Programmable Technologies
and Architectures
of FPLDs

Programmable Switches

- Programmable switches are used for connections of wire segments in a FPLD.
- A FPLD may contain hundreds of thousands programmable switches.
- So they should
 - consume as little chip area as possible
 - have low ON resistance and very high OFF resistance
 - contribute low parasitic capacitance
 - be fabricatable in a large number reliably.
Programming Technologies

- Programming technologies may be permanent or non-permanent.

- For commercial FPGAs, the main switch technologies are antifuses (e.g. Actel) and Static RAM cells (e.g. Xilinx).

- For commercial CPLDs (e.g. Altera MAX), the main switch technologies are Erasable Programmable ROM (EPROM) transistors and Electrically Erasable PROM (EEPROM) transistors.

Antifuse Programming Technology

- An antifuse is the opposite of a regular fuse. It is an open path until a programming current is forced through it by applying a high programming voltage across it.

- Advantage: small (allow denser switch population).

- Disadvantage: only one-time programmable.

Actel’s PLICE antifuse structure.
Static RAM (SRAM) Programming Technology

- Use SRAM cells to control pass transistors or multiplexers by the bit-content in the SRAM cells.
- Advantage: reprogrammable; Disadvantage: occupy more space.

![SRAM Diagram](attachment:static_ram_diagram.png)

(a)(b) A pass-transistor switch/multiplexer switch controlled by a RAM cell. (c)(d) SRAM cells implemented using five/six transistors.

EPROM Programming Technology

- Use an EPROM transistor as a programmable switch.
- A n-channel EPROM transistor is programmed by applying higher-than-operation voltages to the drain and the control gate.
- Become an open path when programmed because electrons trapped on the floating gate raise the threshold voltage of the n-channel EPROM transistor above V_{DD}.
- Erasable by exposing the floating gate to UV light.

![EPROM Diagram](attachment:eprom_diagram.png)

(a) A n-channel EPROM transistor. (b) A section of an EPROM-based device.
Programming Technologies Summary

<table>
<thead>
<tr>
<th>Programming technology</th>
<th>SRAM</th>
<th>Poly-Diffusion</th>
<th>Metal-Metal</th>
<th>EPROM</th>
<th>EEPROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Complexity</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reprogrammable?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Physical size</td>
<td>Large (12X)</td>
<td>Small (2X)</td>
<td>Small (1X)</td>
<td>Out of circuit</td>
<td>In circuit</td>
</tr>
<tr>
<td>ON resistance (Ω)</td>
<td>600–800</td>
<td>100–500</td>
<td>30–80</td>
<td>1-4K</td>
<td>1-4K</td>
</tr>
<tr>
<td>OFF capacitance (Cf)</td>
<td>10–50</td>
<td>3–5</td>
<td>1</td>
<td>10–50</td>
<td>10–50</td>
</tr>
<tr>
<td>Power consumption</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Volatile?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- + desirable; – undesirable

Logic Cell Architecture

- Both FPGA and CPLD are made up of a set of basic logic cells.

- A basic logic cell has a fixed number of inputs and outputs, and can implement a certain set of functions.

- Logic cells used in FPGAs:
 - multiplexer based (e.g. Actel)
 - lookup-table based (e.g. Xilinx, Lucent)

- Logic cells used in CPLDs:
 - programmable array logic (PAL) based (e.g. Altera MAX, Xilinx XC9500).
Multiplexer Based Logic Cells

- A multiplexer-based logic module is typically composed of a tree of 2-to-1 MUXes.
- Below is an Actel ACT 3 C-Module. It can realize a wide range of different functions of up to 8 variables.
- Flip-flop can be incorporated into a logic cell to implement sequential logic.

Lookup-Table Based Logic Cells

- A lookup-table (LUT) is a segment of SRAM e.g. a 5-input LUT is a 32-bit SRAM.
- Any functions of up to K variables can be implemented by a K-input LUT.
- Flip-flop can be incorporated into a LUT-based logic cell to implement sequential logic.
- A coarse-grained logic cell (c.f. fine-grained logic cell) typically contains several LUTs, multiplexers, and flip-flops.
PAL-Based Logic Cells

- CPLD uses logic cells evolved from a PAL-based architecture.
- A PAL based logic cell consists of wide fan-in (20 to over 100 inputs) AND gates feeding into an OR gate.
- Flip-flop can be incorporated into a logic cell to implement sequential logic.

![The Altera 5000 series macrocell (simplified).](image1)

FPLD Routing Architecture

- The routing architecture determines the way in which programmable switches and wiring segments are positioned.
- Two issues: *routability* and speed.
- Routability – capability of an FPLD to accommodate all nets of a typical design.
- Speed – keep propagation delay low.