Water Resources and Integrated Assessment Modelling

Presentation at FIDS Water Resources Symposium May 12, 2014

Evan Davies, University of Alberta

My History with FIDS (2003-2008)

* My mother \rightarrow Gordon McBean \rightarrow Prof. Simonovic

- * September 2003: Started PhD
- * December 2007: Defended PhD
 - * "Modelling Feedback in the Society-Biosphere-Climate System"
- * January 2008: Started PostDoc
- * February 2009: Completed PostDoc
 - * "Energy Sector for ANEMI"
- * July 2009 \rightarrow University of Alberta

The "FIDS Experience"

- Social aspects are what I remember best
 - * Annual picnics at Fanshawe Reservoir
 - Christmas dinners with FIDS
 - * Dinner/Beer/Movie nights with other students/PDFs
 - Weddings and other celebrations
 - * Weekly meetings and the wait in the FIDS offices...

The FIDS Cohort in 2005

In Photo (from left): Prof Simonovic and Tanja; Juraj, Timea and Natalie Cunderlik; me; Jamie Prodanovic (Thomas), Pat Prodanovic; Ibrahim, Seba, and Abeer El-Baroudy

The FIDS Cohort in 2007

In Photo (from left): Evan and Yufei Davies; Khaled Akhtar; Jordan Black; Ponselvi Jeevaragagam; Sean Gettler; Pat and Jamie Prodanovic (Thomas); Angela Peck; Prof Simonovic and Tanja

FIDS Members (2003-2008)

- * Shohan Ahmad (MSc, PhD)
- * Khaled Akhtar (PhD)
- * Taslima Akter (PhD)
- * Vasan Arunachalam (PDF)
- * Elizabeth Bowering (MSc)
- * Juraj Cunderlik (PDF)
- * Evan Davies (PhD, PDF)
- * Ibrahim El-Baroudy (PhD)

- * Hyung-Il Eum (PDF)
- * Ponselvi Jeevaragagam (PhD)
- * Subhankar Karmakar (PDF)
- * Angela Peck (MSc, PhD)
- * Pat Prodanovic (MSc, PhD)
- * Rajesh Shrestha (PDF)
- * Tarana Solaiman (PhD)
- * Dragan Sredojevic (MSc)

Memories of FIDS

Research at FIDS

* PhD research was also enriching...

- * I learned a lot! And started to focus on water
- * Four years of research on **one topic** (with lots of parts)
 - * System dynamics, simulation and global change
 - * Water use, climate change, socio-economic development
 - * The hydrological cycle, carbon cycle, and climate policy
 - * Agriculture and energy systems
- * Now, my attention is divided!

My Work at FIDS: PhD Thesis ANEMI: System dynamics model of water and global change

Land-use Emissions Industrial Emissions Economy Carbon Land Use + Conversion Atmospheric to GDP Efficiency Temperature Agricultural Land CO2 Land Clearing Irrigation Wastewater and Reuse Requirements Conversion + Agricultural Water Quality Water Use Climate Production Wastewater Treatment Wastewater Caloric Water Surface Water Treatment and Temperature Availability Requirements Consumption Reuse Population Surface Flow + Water Stress

PhD Research Goals

- 1. Examine how climate change affects long-term sustainability
- 2. Provide a tool to policy-makers
- 3. Stress importance of feedbacks

Climate/Global Change Social Adaptation

Understanding \rightarrow better policy

Experimental Approach

1. Performance Assessment

Sample Results: Irrigation

Result: More Food causes Lower Population? Reason: More Irrigation means more Pollution!

Lessons Learned at FIDS

- * Copying from Prof Simonovic...
 - * Regular (weekly) meetings with my students
 - * Treat students as "junior colleagues"
 - * Respond quickly and supportively
 - * Provide them the tools they need to succeed
 - * Require excellence and hard work, but humanely

EDMONTON · ALBERTA · CANADA

University of Alberta (2009-now)

Current Work

Water Resources Engineering

Research Overview

* System dynamics/integrated assessment

* Examples follow...

