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Executive Summary

Increased greenhouse gas emissions are predicted to cause global temperatures to
rise in the coming years. It is important to understand and predict the possible impacts of
climate change at a local level in order to mitigate these effects and modify the existing
infrastructure accordingly. Atmosphere-Ocean General Circulation Models (AOGCM’s)
are state of the art in climate change assessments. They are essentially predictions of the
future climate conditions for grid points around the globe based on plausible emissions
scenarios created by the Intergovernmental Panel on Climate Change. The temporal and
spatial scales of AOGCM’s are very large as they are developed for global impact
assessments. Therefore, measures must be taken to provide an estimate of future weather
variables on a local scale. Literature is limited on such approaches, and more work is
necessary to develop strategies for assessing the impacts of climate change on water
resources and communities at both a local and regional level.

This study provides an assessment of possible future climate conditions for the
Upper Thames River Basin. Six different AOGCM’s with up to three emission scenarios
each were used in order to provide a climate change assessment. The data has been scaled
down using a principal component analysis integrated stochastic weather generator (WG-
PCA) to produce a synthetic dataset of 54 years. The variability between the AOGCM’s
and their emissions scenarios was investigated, as well as the performance of the WG-
PCA generator in producing extreme precipitation events. The results of the study show
that the AOGCM results are variable and need to be included when performing future
climate change impact assessments in the Upper Thames River Basin. Future work is

needed on regional studies to explore local characteristics of precipitation extremes and
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improve the model quality by introducing more input variables relevant to the

precipitation extremes.
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1. Introduction

One of the most important goals of climate change research is to predict the effects
of climate change in order to be prepared for the resulting effects on the natural
environment and population. It is a consensus in the scientific community that as the
levels of carbon dioxide in the atmosphere rise due to increased greenhouse gas
emissions, so will temperatures around the globe. In the recently published 4"
Assessment Report of Inter-governmental Panel on Climate Change (IPCC, 2007), it is
predicted that the Earth’s average temperature is likely to increase by 3°C by 2080 due to
the global warming caused by the increased CO, emissions. The rising temperature will
have a major effect on atmospheric processes, and will likely impact the amount of
precipitation a region receives. In climate change impact assessments, precipitation is an
important parameter because it is one of the driving factors within the hydrologic cycle. It
is of particular importance to look at extremes in precipitation and temperature, as these
could have a substantially larger impact on the population than increase in mean
temperature alone (Chen et al, 2008). Many studies have indicated that rising global
temperature will make these extreme events occur more frequently (Barnett et al, 2006;

Wilcox et al, 2007; Allan et al, 2008).

1.1 Background
Water resources are inextricably linked with climate. So the prospect of global
climate change has serious implications for water resources and regional development.
The 4™ Assessment Report by the Intergovernmental Panel on Climate Change (IPCC,

2007) documents the likely impacts on water resources associated with climate change.



Changes in the meteorological variables that drive the hydrologic cycle can be expected
to affect the spatial and temporal distribution of water, which can affect the capability of
the impacted population to cope with natural hazards related to water excess or shortage.

Assessment of climate change impact on hydrology involves projections of
climatic variables at a global scale, downscaling of global scale climatic variables to local
scale hydrologic variables and computations of risk of hydrologic extremes in future
water resources planning and management (Ghosh, 2007). Increases in extreme rainfall
and temperature events are predicted to cause an intensification of the hydrologic cycle in
Southwestern Ontario (Prodanovic and Simonovic, 2007). Some effects in particular are
changes in stream flows, water supply, and increasing runoff. (Labat et al., 2004; Zhang
et al.,2008). Extreme rainfall events are especially important inputs to hydrologic
modeling when assessing flood risks in a river basin. Dry spells must also be considered,
as low flows and water shortages could become a major problem in the future.

In Canada, warming from 1900 to 2003 has resulted in changes in the climate
patterns: (i) a decrease in precipitation as snowfall in the west and the Prairies (Vincent
and Mekis, 2006), (ii) a shifting of the magnitude and timing of hydrologic events in
regions with winter snow, (iii) earlier spring runoff (Whitfield and Cannon, 2000; Zhang
et al, 2001), (iv) an advance of river and lake ice break up by 0.2 to 12.9 days over last
100 years (Magnuson et al., 2000), and so on. Vulnerability to extended drought is
increasing across North America as population growth and economic development create
more demands from agricultural, municipal and industrial uses, resulting in frequent
over-allocation of water resources. Although drought has been more frequent and intense

in the western part of Canada, the east is not immune to droughts and reduction in water



supply, change in water quality and ecosystem function, and challenges in water
allocation (Wheaton et al., 2005). Hence, it is important to understand and predict the
effects of extreme precipitation events in order to modify the existing infrastructure

accordingly.

Atmosphere-Ocean General Climate Models (AOGCM’s) are developed by
various countries around the world and frequently used to predict future changes in the
global climate under several plausible emissions scenarios, developed by Inter-
governmental Panel of Climate Change (IPCC). Greenhouse gas emissions are used as
inputs to AOGCM’s from different scenarios, each with a unique storyline based on
whether future development is globally or regionally focused, and whether development
will be driven by economic or environmental concerns (CCCSN, 2007). AOGCM’s
discretise the planet into 3 dimensional cells, providing long sequences of gridded climate
data that are used for climate change modeling. Unfortunately, cells from current
AOGCMs are inappropriate for direct application to the watershed scale because: (i)
Accuracy of AOGCMs decreases at finer spatial and temporal scales, a typical resolution
of AOGCMs ranges from 250 km to 600 km, but the need for impact studies conversely
increases at finer scales; (i1) limited representation of regional topography and (iii) poor
representation of mesoscale processes (Eum et al., 2009, Schimidli et al., 2006). Hence,
this gridded information must be scaled down to provide information on a local scale
relevant to the area being studied, by a process, commonly known as ‘downscaling’.
Different downscaling procedures produce different results from the same AOGCM
outputs. So, the downscaled AOGCM outputs are burdened with uncertainties due to

intermodal variability (the AOGCM uncertainty), inter-scenario variability (scenario



uncertainty), intermodal variability and variability due to downscaling methods
themselves (Ghosh, 2007). The purpose of the study is twofold: to investigate the
propagation of AOGCM and inter-scenario uncertainty through climate change modeling
and to increase our understanding of the impacts of climate change on extreme

precipitation events.

