Polymer Composite Synthesis in Supercritical Fluids

Inventors: Paul A. Charpentier, 348 Eastcastle Pl.,
London (CA) N6G 3W5; Xinheng Li,
#7-1430 Jalna Blvd., London (CA) N6E 3C1

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 969 days.

Appl. No.: 11/339,852
Filed: Jan. 26, 2006

Prior Publication Data
US 2006/0194928 A1 Aug. 31, 2006

Related U.S. Application Data
 Provisional application No. 60/646,982, filed on Jan. 27, 2005, provisional application No. 60/646,983, filed on Jan. 27, 2005.

Int. Cl.
C08L 11/00 (2006.01)

U.S. Cl. 428/451; 524/430; 524/431; 524/433; 524/439; 524/502; 524/403; 428/461; 428/500; 428/523

Field of Classification Search 428/451, 428/461, 500, 523; 524/403, 430, 431, 433; 524/439, 502

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
4,584,365 A 4/1986 Jada et al. 528/271
5,334,292 A 8/1994 Rajeshkar et al. 204/539 R
5,412,016 A 5/1995 Sharp 524/430
5,492,769 A 2/1996 Pryor et al. 428/552
5,706,064 A 1/1998 Fukumaga et al. 349/43

FOREIGN PATENT DOCUMENTS
JP 2000053801 * 2/2000

* cited by examiner

Primary Examiner—Bernard Lipman
Attorney, Agent, or Firm—Lynn C. Schumacher; Hill & Schumacher

ABSTRACT

A one step synthetic route of polymeric compositions of a polyolefin and inorganic network consisting of components selected from Si, Zr, Ti, is disclosed. The synthetic route combines parallel reactions of free radical polymerization to form polymer, and hydrolysis of either Si, or Zr, or Ti or both of them precursors. The network consisting of Si, or Ti, is chemically bonded to or within the polymer matrix. The inorganic or organic molecules can then be polymerized under conditions effective to cause the polymerized inorganic or organic molecules into macromolecular networks. The compositions of the polymeric composites can be easily controlled by adjusting the step reaction ratio and reaction rate or conditions such as temperature and pressure, wherein the inorganic compositions disperse in nanoscale within polymeric composites when their concentrations fall below moderate levels. A novel synthesis route for making polymer composites and/or polymer nanocomposites of a polyolefin and an inorganic network consisting of components selected from Si, Zr, Ti, is disclosed. The synthesis route comprises hydrolysis of either Si, or Zr, or Ti alkoxides or mixtures of these precursors within a polymer matrix in supercritical fluids.

20 Claims, 26 Drawing Sheets
Conventional Preparation of Polymer Composites

-Method One

Step 1: Inorganic particle synthesis

Step 2: Polymer synthesis or selection

Step 3: Polymer modification such as silylation or grafting.

Step 4: Mixing inorganic particles and organic polymer

Figure 1
Conventional Preparation of Polymer Composites - Method Two

Step 1 Inorganic particle synthesis

Step 2 Catalyst synthesis on inorganic particles

Step 3 Polymerization on the synthesized catalysts

Figure 2
Conventional Preparation of Polymer Composites - Method Three

Step 1 Polymer synthesis or selection

Step 2 Polymer modification such as silylation or grafting.

Step 3 Introducing inorganic particles by hydrolysis reaction

Figure 3
Improved Method to Prepare Polymer Composite

Method 1

Step 1 Hybrid polymers synthesis via polymerization

Step 2 Introducing inorganic constituents into polymer matrix using supercritical fluids.

Method 2

Step 1 Preparing polymer composite containing required inorganic components.

Step 2 Controlled hydrolysis under supercritical conditions.

