The Importance of Routing Resources in FPGA

- The routing resources of a FPGA are made up of prefabricated wire segments and programmable switches.
- Feasibility of FPGA design is constrained more by routing resources than by logic resources.
- Routing delays most limit the performance of FPGAs.
- Careful design of *switch modules* is of great importance.
- The intersection area of horizontal and vertical channels is referred to as switch module which is populated with programmable switches.
- Need to maximize routability under area (total # of switches) constraints.

(a) Xilinx XC4000-type switch module. (b) Its abstract representation showing what terminals can be connected.

1

A routing instance. The structure of the switch module dictates which wire segments can be connected.

3

Switch Module Design

- Programmable switches usually occupy large areas, so the number of switches that can be placed in a switch module is limited.
- F_S (the flexibility of a switch module) is defined as the number of programming switches between one terminal and others. (Hence, there are $2 \times F_S \times W$ switches in a switch module.)
- A switch module *M* with *W* terminals on each side is said to be *universal* if every set of nets satisfying the dimensional constraints, i.e., number of nets on each side of *M* is at most *W*, is simultaneously routable through *M*.
- Switch module with $F_S = 3$ (6W switches):
 - It is observed experimentally that routing completion is often achieved using switch modules with $F_S = 3$ [Rose & Brown '91].
 - The switch modules used in Xilinx XC4000 have $F_S = 3$.
 - It is proved that a universal switch module can be constructed with $F_S = 3$ [Chang, Wong, Wong '96].

• Six types of connections:

• Routing requirement vector (RRV): $\vec{n} = (n_1, n_2, \dots, n_6)$, where n_i is the number of type-*i* nets.

(0,1,1,0,1,0) is routable but (2,0,0,0,0,0) is not with the above switch module.

• It is desirable to design a switch module with maximum # of routable RRVs.

• Feasibility of routing (O: routable; ×:unroutable)

RRV	S_1	S_2	S_3	S_4	S_5	S_6
$egin{array}{l} (1,1,1,0,1,0)\ (1,1,0,1,0,1)\ (1,0,1,1,0,0)\ (1,0,0,0,1,1)\ (0,1,1,0,0,1)\ (0,1,0,1,1,0)\ (0,0,0,1,1,1,0)\ (0,0,0,1,1,1,1) \end{array}$	0000000	0000000	00××××0	× ×00 × ×0	×O×O×O×	$\times OO \times O \times \times$
# other routable RRVs	49	49	49	49	49	49
# routable RRVs	56	56	52	52	52	52

• S_1 : Symmetric switch module; S_3 : Xilinx XC4000-type switch module.

Universal Switch Module

- A switch module S of size W is called *universal* if the following inequalities are the necessary and sufficient conditions for an RRV n = (n₁,...,n₆) to be routable on S:
 - $\begin{cases} n_1 + n_3 + n_6 &\leq W \\ n_2 + n_3 + n_4 &\leq W \\ n_1 + n_4 + n_5 &\leq W \\ n_2 + n_5 + n_6 &\leq W. \end{cases}$
- A universal switch module has the maximum routing capacity (# of routable RRVs).
- A universal switch module with the minimum # of switches is of interest.

A Well-Known Switch Module

• Xilinx XC4000-type switch module ($F_S = 3$)

- It is not universal!
- Question: Does there exist a *universal* switch module with $F_S = 3$?

Design of Universal Switch Module

• Symmetric switch modules:

- Theorem: The symmetric switch modules are universal.
- The symmetric switch module with W terminals on each side contains 6W switches.
- **Theorem:** No switch module of size W with less than 6W switches can be universal.
- Question: Any other universal switch module with $F_S = 3$?

Other Universal Switch Modules

• Pin permutations induce isomorphic switch modules.

- Theorem: Any two isomorphic switch modules have the same routing capacity.
- All switch modules isomorphic to the symmetric switch module are universal.

• **Theorem:** For an XC4000-type switch module *S* of size *W*, \vec{n} is routable on *S* if and only if $\max\{n_1, n_2\} + \max\{n_3, n_5\} + \max\{n_4, n_6\} \le W$.

11

Routing Capacity

- XC4000 switch modules
 - Feasibility condition: $X_W = \{\vec{n} | \max\{n_1, n_2\} + \max\{n_3, n_5\} + \max\{n_4, n_6\} \le W\}.$
 - Routing capacity: $|X_W| = C_6^{W+6} + 3C_6^{W+5} + 3C_6^{W+4} + C_6^{W+3}.$

Universal switch modules

- Feasibility condition: $U_W = \{\vec{n} | n_1 + n_3 + n_6 \le W, n_2 + n_3 + n_4 \le W, n_1 + n_4 + n_5 \le W, n_2 + n_5 + n_6 \le W\}.$
- Routing capacity: $|U_W| = \lfloor \frac{1}{6!} (10W^6 + 120W^5 + 595W^4 + 1560W^3 + 2320W^2 + 1920W + 720) \rfloor.$
- Theorem: $\lim_{W \to \infty} |U_W| / |X_W| = 1.25$.

• Routing capacities:

	Routing		
	Universal	XC4000	Capacity ratio
W	$ U_W $	$ X_W $	$ U_W / X_W $
2	56	52	1.077
4	641	553	1.159
6	3,616	3,024	1.196
8	13,825	11,385	1.214
10	41,336	33,748	1.225
15	334,680	270,504	1.237
20	1,573,121	1,266,265	1.242
25	5,377,190	4,319,406	1.245
30	14,905,856	11,959,552	1.246

Experimental Results

• # Tracks needed for CGE detailed-routing completion:

	#	#	# Track	s (W)	
Circuit	Logic modules	Connections	Universal	XC4000	
BNRE	22×21	1257	12	14	
BUSC	13 imes 12	392	10	11	
DFSM	23×22	1422	11	12	
DMA	18 imes16	771	11	12	
Z03	27 imes 26	2135	14	15	
Total			58	64	