1.2 Organization of the report

This report comprises of several sections: a review of downscaling techniques is
presented in section 2. Following this are details on the study area and data used as well
as a description of the AOGCM data collected. The WG-PCA weather generator is
detailed along with the data preprocessing steps in section 4 of the report. A detailed
analysis of the performance of the weather generator and the AOGCM outputs are
presented in section 5. Finally, the report concludes with some insights from the results

obtained and outlines future work.



2. Literature Review

A number of techniques have been used to generate future climate scenarios.
Several authors (Diaz-Nieto and Wilby, 2005; Sharif and Burn, 2006) have used change
factor method (also known as Standard Delta method) for generating future times series
data. The GCM-simulated difference for each calendar month (absolute difference for
temperature and relative difference for precipitation) between a future time period is
determined and superimposed in the historic time series to create scenario time series
from GCM output.

AOGCMs have been developed to simulate the present climate and used to
predict future climate change with forcing by the greenhouse gases and aerosols. These
models are not generally designed for local climate change impact studies; thus does not
provide satisfactory performance to represent local sub-grid-scale features and dynamics
(Wigley et al., 1990; Carter et al., 1994). A number of techniques have been employed to
scale down AOGCM outputs to a smaller scale, each with it’s own strengths and
drawbacks.

Different techniques might be more accurate for different seasons, regions, time
periods and depending on the variable being considered (Dibike et al, 2008). The
methods include dynamic downscaling that uses complex algorithms at fine-grid scale
(typically 50 km x 50 km) describing atmospheric process nested within the AOGCM
outputs. (Limited Area Models or Regional Climate Models) and the statistical
downscaling which produces future scenarios based on statistical relationship between
the larger scale climate features and hydrologic variables. Literatures available for

dynamic downscaling include Giorgi (1990, 1992), Walsh and Mcgregor (1995), Druyan



et al (2002), Fowler et al (2005), and so on. The main drawbacks of dynamic
downscaling are that the regional climate models require considerable computational
resources and cannot meet the need of spatially explicit models of ecosystems or
hydrological systems which still requires downscaling the results from such models to
individual sites or localities for impact studies (Vidal and Wade, 2008; Wilby and
Wigley, 1997). Moreover, re-experiment must be done in case of expanding the region or
moving to a slightly different region.

Statistical downscaling, on the other hand, is based on the following assumptions:
(1) the predictors are the relevant variables and are realistically modeled by the host
AOGCM, (i1) the empirical relationship is also valid for a changed climate and (iii) the
predictors adequately represent the climate change signals. Since they are derived from
the historic observed data, they can provide site specific information and hence, is
recommended in many climate change studies. Dibike et al. (2008), in their comparative
study of statistical and dynamic downscaling methods in Northern Canada have found
that statistical downscaling represents well the distributions of Tmax and Tmin. The
study also reported reduced biases in precipitation with statistical downscaling.

The broad categories of statistical downscaling method include weather
generators, weather typing and transfer functions. Weather generators are statistical
models of sequences of weather variables which can also be regarded as complex number
generators, the output of which resembles daily weather data at a particular location. The
parameters of the weather generators are conditioned upon a large scale state, or the
relationships between daily weather generator parameters and climatic averages can be

used to characterize the nature of future days on the basis of more readily available time



averaged climate change information (Wilks and Wilby. 1999).

Weather generators are important because they allow for more variability in the
data, and change the sequencing of wet and dry days. The early work that used weather
generators as a downscaling tool in climate change studies can be found in Hughes et al.
(1993), Hughes and Guttorp (1994), Hughes et al. (1999) and Wilks and Wilby (1999),
etc. An overview of stochastic weather generation models is presented by Wilks and
Wilby (1999). The parametric weather generators are associated with several limitations
namely: (i) they do not adequately reproduce various aspects of spatial and temporal
dependency of variables, (ii) an assumption is necessary regarding the form of probability
distribution of variables, which is often, subjective, (iii) non-gaussian features in the data
cannot be captured adequately as multivariate autoregressive (MAR) models implicitely
assume a normal distribution which is difficult to satisfy, (iv) a large number of
parameters are separately fitted to each period and the number further increases if the
simulations are to be conditioned, (v) models are not easily transportable to other
locations due to the site specific assumptions made regarding the probability distributions
of the variables. Non-parametric weather generators can overcome most of these
problems and have been used in many studies to produce synthetic datasets. Examples of
non-parametric weather generators (WG’s) which have been successfully employed in
climate change studies are LARS-WG (Semenov and Barrow, 1997), K-NN (Yates et al.,
2003; Sharif and Burn, 2006), EARWIG (Kilsby et al, 2007).

Considerable research efforts have been undertaken within the hydrological
community to statistically model the high precipitation amount, with a much evidence of

it’s heavy-tailed distribution (Koutsoyiannis, 2004). But use of weather generators in



improving precipitation extremes is limited. Stochastic weather generators are made to
consistently model the precipitation extremes with this information. Furrer and Katz
(2008) proposed several possible advanced statistical approaches for improving the
treatment of extremes within a parametric GLM based weather generator framework.
They found a substantial improvement with a hybrid technique with a gamma distribution
for low to moderate intensities and a generalized Pareto distribution for high intensities.
Sharif and Burn (2006) used nonparametric K-nearest neighbor weather generator model
for simulating extreme precipitation events and found encouraging results in simulating

extreme dry and wet spells.