Figure 4
Advantages of Improved Methods

- The physical and chemical properties are tunable according to changing monomers and ratio, synthesis conditions
- The matrix state can be controlled from inorganic phase to polymeric phase
- Polymer composites are generated with excellent homogeneous phase comparing to that obtained via the conventional methods.
 - Time reduction
 - Labor reduction
 - Low cost

Figure 5
Figure 6
Figure 7
Figure 9
Figure 12
Sample1 and Sample2

Figure 13
Figure 15
Figure 17
Figure 22
Figure 23
Controlling Factors in One-Step Synthesis for Polymer Composites

- Monomer selection and ratio
- Precursor selection
- Ratio of inorganic component and polymer
- Inorganic salts/ materials selection.
- Reaction condition selection
- Pressure, temperature, concentrations of initiator and hydrolysis agent
- Polymerization rate control
- Partial or full hydrolysis control

Figure 26
POLYMER COMPOSITE SYNTHESIS IN SUPERCRITICAL FLUIDS

CROSS REFERENCE TO RELATED U.S. APPLICATION

This patent application relates to, and claims the priority benefit from, U.S. Provisional Patent Application Ser. No. 60/646,982 filed on Jan. 27, 2005 and U.S. Provisional Patent Application Ser. No. 60/646,983 filed on Jan. 27, 2005, both filed in English, which are incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates generally to the art of synthesis route of polymer compositions, polymer nanocomposites, organic-inorganic hybrid material, which contains inorganic and organic parts. More specifically, the present invention relates to a novel synthesis route using supercritical fluids, where the free space of applied polymer is increased under impregnation of the applied supercritical conditions, allowing infusion of reactants and a one-pot synthesis of polymer composites.

BACKGROUND OF THE INVENTION

The present invention relates to the art of synthesis route of polymer compositions, polymer nanocomposites, organic-inorganic hybrid material, using supercritical fluids as solvent. Polymer composite in the present invention is defined as a composite containing organic and inorganic parts. The present invention provides an environmentally benign chemical process for synthesis of polymer composites, wherein supercritical fluids acts as solvent. Under impregnation in supercritical fluids, the free volume of applied polymer is increased, allowing molecules or ions to enter for further reaction to generate polymer composites.

Scientists and engineers have been aware of the unique solvent characteristics of supercritical fluids (SCF) for more than 100 years, but it is only in the past three decades that SCF solvents have been the focus of active research and development programs especially in the area of polymer and polymer composites processing. A detailed summary of SCF solvents have been touted as candidate media for inorganic, organic, heterogeneous catalysis and homogeneous catalysis, and polymerization processes, and as environmentally preferable solvents for solution coatings and powder formation. For example, Kajimoto, Chem. Rev., 99 (2), 355-390, 1999 reveals the history of supercritical fluid scientific findings and technology development and discusses the effects of solvation in supercritical fluids on energy transfer and chemical reactions.

In Christopher et al., Chem. Rev., 99 (2), 565-602, 1999 a review of Phase Behavior of Polymers in Supercritical Fluid Solvents has been made. The choice of CO₂ as an alternative solvent has a number of advantages. CO₂ is environmentally benign, non toxic, non flammable, and easily recyclable. J. Jung and M. Perrut, J. Supercritical Fluids 20,179-219, 2001 describes a review of particles generation in supercritical fluid. As particle design is presently a major development of supercritical fluids applications, mainly in the pharmaceutical, nutraceutical, cosmetic and specialty chemistry industries, number of publications are issued and numerous patents filed each year.

In supercritical fluids, the applied polymer may result in large changes in the host polymer’s surface and bulk morphology by swelling effect. For example, in Clarke et al., J. Am. Chem. Soc., 116:8621 (1994), supercritical fluid is used to impregnate polyethylene with CPMn(CO)₅, using supercritical CO₂ which acts to both solvate the CPMn(CO)₅ and to swell the polyethylene, thus permitting the flow of CPMn(CO)₅ into the free space created in the swollen polymer and into the free volume of the polymeric material.

Polymer composite in the present invention is defined as a composite containing organic and inorganic parts. Polymer composites have been widely used with success for a variety of applications. For example, U.S. Pat. No. 6,608,129 to Koloski et al. describes disclosed composites for applications as photoradiation shields and filters, electro-magnetic radiation shields and filters, antistatic layers, heterogeneous catalysts, conducting electrodes, materials having flame and heat retardant properties, components in the construction of electrolytic cells, fuel cells, and optoelectronic devices, and anti-fouling coatings is also described.

