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Overview:

• Flow modeling

• Tackling turbulence

• Why LES

• Brief history of LES

• Navier-Stokes equations

• Space filtering

• Numerical solution

• Few test results



Mathematical Modeling; The Navier-Stokes 
Equations:

• Prediction of pressure and velocity field.

• Analytical solution of non-linear partial differential 
equations is not possible, generally.

• One can obtain numerical solution of entire field 
with reasonable accuracy.



Tackling Turbulence:

• Solving laminar flow problem is not a challenge 
any more.

• Turbulence is now the biggest challenge for CFD.

• Different perspective of turbulence result in 
different simulation strategies.

1. RANS (Reynolds Averaged Navier-Stokes)

2. DNS (Direct Numeric Simulation)/LES 



A turbulent jet



RANS:

u
u

time

• Turbulent velocity is considered to be fluctuating about 
a mean value.

• By taking a time average one can reduce the dynamical 
complexity.



DNS/LES:

•LES and DNS consider turbulent flow as,

‘Unsteady, three dimensional flow.’



Why LES: 

• High quality predictive numerical solution can 
enhance the understanding of flow.

• With LES inertial flow scales can be resolved.

• Code development paved way to do more 
fundamental work.

• Creates new ideas.

• Current code is quite flexible and can be modified to 
tackle boundary layer type flows, free surface flows, 
mixing layers, bluff bodies and even complex 
geometries.



Brief History of LES:

• RANS type turbulence modeling is almost eighty 
years old.

• First LES type modeling was performed by 
Deardorff (1970, 1973)

• Moin & Kim perform first formal LES in (1982).



Navier-Stokes Equations:

Continuity Eq:
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Momentum Eq:
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Space Filtering:

• LES is based on concept of space filtering.

• It simulates only the eddies of size larger than 
some critical length scale.

• Small scale eddies are modeled.



Large and small eddies



Filtering operation for any variable ‘u’ is defined 
as:
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(Convolution Integral)(6)

According to above definition filtering operation is 
weighted averaging. 

uuu −=′Subgrid part is given as; (7)



A simplest filter is,
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Here filtered quantity is clearly an average value 
over filter width  ∆ at any given point in space.



Filtering of N-S Equations:
Continuity Equation:
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Filtered continuity equation is exactly same as 
unfiltered equation.



Similarly for momentum equation,
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Filtered momentum equation is not same as 
original one.
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Which is subgrid stress tensor.
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Numerical Solution:

• It is interesting to note that filtered N-S equations 
are quite similar to unfiltered N-S eq.

• Only difference is the term involving subgrid stress 
tensor.

• In LES objective of numerical solution is to solve 
unsteady 3-dimensional flow equations.

• Current algorithm is called Fractional Step scheme.

•N-S equations are being solved on structured 
staggered grid. 



Geometry and grid for channel
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Algorithm:

• Take a pressure field and a solenoidal velocity field 
as initial condition.

• Solve x-, y- & z-momentum equations for u, v and 
w velocity component respectively, for next time step.

• For discretization of space derivatives second order 
finite difference scheme is used.

• For time integration non-linear terms are 
discretized explicitly using Runge-Kutta or Adams-
Bashfort schemes, for linear terms implicit Crank-
Nicolson scheme is used.  



• Resulting velocity field is globally divergence 
free but not locally.

• Using a scalar function , velocity field is 
projected to divergence free velocity field.

• Finally pressure is calculated for next time 
step.

φ



Discretized Momentum Equation:

( ) n
i

kn
i

k
ijj

k
n
i

kn
i

k
n
i

k
i PGuuLHH

t
uu

ααργ −+++=
∆
− − ˆ

Re2
ˆ 1

j

ji
i x

uu
H

∂

∂
=

i
i x

G
∂
∂

=

jj
jj xx

L
∂∂
∂

=

(14)

(Descretized non-linear convection term)

(Discrete gradient operator)
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Where γ, ρ and α are parameters for Runge-Kutta or 
Adams-Bashfort scheme.
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Then eq. (14) will become,
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Where,

Discretized equation is a linear system.

At each node six neighboring nodes are involved in eq.

This linear system results in a large banded matrix for 
each momentum equation.  
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Solution techniques: Gaussian elimination or LU 
decomposition.

Required number of operation for ‘n’ nodes ~O(n3).

Modest LES requirement  n = 64x100x100

= 640,000 nodes.

State of the art                     n = 5123

~ 130 million nodes.

I am aiming at                      n = 128x100x150

~ 2 million nodes

Problem: Calculation requirements are prohibitively 
high.



Solution: Approximate factorization.

[ ]{ } { }ii RHSuA =∆

( )( )( ) iiiii RHSuAAA =∆−−− 321 111 (17)

or,

( )
( )
( ) ∗

∗∗∗

∗∗

∆=∆−

∆=∆−

=∆−

iii

iii

iii

uuA

uuA

RHSuA

3

2

1

1

1

1
(18)



In case of structured grid 1-Ai1, 1-Ai2 & 1-Ai3 are tri-
diagonal matrices.
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Required number of operations for ‘n’ nodes ~ O(3n)



Divergence Free Velocity Field: 

Momentum equation gives      which is non-solenoidal.

At new time step divergence free velocity         is defined 
as;
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Apply Di on (19),
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Solution of Poisson Equation:
• In case of Poisson equation we are looking again at a 
huge matrix to invert.

• In the current situation we have periodic boundary 
condition in spanwise direction.

• By applying Fourier decomposition in that direction 
we decoupled all x-y planes.

• Now we can solve for each Fourier coefficient a set of 
equation only in one plane, i.e. x-y plane.

• For Poisson equation solution in each plane Fishpak 
is used.

• Fishpak requires n2log2n opertions for ‘n’ nodes.



Mathematical Details:
Poisson equation can be expressed as;

iii FL =φ
( ) iFLLL =++ φ332211 (21)

If 3 is periodic, Fourier transform of (21) will give,

( ) iFkLL ˆˆ2
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Solve for       with Fishpak.

Inverse Fourier transform will give .

φ̂
φ



Pressure Calculation:

φOnce     is known, pressure for next time step is 
calculated as,
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