3. Study Area and Data

3.1 Study area

The study area in this report is the Upper Thames River basin, located in
Southwestern Ontario, Canada between the great lakes of Erie and Huron. The basin has
a population of about 420,000 and covers 3 counties: Perth, Middlesex and Oxford
(Figure 1). London, Ontario is the major urban centre with a population of around
350,000. The Thames River is about 273 km long with an average annual discharge of
39.3 m’/s (Prodanovic, 2008). Thames river basin consists of two major tributaries of the
river Thames: the North branch (1,750 km?), flowing southward through Mitchel, St.
Marys, and eventually into London where it meets the South branch; and the South
branch (1,360 km?) flowing through Woodstock, Ingersoll and east London. The basin
receives about 1,000 mm of annual precipitation, 60% of which is lost through

evaporation and or evapotranspiration, stored in ponds and wetlands, or recharged as



groundwater (Prodanovic and Simonovic, 2006).
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Figure 1: The schematic location map of Upper Thames River basin



The basin often experiences major hydrologic hazards such as floods and
droughts. The basin has a well documented history of flooding events dating back to the
1700s. Flooding mostly takes place in early March after the snowmelt and again in July
and August as a result of summer storms. Drought conditions also may occur at any time
of the year, with highest possibility between June and September. Several weather
stations around the basin provide point measurements of weather variables including
daily temperature and precipitation. Stations chosen for this study are listed in detail in
Table 1 and Figure 2.

Table 1: Location of Stations

Station Latitudes | Longitudes | Elevation
(deg N) (deg W) (m)

Blyth 43.72 81.38 350.5
Brantford MOE 43.13 80.23 196.0
Dorchester 43.00 81.03 271.3
Embro 43.25 80.93 358.1
Exeter 43.35 81.50 262.1
Foldens 43.02 80.78 328.0
Glen Allan 43.68 80.71 404.0
Ilderton 43.05 81.43 266.7
London A 43.03 81.16 278.0
Petrolia Town 42.86 82.17 201.2
Stratford 43.37 81.00 354.0
St. Thomas WPCP 42.78 81.21 209.0
Waterloo Wellington 43.46 80.38 317.0
Woodstock 43.14 80.77 282.0
Wroxeter 43.86 81.15 355.0
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Schematic location maps of stations in the basin
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Figure 2: Schematic location map of stations in the basin

3.2 Data
For the purpose of analysis the following databases were used:
e Daily observed precipitation, maximum and minimum temperature (Tmax and
Tmin) data covering the UTR basin for the period of 1979-2005 has been collected from

Environment Canada (http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html).
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Table 2: List of AOGCM Models and Emissions Scenarios Used

SRES Atmospheric
GCM Models Sponsors, Country Scenarios Resolution
Lat Long
CGCM3T47, 2005 . . . , AlB,B1, A2 | 3.75° | 3.75°
Canadian Centre for Climate Modelling and Analysis 5 0
CGCM3T63, 2005 Al1B,B1, A2 | 2.81 2.81
Commonwealth Scientific and Industrial Research 1.875 | 1.875
CSIROMKS3.5, 2001 Organization (CSIRO) Atmospheric Research, Australia AlB, A2, Bl 0 0
National Aeronautics and Space Administration (NASA)/ 0 0
GISS-AOM, 2004 Goddard Institute for Space Studies (GISS), USA AlB, B 3 4
MIROC 3.2 HIRES, Center for Climate System Research (University of Tokyo), AlB, Bl 1'%25 1'%25
2004 . . . . .
MIROC 3.2 National Institute for Environmental Studies, and Frontier
. 0 0
MEDRES, 2004 Research Center for Global Change (JAMSTEC), Japan AlB, A2, Bl 2.8 2.8

e Time series of climate variables for different regions of the world are available at
the Canadian Climate Change Scenarios Network (CCCSN) website. These time slices
are available for several combinations of AOGCMs and emission scenarios. To obtain
weather data for any time slice, the coordinated of the point of interest are specified along
with the AOGCM and the emission scenarios. The climate data may be obtained for a
number of time slices, each corresponding to future time period. For present study, six
AOGCM'’s climate data for the above variables, each with 2 to 3 emissions scenarios
have been collected. The AOGCM’s used in the study are the third generation Canadian
Coupled Global Climate Model at T47 (CGCM3T47) and T63 (CGCM3T63) resolutions,
Australia’s Commonwealth Scientific and Industrial Research Organization generated
MK3 Climate Systems Model (CSIROMK3.5), Goddard Institute for Space Studies
provided Atmosphere Ocean Model (GISS-AOM), the Japanese Model for
Interdisciplinary Research on Climate version 3.2 in high (MIROC3.2HIRES) and
medium (MIROC3.2MEDRES) resolutions. Three scenarios, AlB, A2 and BI,

developed by IPCC’s Special Report on Emission Scenarios (SRES) (Appendix A) have
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been used in order to investigate the widest possible range of future climates. Table 2 lists

the AOGCM’s used with the available scenarios for each model.

4. Methodology

4.1 Data preprocessing
Precipitations (PPT), as well as maximum and minimum temperature (Tmax and
Tmin, respectively) have been collected from the nearest grid points for each of the six
AOGCM'’s emission scenarios surrounding the Thames River Basin. Data have obtained
for two time slices: 1960-1990 and 2041-2070 (2050s).
Preprocessing of the AOGCMs has been carried out in two steps which are
explained in the following sections:
4.1.1 Spatial interpolation of AOGCMs
Climate variables from the nearest grid points have been interpolated to provide a
dataset for each of the stations of interest. For the purpose of interpolation, the Inverse
Distance Weighting Method (IDW) is used. The method works by taking AOGCM
variables for the four nearest grid points around the station, and computing the distance
from each grid point to the station of interest. A simple formula (4.2.1) is then applied
which calculates the weight, w, of each grid point based on its distance, d, from the
station. Next, another formula (4.2.2) computes the value, p, for the missing variable
(where the subscript j represents the j grid point, and the subscript i represents the

station of interest).