U.S. Pat. No. 5,706,064 to Fukunaga et al. disclose composites for applications as liquid crystal display, an organic-inorganic hybrid glass, which is subjected to patterning, to form a pixel electrode. U.S. Pat. No. 6,472,104 to Ulrich et al. disclose a process for preparing a solid organic-inorganic hybrid polymer electrolyte containing lithium ions, wherein polyalkylene oxide-containing polymer and a organic lithium salt is mixed to form a mixture. The product shows high strength conductivity and lithium transference values. Further, the product can be self-organized into nanometer scale plates and rods paving the way to making lithium conducting cables for batteries of nanometer size.

Herein is a summary of the synthesis of polymer composites, generally organic polymer is mixed with inorganic part, or organic polymer is formed in inorganic part, or inorganic part formed in organic part. Always these synthesis methods take multiple steps for the final polymer composites.

There are several synthesis routes for polymer composites. FIG. 1-3 describes the general route. The most economic and simple way are mixing the organic part and the inorganic part. The polymer composites are generated either (1) by melting the inorganic part or organic part or both and then mixed into a mixture which was then cured, extracted, or dried, or (2) by dissolving either the organic polymer or inorganic part or both in a solvent, and then introduce one part to another part, and then evaporating the solvent to extract the polymer composites. The resulting polymer composites may have separate inorganic and organic domains, which range from nanometers to tens of micrometers in size. For example, U.S. Pat. No. 5,492,769 to Pryor et al. describes methods for embedding metal or ceramic materials such as diamond, silicon dioxide, aluminum oxide, cubic boron nitride, boron carbide, silicon carbide, silicon nitride, tantalum carbide, titanium carbide, titanium nitride, tungsten carbide, and zirconia alloys and at least one phase stabilization additive selected
from the group yttrium, hafnium, calcium, magnesium, and cesium to polymeric materials improve scratch or surface wear resistance of substrates.

U.S. Pat. No. 6,608,129 to Koloski et al. describes methods of that organic polymers are blended with inorganic fillers to improve certain properties of those polymers or to reduce the cost of the polymeric compositions by substituting cheaper inorganic materials for more expensive organic materials.

Polymer composites can be obtained by organic polymer formed on inorganic part through polymerization. Usually a catalyst, which is required to be prepared and be employed to initiate polymerization, is required to be mixed with the inorganic particle supported catalyst, and polymerization is followed to get organic polymer insulated on the inorganic particles. For example, U.S. Pat. No. 5,534,292 to Rajeshwar et al. discloses one invention concerns an electronically conductive polymer film comprising colloidal catalytic particles homogeneously dispersed in an electronically conductive polymer: U.S. Pat. No. 6,602,956 to Vargas et al. discloses a process producing ethylene (co)polymer nanocomposites in a high pressure polymerization reactor. The process by which nanocomposites having organically modified clays incorporated and intimately dispersed therein involves polymerizing ethylene and one or more optional comonomers under high pressure polymerization conditions in the presence of an organic peroxide initiator and organically modified clay. Such synthesis route has been subjected to a number of academic studies such as, Guan, Z., J. Am. Chem. Soc.: (Communication); 2002; 124(20); 5616-5617; Boone, H. W. et al. J. Am. Chem. Soc.: (Communication), 124(30), 8790-8791, 2002; Wieczorek, W. et al. Electrochimica Acta, Vol. 40 (13-14), October, 2251-2258, 1995; Das, N. C. et al., Journal of Applied Polymer Science, Volume: 80, Issue: 10, 16, 1601-1608, 2001.

Polymer composites can be obtained by inorganic polymer formed on or within organic polymer through polymerization. Sometimes a coupling agent required to add to the organic part to enhance interaction of organic part and inorganic part. For example, U.S. Pat. No. 6,034,151 to Moszner et al. discloses hydrolyzable and polymerizable silanes containing vinyl groups can be applied as coupling agent.