- * Water-Energy nexus
- * Drought management
- * Irrigation sector planning
- * Also Wastewater treatment/biomass production/SRWC
- * Deficit irrigation and reservoir management
- * First Nations water use/quality
- * Urban stormwater/stormwater ponds

Integrated Assessment and Global Water Resources

With Page Kyle, Joint Global Change Research Inst. Mohamad Hejazi, Joint Global Change Research Inst. Jae Edmonds, Joint Global Change Research Inst. Leon Clarke, Joint Global Change Research Inst. And others

Proudly Operated by Battelle Since 1965

Integrated Assessment and Global Change

- * Work with JGCRI (2009-present)
 - * Joint Global Change Research Institute, Washington DC
- * Use large-scale models to understand *big picture* of climate and global environmental change:
 - * Climate change: General Circulation Models (GCM)
 - * Global change: Integrated Assessment Models

Proudly Operated by Battelle Since 1965

Model: "GCAM"

- Integrated Assessment (IA)
 Models simulate "global change"
 - Focus on humanenvironment connections
 - Clarify feedbacks between climate, energy, economic etc. policy alternatives
 - Provide insight unavailable from disciplinary science

Image courtesy of J. Edmonds, JGCRI

GCAM

Courtesy of J. Edmonds, JGCRI

time-steps

(Fig. 2 from Davies et al., 2013)

Focus: Water for energy

* Starting point: Water for <u>Energy</u>

- * Water for primary energy
 - * Coal
 - * Oil
 - * Natural Gas
 - * Uranium
 - * Less...

* Water for secondary energy

- * Electricity generation
- * Cooling water
- * MORE...

- 1. How much water used by GCAM regions for **energy production**:
 - * Now?
 - * To 2100?
- 2. What are **key factors** affecting water use?
 - * Effects of electricity technology and cooling system choices
- 3. How does water use change with electricity mix?
 - * Policy Analysis: Effects of <u>climate policy</u>

The global picture – withdrawal and consumption

Withdrawal

Consumption

Davies et al. (2013), ADWR

U.S. – water withdrawal and consumption

Davies et al. (2013)

Withdrawal

China – water withdrawal and consumption

Davies et al. (2013)

What if electricity changes too?

Its production depends on model, and climate and energy policy!

Different Models:

Davies et al. (2013), ADWR

Climate and Energy Policy:

Kyle et al. (2013), *IJGGC*

Shifts in Electricity – policy effects

Renewable Energy Scenario

Renewable Energy with Carbon Tax

Oil

Geothermal

Kyle et al. (2013), IJGGC

2095

Effects on Water Use

Kyle et al. (2013), IJGGC

The Invitational Drought Tournament: Drought preparedness capacity building

With Kai Wang, University of Alberta Xuanru Wang, University of Alberta Harvey Hill, Agriculture and Agri-food Canada Monica Hadarits, Agriculture and Agri-food Canada Richard Rieger, Agriculture and Agri-food Canada

Invitational Drought Tournament (IDT): 2011-now

- * Decision-support framework developed by Agriculture Canada
 - Helps institutions address drought preparedness
 - * Uses **gaming format** to identify gaps and vulnerabilities in plans
 - * Creates forum for multi-disciplinary stakeholders to discuss climate preparedness and adaptation
 - * Competition drives engagement
- * To date, 5+ IDTs run:
 - * Calgary, Feb. 2011
 - * Saskatoon, Mar. 2012
 - * Kelowna, Nov. 2012
 - * Saskatoon, Mar. 2013

Running a Drought Tournament

- <u>Goal</u>: Reduce drought risk over the short- and long-term by:
 - * maximizing economic potential
 - minimizing social stress
 - improving environmental conditions

Running a Drought Tournament

- * In the fictitious **Oxbow Basin**, IDT teams
 - Are guided through a multi-year drought scenario of unknown duration and intensity
 - Choose each year among set list of policies to adapt to and mitigate drought impacts
 - * Can also innovate
 - \rightarrow new policies
 - * Have set budget

Game Scoring Approach: Calgary

* A competition: Each adaptation option has a score

- * Economic
- * Social
- * Environmental
- Meets short-term needs (1 year)
- Meets long-term needs (15 years)
- * Scoring is based on a modified risk assessment
 - Team with the lowest score, i.e. lowest residual risk,
 wins

 Image: State of the state o

Extreme risk: Immediate controls required High risk: High priority control measures required Moderate risk: Some controls required to reduce risks to lower levels Low risk: Controls not likely required Negligible risk: Scenarios do not require further consideration