1/d;}
W= 2 2 2 2
1/d; +1/d; +1/d; +1/d,;

4.2.1)
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PO =2 w;p,(0) (4.2.2)

4.1.2 Calculation of change factors for future climate

Next, a monthly average of each variable is taken for the years 1979-2005 as the
base climate and 2041-2070, representative of the future climate in the 2050’s. The
average monthly differences between the base and future climate have been calculated as
the Tmax and Tmin change factors. The percent change in monthly average PPT was
calculated, and used as a change factor for precipitation.

The change factors have then, been used to modify the historic dataset which was
gathered for each station. Temperature change factors are added to the historic daily
temperatures by month, and historic precipitation values were multiplied by the
precipitation change factors. Once the historic dataset is modified, it is run through the
WG-PCA described above to produce a dataset 54 years long with greater variability for
each of the scenarios. A synthetic version of the historic dataset has also been produced

to evaluate the performance of WG-PCA.

4.2 Weather generator
Stochastic weather generators simulate weather data to assist in the formulation of
water resource management policies. The basic assumption for producing synthetic
sequences is that the past would be representative of the future. They are essentially
complex random number generators (Eum et al, 2009), which can be used to produce a
synthetic series of data with the same statistical properties as the base series. This allows

the researcher to account for natural variability when predicting the effects of climate

14



change. The weather generator used in this study is the refined version of Eum et al
(2009), initially developed by Sharif and Burn (2007), which employs integration of
Principal Component Analysis in the Weather Generator.

Sharif and Burn (2006) developed an improved K-nearest neighbor weather
generator model based on a K-NN resampling strategy proposed by Yates et al. (2003).
The K-NN algorithm works by taking one day from the dataset, and selecting a specified
number of days which have similar characteristics to that day. One of those days is
randomly selected as the weather for the next day using a resampling procedure. In this
way, the statistics of the dataset remain the same but the ordering of wet-dry days is
changed to add variability to the dataset, which is important in hydrological impact
assessments. The major drawback of the K-NN weather generator developed by Yates et
al (2003) was that the observed max-min range is the same as that of the synthetic
dataset. Sharif and Burn (2007) improved this algorithm by adding a perturbation process
that can calculate alternative extremes for the dataset. Their version of K-NN weather
generator was further revised by Prodanovic and Simonovic (2006) to account for leap
years. Eum et al (2009) further modified the WG to account for more variables.

The WG-PCA algorithm with p variables and ¢ stations has the following steps:

1) Regional means of p variables for all g stations are calculated for each day of the
observed data:

X:L)_Cl,t,)_CZ,t,.--,fPJJ vt:{l’z,...,T} (41)

q .
where Xi./= le-j,, Vi={12,..,p} (4.2)
=l

Q|-

2) Selection of potential neighbours, L days long where L=(w+1) x (N-1) for each of p

individual variable with N years of historic record, and a temporal window of size w

15



which can be set by the user of the weather generator. The days within the given window
are all potential neighbours to the feature vector. N data which correspond to the current
day are deleted from the potential neighbours so the value of the current day is not
repeated (Eum et al, 2009).
3) Regional means of the potential neighbours are calculated for each day at all ¢
stations.
4) A covariance matrix, C; of size L x p is computed for day ¢.
5) The first time step value is randomly selected for each of p variables from all current
day values in the historic record.
6) When more meteorological variables are used in the model, the calculation of
Mahalanobis distance becomes challenging due to multi-dimensionality and colinearity
associated with the variables. Integration of PCA requires only the variance of the first
principal component to calculate the Mahalanobis distance, which reduces the dimension
of the mean vector of the current days and the mean vector of all nearest neighbor values.
The modified steps are presented here:

(a) Calculation of the eigen vector and eigenvalue for the covariance matrix, (C))

(b) Selection of the eigenvector corresponding to the eigenvalue which represents the
highest fraction of variance in the p variables.

(c) Calculation of the first principle component with equations 4.3 and 4.4 using the
eigenvector, £, found in (b).

PC, =XE (4.3)
PC, =X,E 4.4)

where, PC, is the value of the current day and PCj is the nearest neighbor transferred

16



by the eigenvector in (b).
(d) The Mahalanobis distance is calculated with equation 4.5 from the one-

dimensional matrix calculated by the above equations.

d, = \/(PCt ~PC, ) /Var(PC) Vk={2,.,K} (4.5)

Where the variance of the first principle component is Var(PC) for all K nearest
neighbors (Eum et al, 2009).
7) The selection of the number of nearest neighbours, K, out of L potential values using
K=+L.
8) The Mahalanobis distance dj is put in order of smallest to largest, and the first K
neighbors in the sorted list are selected (the K Nearest Neighbors). A discrete probability
distribution is used which weights closer neighbors highest in order to resample out of the
set of K neighbors. Using equations 4.6 and 4.7, the weights, w, are calculated for each &

neighbor.

Vi ={1,2,..,K} (4.6)

Wi

K
D 1/i
i=1
Cumulative probabilities, p;, are given by:

p;= zwz’ (47)

9) A random number u (0,1) is generated and compared to the cumulative probability
calculated above in order to select the current day’s nearest neighbor. If p; < u < py, then
day j for which u is closest to p; is selected. However, if p; > u, then the day which

corresponds to d/ is chosen. If u=pg, then the day which corresponds to day dx is
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selected. Upon selecting the nearest neighbor, the K-NN algorithm chooses the weather
of the selected day for all stations in order to preserve spatial correlation in the data (Eum
et al, 2009).