U.S. Pat. No. 5,773,489 to Sato discloses disclosed dental inorganic-organic composite fillers used for dental restorative materials, wherein the surfaces of the particles are modified with a silane coupling agent. The spherical or spheroidal particles were obtained in situ by co-hydrolysis of metal alkoxides and organic functional group-containing metal alkoxides.

Hydrolysis is a traditional synthesis route to generate inorganic particles either in micro or nano meter size meter. Hydrolysis is also applied to synthesis of polymer composites when polymer is impregnated or applied into the solution. For example U.S. Pat. No. 6,159,539 to Schwertfeger et al. discloses a process for preparing organically modified aerogels, wherein the process of the invention comprises: a) introducing a siliceous lygel or hydrogel, b) optionally subjecting the gel prepared in a) to complete or partial solvent exchange with an organic solvent, c) reacting the gel obtained in step a) or b) with at least one silylation agent, d) optionally washing the silylated gel obtained in step c) with an organic solvent, and e) drying the gel obtained in step c) or d) subcritically, which comprises reacting in step c) the gel obtained in step a) or b) with at least one chlorine-free silylation agent.

U.S. Pat. No. 6,608,129 to Koloski et al. discloses methods for synthesis of polymer composites, which include a polymer matrix having natural free volume therein and an inorganic or organic material disposed in the natural free volume of the polymer matrix are disclosed. The free volume of organic polymer is evacuated, and inorganic or organic molecules are infused into the evacuated free volume of the polymer matrix. The inorganic or organic molecules can then be polymerized under conditions effective to cause the polymerized inorganic or organic molecules to assemble into macromolecular networks. Use of the disclosed composites as photodetector shields and filters, electromagnetic radiation shields and filters, antistatic layers, heterogeneous catalysts, conducting electrodes, materials having flame and heat retardant properties, components in the construction of electrolys, fuel cells, and optoelectronic devices, and anti-fouling coatings is also described.

U.S. Pat. No. 4,584,365 to Jada et al. discloses a process for the production of polymeric substances from metal alkoxides, wherein multiple steps were comprised: (a) reacting at least a mono-functional carboxylic acid and at least a mono-functional hydroxylated organic compound in the presence of a suitable esterification catalyst to yield water in situ, and thereafter, (b) adding to the reaction mixture in (a) above at least a divalent metal alkoxide in an amount sufficient to form the desired polymeric network of at least partially hydrolyzed metal alkoxide. This polymer composite is applied for coating materials.

U.S. Pat. No. 581,176 to Ducheyne et al. discloses incorporation of biological molecules into bioactive glasses. In the invention there reports the incorporation of biologically active molecules into a matrix of glass, in particular bioactive glass, using a sol-gel-derived process of production. Therein a sol-gel-derived process using hydrolysis of a phosphorus alkoxide with the silicon alkoxide precursor and calcium alkoxide. Biologically active molecules are incorporated within the matrix of the glass during production.

In the hydrolysis process, there can be one or two or multiple components. For example U.S. Pat. No. 5,412,016 to Sharp discloses one synthesis method of polymer composites. Polymeric inorganic-organic compositions are obtained by intimately mixing a hydroxylable precursor of an inorganic gel of silicon, titanium, or zirconium with an organic polymer and with an organic carboxylic acid. Such compositions often are transparent, always have improved toughness, as compared with inorganic gels alone, and are believed to have a structure in which the organic polymer is entrapped in the inorganic gel in such an intimate manner that these two components cannot be separated from each other by physical means without destruction of the organic polymer.

Although the polymer composites are homogeneously mixed, they contain separate inorganic and organic phases on a macroscopic scale. These separate phases frequently causes the inorganic part’s migration within and/or leaching out of the polymeric matrix. Therefore, the inorganic part of the polymer composites can be separated from the polymer matrix by further processes either chemically or physically. Consequently, this will limit the lifetime.