Comments from Observers and Participants in Calgary

- * "It takes adaptation-planning exercises to a new level, above and beyond an inventory of impacts and adaptation..."
- * "Participants tended to work as a team vs. competitively in their sector roles"
- * "... the tournament has strong potential for testing the application of science to adaptation decision making."
- * "It [the IDT] encourages teams to develop a group vision for the basin"
- * "An automated process for running the game would allow for more adaptation choices"

Pilot Game Challenges and Recommendations

- * The water balance scenario was static
 - * Development of simulation model → University of Alberta
- Development of online tools or software to automate scoring and other aspects of the scenario
- * Funding strategy needs to be flexible and proactive
- * Revision to scoring for transparency

The IDT Model

System Dynamics "gaming"

- * Model Components
 - * Agriculture
 - * Land: rain-fed, irrigated
 - Crop: forage, grain, oilseed, vegetables, grass
 - Livestock: dairy, beef, pigs, chickens
 - * Supply
 - * Base flow
 - * Reservoir drawdown
 - * Build additional reservoir

Model Components and Structure

- Municipal
 - * Indoor:
 - * Kitchen
 - * Laundry
 - * Bathing
 - * Toilet flushing
 - * Outdoor
- * Population
 - * Municipal
 - * Rural

IDT Saskatoon Results

total Oxbow Basin water use

2nd Version of Model

Model Expansion

- * Industrial water use
 - * Metal mining
 - * Non-metal mining
 - * Coal mining
 - Thermal and hydro power generation plants
- Recreational water use
 - * Reservoir park
- * Tree crop and vine water use
 - * Apple
 - * Cherry
 - * Grape

Model Control Center and Policy Selection

🖽 🖪 🖨 🎼	💡 😥 🗆 🖛 💿 🛪 💿 🕼							
	1 J. 1 1	· <u>·</u> ··································						
_								
pper In	r : Policy Selection_water management. Isert Lavout Tools Network Help	INN	Reality and an other statements of					
Ē.		🖻 🗆 🗵 💿 🛛 🖛 🖬 🖽 🖬 🗆 🎬 🗛 🐔 🖄						
Ð	<u>王 ⊟ 任</u> 王							
		Po	licy Selection					
			ney selection		_			
olicy S	Current Year= 2015	olicy Selection_summary.VNN	Auto Tal				-	
) 🖟 🖬 🖽 ab 🗆 🛄 Aa 🐔 🗠 🗖	A田夏山園				
Wa		三世王						
	enhance irrigation water de and application effic		Deller	Selection				
			Policy	Selection				
Ot	-	Current Year= 2015 Team Na	me: red.vdf				Summar	v
	desired drawdown of reserv							
Su		Wedge Margare and D. Frank datase		The second stand we draw a loss of the destand				
	Ration Water ———	water Management Policy Action		Financial Land and Technology Policy Action				
nd Game	=0 ration water by sector	Time (year) 2013 2014 2	015	Time (year)	2013	2014	2015	
		Inter-basin Transfer 0 0	0	Relief Payout				
		Enhance irrigation system 1 1	1	Promote Green Cover				
		Build Dam and Reservoir 0 0	0	Promote Winter Cropping				
	tree crop and vine irrigation	Reservoir Draw-down 56 56	56	Promote Stock Reductions				
		Ration Water 0 0	0	Pasture Species Composition				
	<u> </u>	Municipal allocation 526 526	525	Expand Irrigated Area				
		Irrigation allocation 2,872 2,874 2	,874	Invest in Agricultural R&D				
		Industrial allocation 200 200	200	Invest in Water Related R&D				
		Otherware allocation aca aca	262	Invest in Grev Water Treatment				

Result Summary

Systems modelling for a sustainable irrigation in Alberta to 2035

With Mohamed Ammar, Engineering Miles Dyck, Renewable Resources Scott Jeffrey, Agricultural Economics Feng Qiu, Land Use Economics Jim Unterschultz, Economics

Project Problem Statement

* Project from 2013-2016

- Irrigated agriculture is largest consumer of surface water in Southern Alberta
 - * Expansion of irrigation over the next 25 years
 - * Increase agricultural water and land requirements
 - Cccurs within context of ongoing socio-economic development → increased demands for land and water

Project Aims

- Identify key social, economic, and environmental variables in the agricultural system of Southern Alberta
- Identify land-use, water management, agricultural, and financial policies for irrigated agriculture and their linkages with other systems