10) In order to generate values outside the observed range, perturbation is used. A
conditional standard deviation, o, is estimated and using equation 4.8 a bandwidth, 4 ,is

determined.

A=1.060K"° (4.8)

Perturbation is next, using equation 4.9.
vl =x/ + 0]z, (4.9)
Where x,:’;[ is the weather variable obtained in step 9, J’;{t is the value of that variable

obtained after perturbation, z,is a random variable which is normally distributed (zero
mean, unit variance) for day ¢. Negative values are prevented from being produced for
precipitation by employing a largest acceptable bandwidth: A, =x/, /1.550/ where *

refers to precipitation. If again a negative value is returned, a new value for z; is generated

(Sharif and Burn, 2006).

5. Results and Discussion

This study uses daily precipitation, maximum temperature and minimum temperature
of 15 stations for the period of 1979-2005 (N=27) to simulate plausible meteorological
scenarios. Employing the temporal window of 14 days (w=14) and 27 years of historic
data (N=27), this study uses 404 days as the potential neighbors (L=(w+1) x N-1=404)

for each variable. The study has generated synthetic meteorological scenarios which is

18



equal to the historic data in length in order to allow for the statistical comparison of
synthetic and historic data. For the purpose of comparing performances of AOGCM’s
WG results for London station has been chosen. The following sections present the

analysis of the obtained results in reproducing present and future climate.

5.1 Reproduction of historic data

Using the WG-PCA weather generator of Eum et al (2009), 54 years of synthetic
data are produced using the historic dataset in order to determine if the WG-PCA
algorithm has been able to produce a dataset with statistically similar characteristics to
the observed values. Box plots have been used to illustrate the results, as they provide a
wide range of variation of the dataset’s statistics. The top and bottom lines of the plot
represent the 75" and the 25™ percentiles, respectively. The middle line in the box
represents the median. The whiskers extend out to 1.5 times the inter-quartile range of the
data (range of the data between the 25" and 75" percentiles). Values that go beyond those
points, have been identified as outliers and marked in black.

Figure 3 consists of monthly box plots of the 54 simulated years of data for
maximum temperature in London, as well as a line plot illustrating the means of the
observed data. Despite the weather generator being applied to daily data, the box plots
have been made on a monthly scale in order to facilitate presentation of the results. The
WG-PCA simulated results are clearly able to reproduce the historic monthly values,
despite the fact that the algorithm has been applied on a daily scale. The output of the

weather generator in reproducing temperature values is highly satisfactory.
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Figure 3: Box plots of monthly mean maximum temperature

Total monthly precipitation

2504 .

2004

1304

Precipitation (mm)

100 1

30

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
Months

Figure 4: Box plots of total monthly precipitation

Total monthly precipitation values for the simulated data are presented as box plots
in Figure 4. The historic mean values are represented by the line plot. For all of the

months, the median of the simulated data is close to the mean of the observed data. There
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is a slight underestimation in total precipitation for the months of August, September,
October, November and December. For the rest of the months, the mean total
precipitation of the observed data is very close to the median of the simulated data. There
are a number of outliers, marked as black dots; however these are representative of the
increased variability due to the perturbation process in the weather generator.
Precipitation has the greatest variability of all the weather variables, so overall the

performance of the WG-PCA algorithm in this aspect is very good.
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Figure 5: Box plots of total number of wet days

The number of wet days for the simulated data in London is illustrated as monthly box
plot in Figure 5. Wet day statistics are very important when it comes to hydrologic
modeling and flood management. The observed means are shown as a line plot. It is clear
that the observed values agree very well with the simulated data. There is a slight
overestimation by the simulated data for the month of February and an underestimation

for January but the results are otherwise very good.
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5.2 Correlation Structure

It is important to preserve the correlation structure of the observed data intact in the
simulated data. To keep the inherent correlation structure unaltered, the modified versions
by Sharif and Burn (2007) and Eum et al. (2009) used a constant value of the random
normal variate for all the variables and all stations at any given time step. This section
investigates the extent to which the correlation structure changed from the observations.
Figure 6 presents box plots of the monthly correlations between precipitation and
maximum temperature. Observed data has shown positive correlation during winter
months; correlations during summer months are very close to zero which indicates a

statistically insignificant correlation for these months.
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Figure 6: Box plots of correlation between Tmax and PPT

5.3 Generation of climate change scenario
Major focus of this study is to evaluate the performance of WG-PCA in simulating

the future precipitation amounts which may be larger than the observations. This section
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presents the performances of WG-PCA in simulating 54 year’s of future precipitation
using the informations from the AOGCM’s with plausible scenarios.

First, bar graphs have been used to illustrate the change factors for the various
AOGCM'’s and emissions scenarios. Figure 7 shows the monthly change factors for
Tmin. All models predict an increase in the minimum temperature,ranging from 1.5° C to
6 C; the magnitude of increase is however, diffierent for different models. For example,
in the month of February, there is a difference of 4.8°C in the predicted temperature
changes of CGCM3T63 scenario A1B and GISS-AOM scenario B1. The variation of the
change fields are more prominent during winter months. The MIROC-HIRES model for
AI1B and BI scenarios have shown consistent increase of Tmins all through the year
ranging between 3-4°C. The CGCM3T63 has shown lager variability in different months
of the year, predicting an increase ranging from 1.5 to 6°C for scenarios A1B and A2. For
the summer months, the predictions match quite well with variability less than 1°C except
for MIROC-HIRES and MEDRES models. The monthly Tmax change factors for all
models are shown in Figure 8. Again, the variability between the models and scenarios
can be clearly seen from the graph. A substantial difference is seen for the winter months
of January, February, March and in late summer months. The greatest difference has been
found for the month of March; there has been a difference of over 5.1°C between the
predicted change fields for MIROC3.2MEDRES scenario A1B and GISS-AOM scenario
B1. All other months had a range of at least 1.4°C between the lowest and highest

predicted temperature change.
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Figure 7: AOGCM predicted change factors for minimum temperature