The conventional synthesis methods as described in FIG. 1-3 usually take multiple steps for the final products of polymer composites. Multiple steps usually have a number of drawbacks of high consumptions of time, labor and cost while producing a large amount of inorganic or organic wastes. In the light of the above, according to the conventional technology, one improved method for synthesis of polymer composites is presented in the present invention. In this patent, improvements have been made to reduce the number of synthesis steps, received organic polymer or inorganic particles are employed and modified for further application, which has been described in FIG. 4.
SUMMARY OF THE INVENTION

An object of the present invention is to provide a novel process for synthesis of polymer composites and polymer nanocomposites, or organic-inorganic hybrid materials. This invention relates to synthesis route of polymer composites and polymer nanocomposites, or organic-inorganic hybrid materials and gives rise to extraordinarily reduction of produced wastes and process costs including labor, time, and chemicals.

In general, the invention relates to the synthesis of polymeric compositions essentially via an improved synthesis route using supercritical fluids. In one aspect, the invention features a synthesis route on obtained polymers in supercritical fluids, the applied polymer provides matrix for further reactions, i.e., hydrolysis or polymerization, or hydrolysis and polymerization.

In another aspect, the invention features a synthesis route containing hydrolysis of Si, or Ti, or Zr alkoxide precursors, or free radical vinyl polymerization, or combining both.

The present invention provides an improved and novel synthesis route for polymer composites, polymeric nanocomposite, and hybrid materials. The present invention also provides a synthesis route for polymeric composites, polymeric nanocomposite, hybrid materials wherein the inorganic polymer mostly chemically bonded to the organic polymer.

The present invention also relates to a composite which includes an organic polymer matrix and an inorganic polymer network. The composite also includes an inorganic material disposed in the organic polymer matrix or organic polymer dispersed in inorganic polymer.

The present invention also relates to a method for making a composite which composition can be varied from organic polymer backbone to inorganic polymer network.

The present invention relates to polymeric nanocomposites, which includes a polymer matrix having inorganic particles dispersed in a nano scale within the polymer.

The present invention also relates to a method for making a multiple components composite. The method includes providing a silane as coupling agent, the second or third components or multiple components such as Ti or Zr or Al can then be bonded to the polymer backbone.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The following is a description, by way of example only, of embodiments of an apparatus for dispensing powder coatings constructed in accordance with the present invention, reference being had to the accompanying drawings, in which:

FIG. 1 illustrates a first conventional prior art method of synthesis of polymer composites;

FIG. 2 illustrates a second prior art method of synthesis of polymer composites;

FIG. 3 illustrates a third prior art method of synthesis of polymer composites;

FIG. 4 is a diagram illustrating improving synthesis method for polymer composites;

FIG. 5 is a diagram illustrating the advantages of improved methods and one step synthesis route for polymer composites compared to those obtained from conventional methods.

FIG. 6 is a diagram illustrating SEM results of commercial PESs treated in supercritical CO₂.

FIG. 7 is a diagram illustrating FT-IR results of synthesized samples. PE, PES01, PES02, PES03.

FIG. 8 is a diagram illustrating FT-IR results of synthesized samples. (a) PES06, (b) PES07, (c) PES08.

FIG. 9 Scanning electron microscopy micrographs of nanocomposite (sample PES06), low magnification; (b) high magnification.

FIG. 10 is a scanning electron microscopy micrographs of microcomposite (sample PES07).

FIG. 11 is a scanning electron microscopy micrographs of hybrid composite (sample PES08), (a) low magnification; (b) high magnification.

FIG. 12 is a diagram illustrating XPS result of polymer composite obtained by hydrolysis of TEOS with acetic acid at 60°C. within polyethylene under supercritical CO₂. Sample: upper PES06 and down PES07.

FIG. 13 is an X-ray diffraction analysis of polymer composites of (a) PE and (b) PES08.

FIG. 14 is a diagram illustrating in situ FT-IR results of copolymerization of ethylene and VTM0. (a) VTM0, (b) VTM0/EPDPC/Heptane, (c) adding ethylene, T=35°C., P=1250 Psi.

FIG. 15 is a diagram illustrating in situ FT-IR results of copolymerization of ethylene and VTM0. Heating Procedure: (a) 35°C., Pethylene=1220 Psi; (b) 60°C., Pethylene=2020 Psi; (c) 80°C., Pethylene=2500 Psi.

