Full-Custom ICs

- Design a chip from scratch.

- Engineers design some or all of the logic cells, circuits, and the chip layout specifically for a full-custom IC.

- Custom mask layers are created in order to fabricate a full-custom IC.

- Advantages: complete flexibility, high degree of optimization in performance and area.

- Disadvantages: large amount of design effort, expensive.

Standard-Cell-Based ICs

- Use predesigned, pretested and precharacterized logic cells from standard-cell library as building blocks.

- The chip layout (defining the location of the building blocks and wiring between them) is customized.

- As in full-custom design, all mask layers need to be customized to fabricate a new chip.

- Advantages: save design time and money, reduce risk compared to full-custom design.

- Disadvantages: still incurs high non-recurring-engineering (NRE) cost and long manufacture time.
Standard-cell-based IC design.

Gate-Array

- Parts of the chip are pre-fabricated, and other parts are custom fabricated for a particular customer’s circuit.

- Identical base cells are pre-fabricated in the form of a 2-D array on a gate-array (this partially finished chip is called gate-array *template*).

- The wires between the transistors inside the cells and between the cells are custom fabricated for each customer.

- Custom masks are made for the wiring only.

- Advantages: cost saving (fabrication cost of a large number of identical template wafers is amortized over different customers), shorter manufacture lead time.

- Disadvantages: performance not as good as full-custom or standard-cell-based ICs.
• Channeled Gate Array vs. Channelless Gate Array (Sea-of-gates Array).
 – In channeled gate arrays, empty spaces are set aside between the base cells to accommodate the wires that will be added later to connect the cells.
 – In sea-of-gates arrays, there are no predefined areas set aside for routing between the cells, and the interconnection wires are fabricated on top of the cells.

![Channeled Gate Array](image1)
![Sea-of-gates Array](image2)

Programmable Logic Devices (PLDs)

• A PLD is a general-purpose chip for implementing logic circuitry.

• Transistors and wires are already prefabricated on a PLD.

• Logic cells and interconnect can be programmed by end-user to implement specific circuitry.

• No need to create custom masks for each customer.

• Advantages: low non-recurring-engineering cost (ideal for low-volume production), fast turnaround time.

• Disadvantages: lower performance and larger chip size.

• Depending on capacity, complexity and architecture, may be further classified as (1) Simple PLDs (SPLDs), (2) Complex PLDs (CPLDs), and (3) Field-Programmable Gate Arrays (FPGAs).
Comparison of Design Styles

<table>
<thead>
<tr>
<th></th>
<th>Full-Custom ICs</th>
<th>Cell-based ICs</th>
<th>Gate Arrays</th>
<th>High-Density PLDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Integration Density</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>High-Volume Device cost</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Low-Volume Device cost</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Custom Mask Layers</td>
<td>All</td>
<td>All</td>
<td>Some</td>
<td>None</td>
</tr>
<tr>
<td>Fabrication Time</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>Time to Market</td>
<td>--</td>
<td>--</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Risk Reduction</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+++</td>
</tr>
<tr>
<td>Future Design Modification</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+++</td>
</tr>
<tr>
<td>Educational Purpose</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+++</td>
</tr>
</tbody>
</table>

+ desirable; – not desirable

Growth Rate of the PLD Industry

<table>
<thead>
<tr>
<th>Company/Industry</th>
<th>Annual Growth Rate in Sales (1994 to 1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Industry</td>
<td>27.78%</td>
</tr>
<tr>
<td>Altera (a leading PLD provider)</td>
<td>36.07%</td>
</tr>
<tr>
<td>Intel (leading microprocessor company)</td>
<td>24.50%</td>
</tr>
<tr>
<td>LSI Logic (a leading ASIC provider)</td>
<td>15.71%</td>
</tr>
</tbody>
</table>
Programmable Logic Array (PLA)

- Classified as a simple programmable logic device (SPLD).
- The first programmable logic device introduced in the early 1970s by Philips.
- Based on the idea that logic functions can be realized in sum-of-products form.
- A programmable AND array followed by a programmable OR array.
Programmable Array Logic Device (PAL)

- A device similar to PLA.

- Introduced to overcome the weaknesses of PLAs at that time (programmable switches were hard to fabricate correctly and introduced significant propagation delays) by MMI.

- A programmable AND array followed by a fixed OR array.

- PAL usually contains flip-flops connected to the OR gate outputs to implement sequential circuits. The term *macrocell* is used to refer to an OR gate combined with a flip-flop and extra circuitry in a PAL.
Complex Programmable Logic Device (CPLD)

- A CPLD comprises multiple PAL-like blocks on a single chip with programmable wiring to connect the blocks.

- Each PAL-like block consists of a number of macrocells.
Field-Programmable Gate Array (FPGA)

- FPGA is a high capacity programmable logic device.

- A FPGA consists of an array of programmable basic logic cells surrounded by programmable interconnect.

- Introduced in 1985 by Xilinx.

- Can be configured/programmed by end-users (*field-programmable*) to implement specific circuitry.

- Can implement combinational and sequential logic.

- Capacity: 1K to 1M logic gates.

- Speed: up to 100MHz.

- Popular applications: prototyping, FPGA-based computers, on-site hardware reconfiguration, DSP, logic emulation, network components, etc.

Structure of a Field-Programmable Gate Array (FPGA)