Degrees Celsius

7.0

Jan

AOGCM Predicted Change in Tmax

= C3CM3T47_A1B
B CGCM3TAT Bl
mC3CM3TE3_A2

MIROC3 2MEDRES A2

Feb Mar Apr May Jun Jul Aug Sept

Months

WCOGCM3THT_A2
®CGCM3TE3_A'E
=CGCM3Te3_B1

= CEIROMEZ3 5 _AZ
BGISE-AOM_A1B
FMIROC3 ZHIRES_A1B
FMIROC3 2MELCRES_A1B
FMIROC3 ZMELCEES Bl

Oct Nowv Dec

Figure 8: AOGCM predicted change factors for maximum temperature
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Figure 9: AOGCM predicted percent changes in precipitation
The change factors for precipitation are illustrated as percentage changes in Figure 9. The differences in projections are largest in case
of precipitations as compared to Tmax and Tmins. While one scenario has predicted an increase, other may have associated with a
decrease in precipitation for any specific month. This is more evident during the summer months of May to November. For example,
during November, the difference between CGCM3T63 scenario A2 and CSIROMK3.5 scenario A1B is 68.9 percent.Despite wide
variations in predictions, one interesting observation is that all scenarios have predicted increase in winter precipitation from
December through April. The wide range of different future climate projections in Figures 8 through 10, thus clearly suggests to

interprete the obtained results as plausible scenarios rather than as predictions of future climate conditions.
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Next, line plots (Figures 10 through 12) are from the simulated weather data
conditioned to the plausible climate change sceanrios derived from several scenarios..
Figures marked (a) consist of all emissions scenarios for the models CGCM3T47,
CGCM3T63, and GISS-AOM. Figures marked (b) consist of all scenarios for the models
CSIROMK3.5, MIROC3.2MEDRES, and MIROC3.2HIRES. Figures 10 a and shows the
AOGCM predicted total monthly precipitation values of the simulated data, along with
the historic simulated data as a reference. While the overall shapes of the plots are
similar, it is clear that there is a wide range of variability in the AOGCM predictions. For
the months of February and March, most AOGCM simulations predict an increase in
precipitaiton, but the range of increase between the lowest and highest is quite large,
almost 30 mm. All models but two (CGCM3T63 Bl and MIROC3.2 HIRES B1) predict
an increase in the average precipitation in April. For most other months, some

simulations predict an increase where others predict a decrease.
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Figure 10a: AOGCM predicted average total precipitation compared with historical

averages
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Figure 10b: AOGCM predicted average total precipitation compared

averages

with historical

Predictions for AOGCM maximum temperatures are shown in Figures 11a and 11b.

All simulations predict an increase in the the maximum temperature for

all months. The

amount of increase differs with each model, as discussed in the change factor bar graphs

in Figure 8. MIROC3.2MEDRES scenario AIB predicts an average maximum

temperature of 10.5°C for March (Figure 11b), while GISS-AOM scenario B1 predicts a

March average of 5.5°C (Figure 11a). Since snowmelt is a major flooding risk in the

basin, this difference would have a significant impact of the timing and magnitude of

peak runoff.
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Figure 11a: AOGCM predicted average
historical averages
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Figure 12 b: AOGCM predicted average monthly minimum temperature compared
with historical averages

Minimum temperature predictions are illustrated in Figures 12a and b. For all
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months, the simulations predict an increase in the average monthly minimum
temperature. It is clear that the magnitude of this increase for the simulations is variable.
For the month of February, there is the most variability in the predictions. For example
CGCM3T63 scenario A1B predicts a minimum temperature of -3.1°C, while the model
GISS-AOM scenario B1 predicts an average minimum temperature of -7.8°C. The
AOGCM predictions for the month of May display the least variability.
MIROC3.2MEDRES scenario A1B has a minimum temperature for May of 10.4°C,
which is relatively close to the 8.9°C prediction of simulation GISS-AOM scenario B1.

Box plots of total monthly mean precipitation for all scenarios are presented in box
plots 13 through 18. Figure 13 shows the box plots for the model CGCM3T47 scenarios
AlB, A2 and BI, respectively. It is clear by the number of outliers that the WG-PCA
weather generator has been able to produce a dataset adequately. For summer month,
especially from May through September, A1B and B1 scenarios have predicted a
decrease in precipitation while A2 has predicted less precipitation for June and August.
The precipitation generated for the month of November in A2 scenario is the only month
where the observed precipitation falls below the 25™ percentile value of A2.

The monthly precipitation box plots for the CGCM3T63 model are illustrated in
Figure 14. Overall, the months of November and September have the greatest range of
monthly precipitation totals among all of the emissions scenarios. The medians for
November were the highest in all scenarios. The inter-quartile ranges (the boxes) of
SRES scenario A1B were much larger than those of A2 and B1. Unlike CGCM3T47
model, A1B and B1 scenarios of CGCM3T63 have projected a decrease in precipitation

only in two summer month: June and July by A1B and May and June by B1. However
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CGCM3T63 A2 has projected wider variability: a decrease in precipitation during most
of summer and increase of precipitation during winter. Overall, the performance of the
model in producing the changes in monthly precipitation totals has proved satisfactory
only except for November.

The precipitation produced by CSIROMK3.5 is different than the CGCM models
(Figure 15). All months but September, October, and November has projected decrease in
precipitation. A similar trend has been seen for the GISS-AOM A1B and B1 scenario
simulations (Figure 16). SRES Scenario A1B predicts increase of early springtime
precipitation and extended period of summer precipitation with greater variability than
scenario Bl. The high resolution MIROC3.2 model has predicted decrease of
precipitation in all months except December, January, February and March (Figure 17). A

similar trend is seen for the mid resolution MIROC3.2 A1B and B1 too (Figure 18).

