

A comparative study of plane and radial turbulent wall jets

Speaker: William Lin Advisor: Prof. Eric Savory

Affiliation:

Advanced Fluid Mechanics Research Group www.eng.uwo.ca/research/afm

Sponsors:

NSERC

CRSNG

Institute for Catastrophic Loss Reduction

Outline

- 1. Introductory remarks
 - Overview of two configurations
 - Motivation
 - Objectives
- 2. Plane wall jet velocity measurements
- 3. Comparison of plane and radial wall jets
- 4. Closing remarks

Brief overview of the radial wall jet

Motivation

Applications:

- heating/cooling or drying/wetting
- removal or deposition of particles/films
- protective fluid layer
- modelling of storm outflows

Objectives

- To take velocity measurements of the plane turbulent wall jet
- To compare available experimental results from plane and radial wall jets.

Experimental set-up

Measurement apparatus

Dantec MiniCTA 54T30 system

• sampling frequency = 1 kHz

55P61 x-wire probe

- wire diameter = 5×10^{-6} m
- wire length = $1.25 \times 10^{-3} \text{ m}$

Calibration

• Pitot-static tube + U-tube manometer

Traverse

- accuracy = 0.2×10^{-3} m NI PCI-6071E card
- 12-bit resolution

Uncertainty analysis

Propagation-of-uncertainties approach (Wheeler & Ganji 1996)

$$U = f(A, B, C, ...)$$

$$\Delta U = \left[\left(\frac{\partial U}{\partial A} \Delta A \right)^2 + \left(\frac{\partial U}{\partial B} \Delta B \right)^2 + \left(\frac{\partial U}{\partial C} \Delta C \right)^2 + \dots \right]^{1/2}$$

Uncertainty analysis

Sources of uncertainty considered:

- Random variation of the measurand
- Ambient temperature variations during measurements
- Potential x-wire probe misalignment ($\leq 2^{\circ}$)
- Potential pitot-static tube misalignment ($\leq 2^{\circ}$)
- A/D conversion uncertainties
- Scale readability limitation of the calibration manometer
- Calibration curve-fitting
- X-wire probe yaw coefficient uncertainties

Uncertainty analysis

U [m/s]	±ΔU [%]
41	3.2
37	3.3
31	3.4
28	3.5
24	3.7
20	4.1
15	4.3
12	4.8
7.9	6.1
5.0	8.4

Plane wall jet velocity profiles

15

Plane wall jet velocity profiles

16

Plane wall jet velocity profiles

Study	Re _b	x/b	t/b	Y/b	similarity?
Present study	4.0E+04	50, 150	0.1	21	no
Wygnanski et al. (1992)	1.9E+04	60 to 120	<1	61	no
Eriksson et al. (1998)	9.6E+03	40 to 150	107	108	yes
Abrahamsson et al. (1994)	1.0E+04	70 to 150	220	240	VOC
	2.0E+04	125 to 150	233	240	yes

Plane wall jet development

m =1

(14 of 16 experiments)

Velocity profile comparison

Velocity profile comparison

Plane wall jet (Verhoff 1970)

$$\frac{U}{Um} = 1.48 \left(\frac{y}{y_{0.5}}\right)^{1/7} \left(1 - erf\left(0.68 \left(\frac{y}{y_{0.5}}\right)\right)\right)$$

Radial wall jet (Wood et al. 2001)

$$\frac{U}{Um} = 1.55 \left(\frac{y}{y_{0.5}}\right)^{1/6} \left(1 - erf\left(0.70 \left(\frac{y}{y_{0.5}}\right)\right)\right)$$

Velocity profile comparison

Jet spread comparison

Plane wall jet

Authors	Data range	Re	Jet spread	
	x/b	n o _b	m	Α
Bradshaw & Gee [18]	339 to 1459	6.0E+03	1	0.071
Eriksson <i>et al</i> . [22]	5.2 to 208	9.6E+03	1	0.078
Wygnanski <i>et al.</i> [20]	30 to 100	1.0E+04	0.88	?
Abrahamsson <i>et al.</i> [13]	30 to 175	1.0E+04	1	0.081
Verhoff [15]	104 to 417	1.0E+04	1	0.082
	57 to 229	1.2E+04	1	0.077
Schwarz & Cosart [14]	24 to 42	1.4E+04	1	0.085
Schneider & Goldstein [23]	43 to 110	1.4E+04	1	0.077
Abrahamsson <i>et al.</i> [13]	30 to 175	1.5E+04	1	0.077
Wygnanski <i>et al.</i> [20]	30 to 140	1.9E+04	0.88	?
Abrahamsson <i>et al.</i> [13]	70 to 175	2.0E+04	1	0.075
Schwarz & Cosart [14]	24 to 42	2.0E+04	1	0.069
		3.0E+04	1	0.056
Gartshore & Hawaleshka [16]	18 to 124	3.1E+04	1	0.066
Schwarz & Cosart [14]	24 to 42	4.2E+04	1	0.061
Förthmann [12]	3 to 33	5.4E+04	1	0.082
arithmetic mean sample standard deviation				0.074
				0.008

Radial wall jet

Authors	Data range r/D	Bo-	y _D /D	Jet spread	
		пер		n	В
Bakke [4]	5 to 10.7	6.4E4	0.53	0.94	?
Cooper <i>et al.</i> [7]	3 to 7	2 2⊑4	2	1	0.073
	3 to 6	2.324	10	1	0.083
Knowles & Myszko	2 to 9		2	1	0.091
[8]	3 to 10	9.024	10	1	0.109
Bradshaw & Love [5]	3.2 to 20	1.8E5	18	1	0.088
			0.089		
sample standard deviation					0.013

Conclusions

- turbulence profile similarity dependency on slot top geometry
- profiles of time-averaged velocity for plane and radial wall jets match within experimental error
- linear spread rate of plane wall jet
 - = 0.83 linear spread rate of radial wall jet

Future work

- turbulence profile similarity dependency on slot top geometry
- investigation of the Re_b dependency of the velocity decay parameters
- measurements in large plane wall jet facility (2.5 m x 2 m cross-section)

Acknowledgements

Sponsors:

Manitoba

- UWO University Machine Shop
- C. Novacco
- Dr. G.A. Kopp and Dr. R.J. Martinuzzi

Advanced Fluid Mechanics **Research Group** www.eng.uwo.ca/research/afm

Institute for

Reduction

Catastrophic Loss

CEAT