DEFINING RISK AND ITS ROLE IN DISASTER MANAGEMENT

Niru Nirupama Associate Professor and Graduate Program Director Disaster & Emergency Management York University Toronto

Since 2005

2000-02

CONVENTIONAL APPROACH

$R = H \times V$

Here,

R = risk;

H = hazard, determined as a probability (or likelihood) of the occurrence of hazard;

V = vulnerability (also loss, impact or consequences).

Risk evaluation equation	Variable other than probability and impact	Proposed by
$R = p \cdot L^x$	x (> 1) = people's perception	Whyte and Burton (1982)
$R = P \cdot S$	S = severity	Government of Michigan (2001)
$R = p \cdot V \cdot n$	n=social consequences	Ferrier and Haque, 2003
$Risk = \frac{H \cdot L}{preparedness (mitigation)}$	Preparedness or mitigation are measurable measures	Smith (2004)
$R = p \cdot L \cdot f(x)$	f(x) = risk aversion factor	Schneider (2006)
$R = H \cdot V \cdot M$	M = manageability or ability of humans	Noson (2009)
$R = H \cdot Elements \ at \ Risk \cdot V$	<i>Elements at Risk</i> = physically exposed assets	Smith and Petley (2009)
$R = H \cdot (V \cdot cp)$	cp = community perception	Nirupama (2012)

Encyclopedia of Earth Sciences Series 2013

Encyclopedia of Natural Hazards

Editors: Peter T. Bobrowsky ISBN: 978-90-481-8699-0 (Print) 978-1-4020-4399-4 (Online)

DISASTER RISK MANAGEMENT

N. Nirupama York University, Toronto, ON, Canada

Threat recognition - risk and vulnerability identification

Risk from natural and technological hazards

Recognizing vulnerabilities

Resilience in the Built Environment, Emerald, **3**:2.

Quantitative Approaches HRVA - Hazard Risk Vulnerability Assessment

British Columbia

Hazard, Risk and Vulnerability Analysis Tool Kit

2004

Ministry of Public Safety and Solicitor General Provincial Emergency Program

Understanding the magnitude, frequency of occurrence, and severity of consequences and prioritization of risks

Measuring Impact

Category	Rank	Description	Criteria
Fatality	1	Very Low	0-4 deaths: 2 reported
Injury	2	Low	4-50 people: 24 reported
Critical Facility	3	High	Evacuation <10,000 people: 12,500 reported
Lifelines	2	Low	Disruption 1-2 days without Gas & Electricity
Property Damage	3	High	Localized Severe Damage: Contained to a 2 km radius and involved over 580 Homes
Environmental Impact	3	High	Localized Severe Damage: Smoke, Asbestos and Burning Metal affected residents homes & businesses
Economic/Social Impact	3	High	Extended & Widespread: Lawsuits continue for properties damaged, area residents experienced trauma and fear from threat of asbestos contamination

Risk Prioritization

HIRA – Hazard Identification and Risk Analysis

Hazard Identification and Risk Assessment for the Province of Ontario

Emergency Management Ontario Ministry of Community Safety and Correctional Services 2011

Risk = Frequency*Consequence*Changing Risk Changing Risk = Change in Frequency + Change in Vulnerability

Measuring Impact

- Social Impacts
- Property Damage
- Critical Infrastructure Service Disruptions/Impact
- Environmental Damage
- Business/Financial Impact
- Psychosocial Impacts

Risk Prioritization

Level of Risk	Description	Hazards
>50	Extreme	
41 - 50	Very High	
31 - 40	High	
21 - 30	Moderate	
11 - 20	Low	
<10	Very Low	

FEMA – FEDEARL EMERGENCY MANAGEMENT AGENCY

Category		Rating	Sc	ore	Weight	Total
History		High	10		2	20
Vulnerability	People	Medium	5 15/2		5	37 5
Vuniciability	Property	High	10	= 7.5		
Max Threat		High	10		10	100
Probability		Medium	5		7	35
Total Risk					192.5	

Risk Prioritization

Total Risk =100

plans for these hazards No immediate need to

Develop risk reduction

develop risk reduction plans

SMUG – SERIOUSNESS, MANAGEABILITY, URGENCY, GROWTH

SMUG RATINGS

Seriousness	High = 4-5	Medium = 2-3	Low = 0-1
Manageability	High = 7+	Medium = 5-7	Low = 0-4
Urgency	High = >20 yrs	Medium = <20	Low = 100 yrs
Growth	High = 3	Medium = 2	Low = 1

SMUG Ratings

Hazard	S	M	U	G	Total
Utility Failure - Communications	3	6	3	3	15
Flooding	3	4	3	3	13
Public Health Emergency	3	5	2	2	12
Utility Failure - Power	2	4	3	3	12
Storm Surge	2	3	2	2	9
Transportation - Road	2	1	3	2	7
Civil Unrest	1	3	1	1	6

Risk Analysis

the 2008 Toronto Propane Explosion Case

Armenakis, C. and Nirupama, N. (2013). Estimating spatial disaster risk in urban environments, Geomatics, Natural Hazards and Risk, Taylor & Francis, 4 (4): 289-298.