31



Precipitation (mm)

Total Monthly PPT, CGCM3T47 A1B Total Monthly PPT, CGCM3T47 B1
350 300 .
[ ]
300 ° .
. . 250+
250 °
’g 200
2004 =1
.O
g 150
150 -
<9
£
100 A& 100
50 50
04 0+
T T T T T T T T T T T T T T T T T T T T T T T T
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
Months Months

Total Monthly PPT, CGCM3T47 A2

300 .

250

200

150

Precipitaton (mm)

100

50

T T T T T T T T T T T T
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
Months

Figure 13: Box plots of CGCM3T47 generated monthly precipitation for A1B (upper left), A2 (upper right) and B1 scenarios
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Figure 14: Box plots of CGCM3T63 generated monthly precipitation for A1B (upper left), A2 (upper right) and B1 scenarios
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Figure 15: Box plots of CSIROMK3.5 generated monthly precipitation for A1B (upper left), A2 (upper right) and B1 scenarios
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Figure 16: Box plots of GISS-AOM generated monthly precipitation for A1B (left), B1 (right) scenarios
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Figure 17: Box plots of MIROC3.2HIRES generated monthly precipitation for A1B (left), B1 (right) scenarios
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5.4 Simulation of extreme events
A moderate change in precipitation can have large impact on the runoff, and thus
on the occurrence of floods. The change is climate is predicted to shift the runoff pattern
in Canada: reductions in spring and summer runoff, increase in winter runoff and earlier
peak runoff (Sharif and Burn, 2007). It is therefore important to assess the changes in
extreme precipitation amounts. In this study, three precipitation indices (Table 3),
proposed by Vincent and Mekis (2006) have been used for comparing the performances

of the AOGCMs in generating heavy precipitation amounts.

Table 3: List of Extreme Precipitation Indices

Precipitation Indices Definitions Units
Heavy precipitation days (>= 10 days) Number of days with precipitation >= 10 mm days
Very wet days (>= 95" percentile) Number of days with precipitation >=95" percentile | days
Highest 5-day precipitation amount Maximum precipitation sum for 5 day interval mm

These indices demonstrate precipitation frequency, intensity and extremes. The
highest 5 day precipitation, very wet days and the heavy precipitation days express
extreme features of precipitation. For very wet days, the 95" percentile reference value
(18.3 mm) has been obtained from all non-zero total precipitation events for 1979-2005.
It is better to use indices based on percentile values rather than a fixed threshold in

Canada due to large variations of precipitation intensities in various regions.
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Table 4: Change in Precipitation Indices Compared to 1979-2005

Scenarios No. of Heavy prec. | No. of very wet S.dfly-l.nax.
days days Precipitation, mm

CGCM3T47 _AlB 0.963 0.500 -0.771
CGCM3T47_A2 2.759 2.537 5.738
CGCM3T47 Bl -2.370 -1.389 -4.351
CGCM3T63 _AlB 3.037 2.074 4.765
CGCM3T63 A2 -2.389 -1.370 3.592
CGCM3T63 Bl 1.481 1.130 -1.979
CSIROMK3.5 A1B -1.963 -2.278 1.359
CSIROMK3.5 A2 2.463 1.778 8.432
CSIROMK3.5 B1 -0.704 0.481 -0.236
GISS-AOM_AI1B -1.778 -2.093 -18.066
GISS-AOM_B1 -2.296 -1.778 -4.286
MIROC3.2HIRES AI1B 2.519 2.407 12.595
MIROC3.2HIRES B1 -0.685 -1.148 -12.762
MIROC3.2MEDRES _Al1B -2.296 -2.204 -1.534
MIROC3.2MEDRES A2 -0.648 -0.019 0.513
MIROC3.2MEDRES B1 2.000 1.593 14.542

Figure 19 and Appendix C presents probability plots of heavy precipitations
generated by the AOGCMs at 95% confidence interval (upper and lower bound in each
set) with Weibull distribution using Maximum Likelihood estimates. The parameter
estimates have been displayed with Anderson-Darling (AD) goodness-of-fit statistic and
associated p value. The AD measure how well several distributions from several
AOGCMs follow the historic observation. A lower value of p (usually <0.05) indicates
the data do not follow the specified distribution. For comparison of several distributions
with AD, the smallest AD statistic indicates the closest fit to the data. One common
feature of all AOGCMs are that they are positively (rightward) skewed indicating more
data points in the right tail in the upper half than expected. This clearly suggests increase

in the number of heavy precipitation days. The higher AD and lower p (<0.5) values
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indicate that the CGCM3T47 A1B, CGCM3T63 A1B, MIROC3.2MEDRES A1B and B1
scenarios does not follow the same data distribution as the historic one. Changes in the
precipitation indices compared to the historic observed 1979-2005 values are computed
and presented in Table 4. The mean change in the heavy precipitation is not very
significant over 54 year period; CGCM3T63 A1B shows an increase of 3 days of heavy
precipitation events. Interestingly, a few models have shown a decrease in the
occurrences of heavy precipitation days. So the deviation of the occurrence of heavy
precipitation days between the AOGCMs is 5.3 days.

