Design conception

Compormmn

Design Entry

Schematic capture

Initial synthesis

Functional

simultation

No

Design

correct?

Logic synthesis/optimization

Physical

design

No

Timing si

mulation

Design

Yes

correct?

Chip configuration

mol4 ubisseq@ diyo

S|00] ubiseg pue mo|4 ubisag

CAD System

A typical CAD system comprises tools for performing the following tasks:

Design entry allows the designer to enter a description of the desired circuit in the
form of truth tables, schematic diagrams, or HDL code.

Initial synthesis generates an initial circuit, based on data entered during the design
entry stage.

Functional simulation is used to verify the functionality of the circuit, based on inputs
provided by the designer.

Logic synthesis and optimization applies optimization techniques to derive an opti-
mized circuit.

Physical design determines how to layout the optimized circuit in a given target
technology (full-custom, FPGA, etc.).

Timing simulation determines the expected propagation delays of the implemented
circuit.

Chip configuration configures the actual chip to realize the designed circuit.

Design Entry

Enter into the CAD system a description of the circuit being designed.

Two approaches: schematic capture and hardware description languages.

1. Schematic Capture

A schematic capture tool allows the user to draw a schematic diagram of a circuit
in which circuit elements, such as logic gates, are depicted as graphical symbols
and connections between circuit elements are drawn as lines.

The tool provides a library which is a collection of graphical symbols that represents
gates of various types. The gates in the library can be imported into the user’s
schematic.

Previously created subcircuits can also be saved and reused.

It allows hierarchical design to create a circuit that includes within it other smaller
circuits.

2. Hardware Description Languages (HDLS)
e Resemble programming languages but are used to describe hardware.
e Unlike programming languages, HDLs represent extensive parallel operations.

e Originally intended for documentation and simulation purposes only, HDLs have
become popular for use in design entry as input to synthesis.

e CAD tools synthesize the HDL code into a hardware implementation of the de-
scribed circuit.
e Advantages:

— Portability: A circuit specified in a HDL can be implemented in different types
of chips and with CAD tools provided by different companies, without having to
change the HDL specification.

— Hierarchical Design: HDL code can be written in a modular way to facilitate
hierarchical design.

— Reuse: Sharing and reuse of HDL-described circuits is easy.

Initial Synthesis

e Translates HDL code or schematic diagram into a network of logic gates in suitable
form for use by other programs.

e Output is a lower-level description of the circuit, e.g. a set of logic expressions that
describe the logic functions needed to realize the circuit.

e The initial logic expressions produced will be manipulated to produce an equivalent
but better circuit after performing functional simulation.

Simulation

Functional Simulation

e Before the circuit is optimized, functional simulation is performed to verify the func-
tionality of the design.

e The user specifies valuations of the circuit’s inputs and examines the output of
simulation to verify that the circuit operates as expected.

e Functional simulator assumes that the time needed for signals to propagate through
the logic gates is negligible.

Timing Simulation

e After the physical design tasks are completed in the chosen technology, timing
simulation is performed to verify the circuit realized in the target technology meets
the required performance.

e Timing simulation simulates the actual propagation delays in the target technology.

Logic Synthesis

e Synthesis tools automatically map a design composed of simple gates or described
with a HDL into an optimized circuit according to the type of logic resources avail-
able in the target chip.

e.g. If the target is a CPLD, each logic function in the circuit is expressed in terms
of the gates available in a macrocell.

e.g. If the target is a LUT-based FPGA, the number of inputs to each logic function
in the circuit needs to match the size of the LUTSs.

e The synthesis process is typically divided into two phases:

I. Technology independent phase attempts to generate some optimal representa-
tion of the circuit without considering the resources available in the target chip.

ii. Technology mapping phase ensures that the circuit produced by logic synthesis
can be realized using the logic resources available in the target chip. e.g. The
translation from logic operations to lookup-tables when targeting a design to a LUT-
based FPGA.

Logic Synthesis

Logic Optimization

optimized network

Technology Mapping

optimized circuit

Logic Synthesis Flow.

Logic Optimization

e Technology-independent logic optimization removes redundant logic and simplifies
logic wherever possible using techniques like factoring, decomposition, and extrac-
tion.

e Some publicly available tools produced by academia

— Espresso (UC Berkeley) for two-level optimization
— MIS and SIS (UC Berkeley) for multi-level circuits.

e Commerial products e.g. by Cadence Design Systems, Mentor Graphics, and Syn-
opsys.

10

Technology Mapping

e Technology mapping maps the technology-independent Boolean network into the
target technology by matching pieces of the network with the logic cells available in
the technology-dependent cell library (e.g. standard-cell library for a standard-cell
based chip, or LUTs for a LUT-based FPGA).

e An important optimization objective is to minimize the area i.e., total area of the
cells for covering the network.

e Another important optimization objective is to maximize circuit performance. A
commonly used performance metric during technology mapping is the maximum

circuit level.
11
Example
f
tl=a+ b c logic _ : o]
2=d+¢ optimiztion 0 g: b .]
t3=a b+ d; _ ’ h—
t4=tl 2+ fg; B=at+c
9 t4=tl t3+fgh:

t5=t4 h+ t2 t3; = gn, v
F=1t5; :

C

An optimized technology-independent Boolean network after logic optimization.

12

Example (cont’d)

inv (1) nand2 (2) and2 (3) 2 nand3 (3) nor2 (2)

20i21 (3) 20i22 (4) nandd (4) nor3 (3)

xor (5) xnor (5) nand4 (4) nor3 (3)
aei21 (3) nor4 (4) sord (4)

Cells in the target cell library and their area costs .

13

Example (cont’d)

[l
d
tl=d+ € -
t2=Db+ h; e %@
t3=a t2+ ¢ h-
t4=1t1 t3+fgh; b

A cover using eight nand2 and seven inv for an area cost of 23.

14

Example (cont'd)

@

o Q o o o o
00/—‘
- /@}
o 4
|
n

A better covering with an area cost of 15.

15

A Tree-Covering-by-Trees Approach

e If the subject graph and the cells in the library are expressed as trees (typically of
2-input NAND gates and inverters), then an efficient algorithm to find the best cover
exists.

e Based on dynamic programming algorithm.

Given: Subject trees (network to be mapped)

Forest of pattern graphs (cells in cell library)

Consider a node v of the subject trees

Recursive assumption: For all descendants of v a best match which imple-
ments the node is known.

Cost of a leaf is 0.

Consider each pattern graph which matches at v; compute implementation
cost as the cost of the pattern plus the minimum implementation cost of the
subtrees rooted at the leaf nodes of the pattern.

Choose lowest cost matching pattern to implement v.

16

In general, the optimized Boolean network is not a tree and needs to be decom-
posed into a forest of trees.

A network can be decomposed into trees by clipping the multiple-fan-out nodes.

Each tree can be covered optimally using dynamic programming and results are
assembled together.

For LUT technology mapping, we can use the same approach. But in the case of
LUTs, the structure of the logic function does not matter in the matching. Given a
tree, every subtree that has at most &£ leaf nodes can be implemented by a single
LUT.

We can also use a similar approach for MUX-based FPGA technology mapping.

17

