7 9.8 -4.5 -4.1 

 sum 
6272.8 

(*1.7 %) 
7310.8 

(*18.6 %) 
6165.2 
(   -   ) 

** 1.6 ** 17.4 

 

* represents the percentage of change in flow as compared to current UTRCA 

**  represents the average flow  
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2. 250 yr frequency 

River 

Number of 
River 

Station in 
HEC-RAS 

Historic 
(1) 

Wet 
(2) 

UTRCA 
(3) 

Difference 
between Historic 

and UTRCA 
(1) – (3) 

Difference 
between Wet 
and UTRCA 

(2) – (3) 
Ballymonte  2511.324 13.1 14.4 6.6 6.5 7.8 
Ballymonte  788.7309 18.3 20.1 8.0 10.3 12.1 
Northdale  1114.278 1.3 1.4 1.3 -0.1 0.1 
Northdale  457.1955 4.1 4.6 3.2 0.9 1.4 

Powell Drain 1355.036 3.0 3.3 3.1 -0.1 0.2 
Powell Drain 699.343 3.6 4.0 3.6 0.0 0.4 
Powell Drain 269.5363 9.1 10.1 7.1 2.0 3.0 
Stoney Creek 10028.42 18.4 20.5 10.0 8.4 10.5 
Stoney Creek 9182.6 19.8 22.1 10.0 9.8 12.1 
Stoney Creek 6862.462 27.4 30.6 10.2 17.2 20.4 
Stoney Creek 6242.931 47.7 52.2 17.5 30.2 34.7 
Stoney Creek 4736.068 48.7 53.9 16.2 32.5 37.7 
Stoney Creek 2881.127 59.2 65.7 17.2 42.0 48.5 
Stoney Creek 1564.418 64.5 71.5 35.9 28.6 35.6 
Pottersburg 14213.43 39.3 46.6 21.4 17.9 25.2 
Pottersburg 9600.814 79.5 92.3 23.6 55.9 68.8 
Pottersburg 8049.473 87.2 101.0 35.9 51.3 65.1 
Pottersburg 6780.69 96.9 111.9 67.0 29.9 44.9 
Pottersburg 5799.997 99.5 114.2 64.4 35.1 49.8 
Pottersburg 2696.997 127.4 145.8 64.4 63.0 81.4 
Pottersburg 1771.452 140.1 160.1 87.4 52.7 72.7 
Pottersburg 899.4334 143.3 163.7 103.2 40.1 60.5 

South Thames 10634.24 660.3 760.0 849.5 -189.2 -89.6 
North Thames 14281.62 962.4 1209.2 935.0 27.4 274.2 

North Thames 4364.224 1031.5 1258.1 1107.0 -75.5 151.1 

Main Thames 11187.99 1614.9 1891.9 1834.0 -219.0 57.9 
Medway Creek 12534.02 75.6 78.1 182.3 -106.7 -104.2 

Medway Creek 8340.125 77.3 79.9 193.6 -116.2 -113.6 
Medway Creek 6814.245 77.3 79.9 193.4 -116.1 -113.5 

Medway Creek 4401.77 80.6 82.3 193.7 -113.1 -111.3 

Medway Creek 2502.589 82.9 84.0 197.2 -114.3 -113.2 
Mud Creek 2397.303 0.9 1.0 9.0 -8.2 -8.1 

Mud Creek 1400.737 4.5 4.9 21.0 -16.5 -16.1 
Mud Creek 655.1806 7.3 7.9 21.0 -13.8 -13.1 

Mud Creek 263.5877 10.8 11.7 27.6 -16.8 -15.9 
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River 

Number 
of River 

Station in 
HEC-
RAS 

Historic 
(1) 

Wet 
(2) 

UTRCA 
(3) 

Difference 
between Historic 

and UTRCA 
(1) – (3) 

Difference 
between Wet 
and UTRCA 

(2) – (3) 

Dingman(Main) 29643.436 83.3 93.7 26.7 56.6 67.0 

Dingman(Main) 29282.363 83.5 94.0 26.7 56.8 67.3 

Dingman(Main) 28760.541 83.1 93.7 29.4 53.7 64.3 

Dingman(Main) 27123.502 87.0 97.9 32.4 54.6 65.5 
Dingman(Main) 24269.293 101.8 113.8 35.3 66.5 78.5 