Figure 20 and Appendix D shows comparison plots of the frequency of occurrence
as predicted by AOGCMs. CGCM3T47 A2, CSIROMK3.5 A2, CGCM3T63 AlB
scenarios have predicted higher occurrence of very wet days with an increase of 2.5 days.
However, scenarios, such as MIROC3.2MEDRES Al1B, GISS-AOM B1 and
CSIROMK3.5 A1B scenarios have predicted decrease of 2 very wet days. So in this case

also, the differences between the AOGCMs are 5 days (Table 4).
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Figure 19: Probability plot of heavy precipitation days with > 10 mm precipitation generated by (a) CGCM3T47 (left) and (b)
CSIROMK3.5 (right)
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Figure 20: Time series plot of very wet days with > 95 percentile precipitation
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Frequency Plot of Highest 5 Day Maximum Precipitation
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Figure 21: Frequency plot of maximum 5 day precipitation

Figure 21 presents frequency plot of highest 5 day maximum precipitation,
accumulated over each year. The AOGCMs have predicted a wide variation in predicting
the extent of the precipitation amounts. From the relative position of the peaks of GISS-
AOM B1, CGCM3T47 A1B shows that these models have captured the highest 5 day
precipitations very well. The shorter and wider-looking fitted distributions of
CGCM3T47 A2 and CGCM3T63 Bl have shown greater variability. However, the
highest frequency of the 5 day maximum precipitation ranges between 60-120 mm for
most of the scenarios. The change in the precipitation amounts, however, does not show

any specific pattern (Table 4).
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6. Conclusions and Recommendations

This study investigates the potential impact of climate change on the Upper Thames
River Basin using Principal component analysis integrated weather generator algorithm.
Six AOGCM models have been used along with three SRES emissions scenarios. 54
years of synthetic data has been created using the WG-PCA algorithm with downscaled
AOGCM data. For the purpose of comparing performances of AOGCM’s WG results for
London station has been chosen. The weather generator has been able to adequately
reproduce a historic dataset which is statistically similar to the observed data. The model
has also been able to simulate future plausible scenarios presented by the AOGCMSs. For
a given scenario this model has produced an unprecedented amount of precipitations, thus
enabling higher accuracy of generating higher and lower extreme values which is more
appropriate of assessing the flood and draught conditions in the study area under a
changed climate. Generated results have been able to keep the correlation structure of the
observed values which is important to produce hydrologic models at watershed scale. The
climate change scenario simulations indicate wider variability in between the plausible
scenarios. Overall, all models have indicated increase in maximum temperature, ranging
from 1.5-6° C and a decrease in summer precipitation and increase in wintertime
precipitation. The performances of the AOGCMs in predicting extreme precipitation
indices are assessed by precipitation indices. No consistent pattern has been found in the
number of highest 5 day maximum precipitations. The variabilities between the
AOGCMs are even wider in case of extreme precipitation, which increases the difficulty
of detecting a significant pattern. Overall, the above results have improved the present

understanding of daily and extreme precipitation events in the study area. This
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inconsistency clearly indicates the need for regional studies to explore local
characteristics of precipitation extremes and improving the model quality by introducing

more input variables relevant to the precipitation extremes.
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APPENDIX A

SRES Scenarios
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Figure Al: SRES Emission Scenarios (Nakicenovic et al, 2000)

Al1B: In scenario AlB, the storyline includes rapid economic expansion

and

globalization, a population peaking at 9 billion in 2050, and a balanced emphasis on a

wide range of energy sources (Nakicenovic et al, 2000).

B1: The storyline for the B1 scenario is much like A1B in terms of population and

globalization; however there are changes toward a service and information economy with

more resource efficient and clean technologies. Emphasis is put on finding global

solutions for sustainability (Nakicenovic et al, 2000).

A2: In A2, the storyline consists of a world of independently operating nations with a

constantly increasing population and economic development on a regional level.

Technological advances in this storyline occur more slowly due to the divisions between

nations (Nakicenovic et al, 2000).
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APPENDIX B

Atmosphere-Ocean General Circulation Model data description

Canadian Coupled Global Climate Model

The third generation Coupled Global Climate Model (CGCM3) was created in 2005 by
the Canadian Centre for Climate Modelling and Analysis (CCCma) in Victoria, BC for
use in the IPCC 4™ assessment report to run complex mathematical equations which
describe the earth’s atmospheric and oceanic processes. The CGCM3 climate model
includes four major components: an atmospheric general circulation model, an ocean
general circulation model, a thermodynamic sea-ice model, and a land surface model
(Hengeveld, 2000) and consists of two resolutions, T47 and T63. CGCM3T47 has a
spatial resolution of 3.75° x 3.75° and it includes 31 vertical levels (Flato, 2005). The
atmospheric resolution of CGCM3T63 model is 2.8° x 2.8°. The emissions scenarios

A1B, A2 and B1 were used as greenhouse gas inputs in both models.

Commonwealth Scientific and Industrial Research Organization’s Mk3.5 Climate
Systems Model

Australia’s Commonwealth Scientific and Industrial Research Organization created
the AOGCM CSIROMK3.5, which is an improved version of the MK climate systems
model. The spatial resolution of the model is 1.875 x 1.875. The SRES emissions
scenarios A1B, A2, and B1 were used as inputs to the model for the [PCC 4™ agsessment

report.
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Goddard Institute for Space Studies’ Atmospheric Ocean Model

The North American Space Association and the Goddard Institute for Space Studies
developed the GISS-AOM climate model, first in 1995 and then a revised version was
created with smaller grids in 2004 for the IPCC 4™ assessment report. The resolution for
the model is 4° longitude by 3° latitude (PCMDI, 2005). The atmospheric grid has 12
vertical layers (PCMDI, 2005). The emissions scenarios SRES A1B and B1 were used as

greenhouse gas inputs to the model.

Model for Interdisciplinary Research on Climate version 3.2

The Japanese Model for Interdisciplinary Research on Climate version 3.2 (MIROC3.2)
was developed in two resolutions: the high resolution (MIROC3.2HIRES) in 1.125° x
1.125° grid and the medium resolution (MIROC3.2MEDRES) in 2.8° x 2.8° grid. For
present study, two emissions scenarios from MIROC3.2HIRES (A1B and B1) and three

scenarios (A1B, A2 and B1) from MIROC3.2MEDRES were used.
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