HAZARD ZONING

- For an explosion caused by a propane storage tank of up to 9.5 tonne (5,000 USWG) capacity, the projectile distance is about 320m.
- The recommended evacuation zone is 2.5 times the projectile distance.

VULNERABILITIES

- Social
- Physical
- Economic
- Critical Infrastructure
- Environmental

PHYSICAL

where MJ is dwellings requiring major repairs, C represents construction of the dwellings and other buildings prior to 1960, D is the number of buildings in %DA polygonal area, i = number of DA per zone; j = number of zones.

ECONOMIC

$$EV_{ji} = \frac{(UE + F_50)_{\%DA_i}}{\sum_{i=1}^{n} POP(Zone_j \%DA_i)}$$

where i = number of DA per zone, j = number of zones.

CRITICAL INFRASTRUCTURE

$$CI_{ji} = CI_j \times \frac{\% DA_{ij}}{A_j}$$

where CI_j is the number of critical infrastructure elements in Zone *j*, $\% DA_{ij}$ is the polygonal area of $\% DA_i$ in Zone *j*, and A_j is the polygonal area of Zone *j*.

SPATIAL RISK ASSESSMENT MODEL

RISK ESTIMATION

$$R_{nj} = H_j \times 0.25 \sum_{j=1}^{3} \sum_{i=1}^{n} (SV_{ji} + EV_{ji} + PV_{ji} + CI_{ji}),$$

i = DA, j = hazard zone, and n is the number of DAs in each zone; *Rnj* = spatial risk index of all DAs located in zone j;

Hj = relative hazard zone index;

SVji = social vulnerability component;

EVji = economic vulnerability component;

PVji = physical vulnerability component;

Clji = critical infrastructure component;

0.25 = average of the total four individual vulnerability types.

DA ID	DA_i	Total V_{ji}	$R_{ji}; H_j = 0.6$
352,021,159	4.638	0.2659	0.1596
352,021,160	0.140	0.0485	0.0291
352,021,162	0.187	0.0197	0.0118
352,021,165	0.309	0.0313	0.0188
352,021,166	0.167	0.9409	0.5645
352,021,167	0.325	0.3932	0.2359
352,021,182	0.358	0.0000	0.0000

Table 1. Spatial risk estimation for Zone 1 (j = 1).

Risk Prioritization

(red = very high risk; yellow = high risk; blue = medium risk; greyish green = low risk)

CONVENTIONAL APPROACH APPLIED TO ONTARIO HAZARDS

SN	Hazard	Likelihood	Impact	Risk Index	RI (%)
		(1)	(2)	(<i>RI</i>)	(3)÷20 [*] ×100
				(1)×(2)= (3)	=(4)
1	Winter storm	5	3	15	75
2	Wildfire	4	1	4	20
3	Land subsidence	4	2	8	40
4	Tornado	4	3	12	60
5	Epidemic/ pandemic	3	4	12	60
6	Extreme heat	3	3	9	45
7	Landslide	2	2	4	20
8	Expansive soil	2	3	6	30
9	Hurricane	2	4	8	40
10	Earthquake	1	3	3	15
11	Hail storm/ wind storm	3	1	3	15
12	Flash flood from snowmelt	3	4	12	60
* max	value of <i>RI,</i> based on max ran	ks of Likelihoo	d =5 (Table	2) and Impact	= 4 (Table 1)

Nirupama, N. (2012). Risk and Vulnerability Assessment – A Comprehensive Approach, International Journal of Disaster Resilience in the Built Environment, Emerald, **3**:2.