Dingman(Main) 22443.02 123.7 138.7 102.5 21.2 36.2 
Dingman(Main) 18841.631 123.3 137.9 113.5 9.8 24.4 

Dingman(Main) 17717.428 131.5 146.6 127.2 4.2 19.4 
Dingman(Main) 15770.021 128.5 143.3 125.3 3.2 18.0 

Dingman(Main) 12864.36 128.0 142.8 125.2 2.8 17.6 

Dingman(Main) 5712.2881 138.2 154.4 132.4 5.8 22.0 
Dingman (Trib.13) 3457.2783 3.3 3.8 2.9 0.4 0.9 

Dingman (Trib.12) 1080.8469 11.3 12.6 2.1 9.2 10.5 
Dingman (Trib.12) 3098.6504 4.2 4.7 1.7 2.5 3.0 

Dingman (Trib.12) 2213.1494 19.9 22.2 3.8 16.1 18.4 

Dingman (Trib.12) 1148.9613 28.5 31.9 6.2 22.3 25.7 
Dingman (Trib.6) 2622.8225 7.5 8.4 0.9 6.6 7.5 

Dingman (Trib.5) 1429.6442 9.0 10.0 76.8 -67.8 -66.8 
Dingman (Trib.5) 2181.5747 14.1 15.7 100.5 -86.4 -84.8 

Dingman (Trib.4) 895.04858 2.9 3.1 5.5 -2.6 -2.4 
Dingman (Trib.4) 2394.6248 13.5 14.6 7.7 5.8 6.9 

Dingman (Trib.4) 2006.9204 14.1 15.3 7.9 6.2 7.4 

Dingman (Trib.4) 751.81909 15.8 17.1 12.5 3.3 4.6 
Dingman (Trib.4) 588.14539 21.3 23.2 12.5 8.8 10.7 

Dingman (Trib.3) 4832.0176 2.5 2.7 12.9 -10.4 -10.2 
Dingman (Trib.3) 3164.4568 8.3 8.9 10.5 -2.2 -1.6 

Dingman (Trib.3) 1062.6754 12.4 13.4 12.1 0.3 1.3 

Dingman (Trib.11) 3514.9307 6.0 6.3 4.2 1.8 2.1 
Dingman (Trib.11) 610.84808 14.1 14.8 8.4 5.7 6.4 

Dingman (Trib.2) 5177.5825 3.9 4.1 21.1 -17.2 -17.0 
Dingman (Trib.2) 3926.3052 6.7 7.2 29.3 -22.6 -22.1 
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River 

Number 
of River 

Station in 
HEC-
RAS 

Historic 
(1) 

Wet 
(2) 

UTRCA 
(3) 

Difference 
between Historic 

and UTRCA 
(1) – (3) 

Difference 
between Wet 
and UTRCA 

(2) – (3) 

Dingman (Trib.2) 5177.5825 3.9 4.1 21.1 -17.2 -17.0 

Dingman (Trib.2) 3926.3052 6.7 7.2 29.3 -22.6 -22.1 

Dingman (Trib.2) 1458.7761 9.7 10.4 32.6 -22.9 -22.2 
Dingman (Trib.10) 784.34576 6.3 6.7 5.1 1.2 1.6 

Dingman (Trib.9) 1649.277 0.9 1.0 5.7 -4.8 -4.7 
Dingman (Trib.8) 1354.2716 3.8 4.1 5.5 -1.7 -1.4 

Dingman (Trib.7) 2297.6155 6.2 6.6 12.4 -6.2 -5.8 

 
Sum 

7295.8 
(-4.7 %) 

8484.5 
(10.8 %) 

7658.9 
(   -   ) 

** -5.1 ** 11.6 
 

* represents the percentage of change in flow as compared to current UTRCA 

**  represents the average flow  
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Appendix 2: HEC-HMS hydrologic model parameters. 

