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Overview:

e Flow modeling

e Tackling turbulence
 Why LES

 Brief history of LES

* Navier-Stokes equations
e Space filtering

* Numerical solution

e Few test results



Mathematical Modeling; The Navier-Stokes
Equations:

* Prediction of pressure and velocity field.

« Analytical solution of non-linear partial differential
equations Is not possible, generally.

 One can obtain numerical solution of entire field
with reasonable accuracy.



Tackling Turbulence:

 Solving laminar flow problem is not a challenge
any more.

 Turbulence is now the biggest challenge for CFD.

* Different perspective of turbulence result in
different simulation strategies.

1. RANS (Reynolds Averaged Navier-Stokes)
2. DNS (Direct Numeric Simulation)/LES



A turbulent jet



RANS:
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* Turbulent velocity is considered to be fluctuating about
a mean value.

e By taking a time average one can reduce the dynamical
complexity.



DNS/LES:

o[_ES and DNS consider turbulent flow as,

‘Unsteady, three dimensional flow.’



Why LES:

e High quality predictive numerical solution can
enhance the understanding of flow.

e With LES inertial flow scales can be resolved.

e Code development paved way to do more
fundamental work.

e Creates new ideas.

e Current code is quite flexible and can be modified to
tackle boundary layer type flows, free surface flows,
mixing layers, bluff bodies and even complex
geometries.



Brief History of LES:

 RANS type turbulence modeling is almost eighty
years old.

* First LES type modeling was performed by
Deardorff (1970, 1973)

* Moin & Kim perform first formal LES in (1982).



Navier-Stokes Equations:

Continuity EqQ:
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Momentum EQ:
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Space Filtering:

* LES is based on concept of space filtering.

e [t simulates only the eddies of size larger than
some critical length scale.

e Small scale eddies are modeled.



LLarge and small eddies
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Filtering operation for any variable ‘u’ is defined

j G d./f ——(6) (Convolution Integral)

U= Flltered Variable
G(x—¢&)=Kernel of transform

According to above definition filtering operation is
weighted averaging.

Subgrid part is given as; u=u—u——@m



A simplest filter is,

-

1 ] —

- _ A
G(x-&)=7x T 554 — ®

0 otherwise

.

Its called “Top Hat’ filter.
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Here filtered quantity is clearly an average value
over filter width A at any given point in space.



Filtering of N-S Equations:
Continuity Equation:
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Filtered continuity equation is exactly same as
unfiltered equation.



Similarly for momentum equation,
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Filtered momentum equation is not same as
original one.
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Which is subgrid stress tensor.



Numerical Solution:

e [t Is Interesting to note that filtered N-S equations
are quite similar to unfiltered N-S eq.

* Only difference is the term involving subgrid stress
tensor.

* In LES objective of numerical solution is to solve
unsteady 3-dimensional flow equations.

e Current algorithm is called Fractional Step scheme.

*N-S equations are being solved on structured
staggered grid.



Channel wall
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Geometry and grid for channel
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A unit cell in staggered grid.



Algorithm:

» Take a pressure field and a solenoidal velocity field
as initial condition.

e Solve x-, y- & z-momentum equations for u, v and
w velocity component respectively, for next time step.

 For discretization of space derivatives second order
finite difference scheme is used.

 For time integration non-linear terms are
discretized explicitly using Runge-Kutta or Adams-
Bashfort schemes, for linear terms implicit Crank-
Nicolson scheme is used.



* Resulting velocity field is globally divergence
free but not locally.

e Using a scalar function ¢ velocity field is
projected to divergence free velocity field.

 Finally pressure is calculated for next time
step.



Discretized Momentum Equation:
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Where vy, p and o are parameters for Runge-Kutta or
Adams-Bashfort scheme.



If we define; A, :Gik —U;'
Then eq. (14) will become,
AU — L Au =(ka{‘ + P HM -5 G P”)+2,6’k Lt — (15)
Where,
K _ Ata*
P = aéRe

Discretized equation is a linear system.
At each node six neighboring nodes are involved in eq.

This linear system results in a large banded matrix for
each momentum equation.
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Solution techniques: Gaussian elimination or LU
decomposition.

Required number of operation for ‘n’ nodes ~O(n3).
Modest LES requirement n = 64x100x100
= 640,000 nodes.
State of the art n=>5123
~ 130 million nodes.
| am aiming at n = 128x100x150
~ 2 million nodes

Problem: Calculation requirements are prohibitively
high.



Solution: Approximate factorization.
[AfiAu; = {RHS;}
(1~ A N1~ A, N1~ Ag)Au; =RHS; —— @7)
or,
(1- A )JAui™ = RHS;
(1- A, AU = Au™ (18)
L- Ag)Auj = Ay;




In case of structured grid 1-A,;, 1-A,, & 1-A;; are tri-
diagonal matrices.
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Solution technigue; TDMA or Thomas algoritm.

Required number of operations for ‘n’ nodes ~ O(3n)



Divergence Free Velocity Field:

Momentum equation gives ﬁikwhich IS non-solenoidal.

At new time step divergence free velocity uin+1 IS defined
as;

uin-l—l B Gik
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If uin+1is divergence free,
DI U in+1 _ O

D; = Discrete divergence operator



Apply D; on (19),

1~k
DiG¢=——Du
o At
> L“¢_—At D (20) (Poisson eq.)

Solve (20) for @ and use (19) to get u™*



Solution of Poisson Equation:

* In case of Poisson equation we are looking again at a
huge matrix to invert.

* In the current situation we have periodic boundary
condition In spanwise direction.

e By applying Fourier decomposition in that direction
we decoupled all x-y planes.

 Now we can solve for each Fourier coefficient a set of
equation only in one plane, i.e. x-y plane.

* For Poisson equation solution in each plane Fishpak
IS Used.

 Fishpak requires n%log,n opertions for ‘n’ nodes.



Mathematical Detalls:

Poisson equation can be expressed as;
Liip = F,
(L11 +L,, + L33 )¢ =F (21)

If 3 1s periodic, Fourier transform of (21) will give,

(L11 +L,, +k? )¢? =F (22)

Solve for ¢ with Fishpak.

Inverse Fourier transform will give ¢



Pressure Calculation:

Once ¢ IS Known, pressure for next time step is
calculated as,

P™ =P"+¢— A4 (23)



Velocity field for fully developed channel flow.
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Pressure field for fully developed channel flow.



0.5

-0.5

V¥V elocity Profile



¥ S U IR V' R ¥ TN ' BN ¥ BN ¥ N o N Vi
B e i A i i .
O e e e e e e e e e e e

0

Velocity field for channel inlet developing flow.
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Pressure field for channel inlet developing flow.
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Velocity profiles at different lﬂl-(l?ﬂﬁﬂllﬂ along the channel
for inlet developing flow.