ACCOUNTING FOR COMMUNITY PERCEPTION

SN	Hazard	Likelihood	Impact	Community	Risk Index	RI _{cp} (%)
		(1)	(2)	Perception	(RI _{cp})	(4)÷100 [*] ×100
				(ср)	(1)×(2×3)	(5)
				(3)	(4)	
1	Winter storm	5	3	5	75	75
2	Wildfire	4	1	3	12	12
3	Land subsidence	4	2	1	8	8
4	Tornado	4	3	1	12	12
5	Epidemic/ pandemic	3	4	5	60	60
6	Extreme heat	3	3	5	45	45
7	Landslide	2	2	1	4	4
8	Expansive soil	2	3	1	6	6
9	Hurricane	2	4	3	24	24
10	Earthquake	1	3	5	15	15
11	Hail storm/ wind storm	3	1	1	3	3
12	Flash flood from	2	Л	Ę	60	60
	snowmelt	° C	4		00	00
* ma	x value of <i>RI_{cp}</i> - based on n	nax ranks of Li	kelihood =	5, Impact = 4, a	nd <i>cp</i> = 5	

Risk control options - structural, non structural, cost/benefit analysis

The 1997 Red River Flood

Simonovic, S. and Nirupama (2005). A Spatial Multi-Objective Decision Making under Uncertainty for Water Resources Management, *Journal of Hydroinformatics*, 7 (2), 117-133.

Criteria

- **#1**: Minimize flood depth
- #2: Minimize damage buildings, roads, crops

Alternatives

- # 1: Dike to protect the City of St. Adolphe.
- # 2: Raise floodway gate by 1m.
- # 3: Lower floodway gate by 1m.

Multiple decision makers' preferences

	Decision Maker's Preference (W_i)				
Criteria	Weight set #1	Weight set #2	Weight set #3		
Flood depth	0.5	0.1	0.9		
Damage	0.5	0.9	0.1		

Flood depth for simulated alternative #2

Flooded buildings for simulated flood protection alternative #2

36

Flooded fields for simulated flood protection alternative #2

Flooded roads for simulated flood protection alternative #2

38

\$ Damage

Buildings
$$y = 76879x^3 - 344873x^2 + 470283x + 538659$$

Roads

$$rd = 18.889L^2 + 261.25L + 300000$$

Crops

$$ad = \sum \left[(1 - yield) * (cp) * A * price \right]$$

Water surface elevation for three alternatives

Alternative	Total discharge at	Water surface		
	floodway entry	elevation (m)		
	point (m ³ /sec)			
Dike	3650		232.89	
Floodway 1	4730		233.83	
Floodway 2	2900		231.71	

Multi-Criteria Decision Making using Compromise Programming

Ranking of Alternatives

Strategic planning - economic, political and institutional support considerations

Nirupama, N. (2013). Vertical evacuation during cyclones: suitable for developing countries. *Natural Hazards*. 69:1137-1142

Response, recovery, reconstruction, and rehabilitation

POPULATION METRO AREA

Jefferson, Orleans, Plaquemines, St. Bernard, St. Charles, St. John the Baptist and St. Tammany

Source: GCR and Associates and U.S. Census Bureau

THE TIMES-PICAYUNE

Source: Kaiser Family Foundation, New Orleans Five Years After the Storm: A New Disaster Amid Recovery, August 2010

Knowledge management and sustainable development

 $RMI = (RMI_{RI} + RMI_{RR} + RMI_{DM} + RMI_{FP})/4$

RMI = Risk Management Index

 RMI_{RI} = risk identification, includes objective and perceived risks; RMI_{RR} = risk reduction measures including prevention and mitigation; RMI_{DM} = measures of response and recovery; and RMI_{FP} = governance and financial protection measures.

Land Use Classes	LANDSAT-1 MSS Jul 7, 1974 (%)	LANDSAT-5 TM Jul 23, 1990 (%)	LANDSAT-7 ETM Oct 30, 2000 (%)
Woods	24.01	11.98	13.06
Row Crops & Legume Grasses	22.78	29.18	13.20
Small Grains or Grass	31.56	34.91	16.84
Fallow Land	4.79	2.34	30.06
Urban	10.07	16.72	22.25
Homestead	3.14	2.05	1.86
Water	3.65	2.82	2.73

Nirupama, N. and S.P. Simonovic (2007). Increase of Flood Risk due to Urbanisation: A Canadian 50 Example, *Natural Hazards*, Springer, 40, 25-41.

Resilience building and community participation

ENGAGING PUBLIC FOR BUILDING RESILIENT COMMUNITIES TO REDUCE DISASTER IMPACT

Nirupama, N. and Maula, A. (2013). Engaging Public for Building Resilient Communities to Reduce Disaster Impact, Special Issue on Sociological Aspects of Natural Disasters Springer, *Natural Hazards*. 66:51-59.

Nirupama, N. and Etkin, D. (2012). Institutional Perception and Support in Emergency Management in Ontario, Canada, *Disaster Prevention and Management*, Emerald, 21(5).

Education

Employment

Type of Housing Occupied by the Participants

Proximity to Potential Risks

Transportation

People's perception of their safety, exposure to risk or threat, sense of belonging with their community, and preparedness to deal with emergencies

Preferences for Seeking help when Faced with Emergencies

CONGRATULATIONS FIDS