Sub-
basin* 

Basin 
Area 
(km2) 

Time of 
Concentration 

(Hr) 

Storage 
Coefficient 

(Hr) 

Initial 
loss 

(mm) 

Constant 
rate 

(mm/hr) 

Initial 
discharge 
(m3/s/km2) 

1 175.98 8.0 10.0 5.0 1.00 0.01 

10 141.12 13.0 9.0 5.0 1.10 0.01 

11 28.94 9.0 5.0 5.0 1.20 0.01 

12 35.47 10.0 8.0 5.0 1.30 0.01 

13 153.72 13.0 14.0 5.0 1.00 0.01 

14 84.54 14.0 10.0 5.0 1.50 0.01 

15 94.20 15.0 20.0 5.0 2.00 0.01 

16-1 14.54 6.0 18.0 6.7 1.66 0.01 

16-10 14.99 16.0 24.0 5.0 2.00 0.01 

16-2 4.89 4.5 10.0 7.0 1.26 0.01 

16-3 9.17 6.5 7.8 5.0 0.50 0.01 

16-4 3.68 7.0 6.0 5.0 1.80 0.01 

16-5 2.01 3.0 9.0 4.5 1.30 0.02 

16-6 3.29 2.0 2.0 2.2 0.50 0.02 

16-7 7.30 6.0 8.0 5.0 2.00 0.01 

16-8 10.84 6.0 8.0 5.0 2.00 0.01 

16-9 6.49 17.0 23.0 5.0 2.00 0.01 

17-1 177.67 21.0 13.0 8.0 8.50 0.01 

17-2 12.73 3.5 7.0 5.6 3.00 0.01 

17-3 7.92 4.9 6.0 5.6 3.00 0.01 

17-4 3.23 7.0 3.0 5.6 3.00 0.01 

17-5 3.15 3.0 5.0 5.6 3.00 0.01 

18 148.32 10.0 9.0 5.0 1.00 0.01 

19 96.84 15.0 9.0 5.0 1.10 0.01 

2 129.52 10.0 12.0 5.0 1.00 0.01 

20 97.91 18.0 3.0 5.0 1.00 0.01 

21 170.70 24.0 12.0 5.0 1.30 0.01 

22 42.86 24.0 9.0 5.0 1.30 0.01 

23 291.08 30.0 35.0 10.0 3.00 0.01 

24 35.86 25.0 8.0 5.0 1.40 0.01 

25 165.97 26.0 35.0 10.0 2.00 0.01 
* refer to Figure 3.8 in this report. 
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Sub-
basin 

Basin 
Area 
(km2) 

Time of 
Concentration 

(Hr) 

Storage 
Coefficient 

(Hr) 

Initial 
loss 

(mm) 

Constant 
rate 

(mm/hr) 

Initial 
discharge 
(m3/s/km2) 

26 120.94 27.0 30.0 10.0 3.00 0.01 

27 104.95 15.0 16.0 22.0 3.50 0.01 

28-1 16.29 7.0 4.0 10.0 5.00 0.01 

28-2 11.16 4.0 2.0 10.0 2.00 0.01 

28-3 5.95 7.0 2.0 3.0 1.00 0.01 

28-4 12.00 9.0 2.0 2.0 1.00 0.01 

28-5 15.15 9.0 8.0 5.0 2.00 0.01 

29 22.56 4.0 6.0 5.0 2.20 0.01 

3 47.75 12.0 6.0 5.0 1.10 0.01 

30-1 2.09 6.0 10.0 5.0 2.30 0.01 

30-2 6.69 5.0 11.0 5.0 2.30 0.01 

30-3 6.89 5.0 10.0 5.0 2.30 0.01 

30-4 0.60 2.0 7.0 5.0 2.30 0.01 

30-5 13.02 3.0 7.0 5.0 2.30 0.01 

30-6 3.23 4.0 9.0 5.0 2.30 0.01 

31-1 4.93 6.0 6.0 5.0 2.20 0.01 

31-2 8.18 6.0 6.0 5.0 2.20 0.01 

31-3 15.14 6.0 6.0 5.0 2.20 0.01 

32 88.85 40.0 14.0 5.0 4.00 0.01 

33 50.49 8.0 7.0 5.0 2.40 0.01 

34-1 28.67 12.0 15.0 5.0 3.00 0.0117 

34-10 7.73 5.0 3.0 5.0 3.00 0.0117 

34-11 5.85 5.0 4.0 5.0 3.00 0.0117 

34-12 7.92 5.0 4.0 5.0 3.00 0.0117 

34-13 22.25 8.0 4.0 5.0 3.00 0.0117 

34-14 15.94 8.8 4.9 5.0 3.00 0.0117 

34-15 4.63 4.0 3.0 5.0 3.00 0.0117 

34-16 14.06 6.0 4.0 5.0 3.00 0.0117 

34-2 5.45 4.0 3.5 5.0 3.00 0.0117 

34-3 5.92 3.7 2.5 5.0 3.00 0.0117 

34-4 8.37 4.0 3.0 5.0 3.00 0.0117 

34-5 1.78 2.5 1.5 5.0 3.00 0.0117 

34-6 11.40 7.0 5.0 5.0 3.00 0.0117 

34-7 14.45 7.0 4.0 5.0 3.00 0.0117 

34-8 12.10 5.0 3.0 5.0 3.00 0.0117 

34-9 3.47 3.0 2.0 5.0 3.00 0.0117 
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Sub-
basin 

Basin 
Area 
(km2) 

Time of 
Concentration 

(Hr) 

Storage 
Coefficient 

(Hr) 

Initial 
loss 

(mm) 

Constant 
rate 

(mm/hr) 

Initial 
discharge 
(m3/s/km2) 

4 151.19 12.0 10.0 5.0 1.00 0.01 

5 76.82 7.0 6.0 5.0 1.10 0.01 

7 144.00 5.0 10.0 5.0 1.00 0.01 

8 88.36 11.0 7.0 5.0 1.00 0.01 

9 78.48 7.0 6.0 5.0 1.10 0.01 
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Appendix 3: Description of CD enclosed 

Folder File Description 

WG-PCA\ JAVA files 
(MainWG.java etc) 

The sources files for the weatehr generator 

model 

WG-PCA\ WG model(Read me).doc 
Instructions for Weather Generator to 

install, run, and check the results 

WG-PCA\DATA\B21 

‘StationNames’PPT_1964-2006.txt 

‘StationNames’TempMax_1964-

2006.txt 

‘StationNames’TempMin_1964-

2006.txt 

Precipitation, maximum temperature, and 

minimum temperature data for the wet 

scenario (Input data of the WG model) 

WG-

PCA\DATA\Historical 

‘StationNames’PPT_1964-2006.txt 

‘StationNames’TempMax_1964-

2006.txt 

‘StationNames’TempMin_1964-

2006.txt 

Observed precipitation, maximum 

temperature, and minimum temperature data 

(Input data of the WG model) 

WG-PCA\Output\B21 

‘StationNames’PPT_1964-2006.txt 

‘StationNames’TempMax_1964-

2006.txt 

‘StationNames’TempMin_1964-

2006.txt 

Output of precipitation, maximum 

temperature, and minimum temperature 

values for the wet scenario 
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Folder File Description 

WG-

PCA\Output\Historical 

‘StationNames’PPT_1964-2006.txt 

‘StationNames’TempMax_1964-

2006.txt 

‘StationNames’TempMin_1964-
2006.txt 

Output of precipitation, maximum 

temperature, and minimum temperature 

values for the historic scenario 

hmsproj\ UTRb_EVENT(Read me).doc 
Instructions for the hydrologic model to 

install, run, and check the results 

hmsproj\ UTRb_EVENT 

UTR_ClimateChange(B21).dss 

UTR_ClimateChange(B21-2).dss 

UTR_ClimateChange(Historical).dss 

UTR_ClimateChange(Historical2).dss 

UTR_Oct2006Gauges.dss 

Wet scenario part I 

Wet scenario part II 

Historic scenario part I 

Historic scenario part II 

Observed data on Oct, 2006 

hmsproj\ UTRb_EVENT *.basin (e.g., EVENT.basin) Basin components in HEC-HMS  

hmsproj\ UTRb_EVENT *.control (e.g., Event1.control) Control components in HEC-HMS  

hmsproj\ UTRb_EVENT *.met (e.g., IDM_CC.met) 
Meteorologic components in HEC-

HMS  
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