FIG. 16 is a diagram illustrating in situ FT-IR results of copolymerization of ethylene and VTM0. Reaction Time: (a) 0, (b) 60, (c) 240 min.

FIG. 17 is a diagram illustrating XPS result of polymer composite obtained by hydrolysis of TEOS with acetic acid at 60°C. within polyethylene under supercritical CO₂. Samples from examples 9 (upper) and 10 (down).

FIG. 18 is a diagram illustrating in situ FT-IR results of ethylene polymerization.

FIG. 19 is a diagram illustrating in situ FT-IR results of polymerization of ethylene and vinyl acetate. a. before reaction; b. after reaction, cooling down to room temperature and venting ethylene out.

FIG. 20 is a diagram illustrating in situ FT-IR results of the initial stage of parallel reactions of copolymerization of ethylene and VTM0 and hydrolysis of TEOS/VTM0 (Example 14).

FIG. 21 is a diagram illustrating in situ FT-IR results of heating stage of parallel reactions of copolymerization of ethylene and VTM0 and hydrolysis of TEOS/VTM0 (Example 14).

FIG. 22 illustrates XPS result of polymer composites obtained from example 14 and 15. Sample: upper example 14 and down example 15.

FIG. 23 is a diagram illustrating in situ FT-IR results of parallel reactions of polymerization of ethylene, vinyl acetate, and VTM0 and hydrolysis of TEOSNTM0 in Example 17.

FIG. 24 illustrates XPS result of polymer composites obtained from example 16 and 17. Sample: upper example 16 and down example 17.
The generated materials are also called polymer nanocomposites when either organic part or inorganic part dispersed in the other part in a nano scale, or the particle size of either organic part or inorganic part reaches a nanometer dimensions. The generated materials are also called an inorganic-organic hybrid polymer.

The present invention provides a green synthesis route for polymer composites, which contains both an organic polymer and inorganic part.

In the present invention, organic based polymers from polymerization can be homopolymers, copolymers, terpolymers, multicomponent polymers, or combinations thereof. Suitable chemicals for organic polymers include monomers such as alkylenes ethylene, propylene, butylene, phenylene-

The following abbreviations are used in the examples:
TEOS—Tetraethyl orthosilicate
TMOS—Tetramethyl orthosilicate
VTM—Vinyltrimethoxysilane
VA—Vinyl acetate
DEPDC—Diethyl peroxide dicarbonate
PE—Polyethylene
PEVa—Poly(ethylene-co-vinyl acetate)
FT-IR—Fourier Transform Infrared Spectroscopy
ATR—Attenuated Total Reflection
SEM—Scanning Electron Microscopy
RT—Room temperature

Various synthesis routes for polymeric composites are known. These synthesis routes generally require several steps to produce the final composites as described in FIG. 1-3. For example, a route to generate fine (nano meter size) particle, a route to polymer, a mixing route of the fine particles and the polymer; an alternative to catalyst developing based on nanometer size particles, then polymerization on the nano size particles; an alternative to synthesis of inorganic particle on the gained polymer; in order to improve increase bonding strength of the polymer and the inorganic particles, the polymer can be further modified by adding one coupling agent. These synthesis routes take high time consumption, high cost in chemicals, and produce large amounts of organic or inorganic wastes in the series of processes.

The present invention provides improvements to reduce the number of synthesis steps in producing organic/inorganic composites in which organic polymer and/or inorganic particles are employed and modified for further application, which has been described in FIG. 4.

More particularly, the present invention relates to the synthesis of polymeric composites using supercritical fluids. The polymer composites contain both an organic part and an inorganic part. The applied polymer is defined as the first organic part in the present invention, and provide most of the organic part. A second polymer part can be added to the first polymer part via polymerization together with the inorganic part via hydrolysis. Hydrolysis is applied to generate inorganic part within the matrix of the obtained polymer in supercritical fluids.

Parallel reactions of polymerization and hydrolysis are applied to generate both inorganic part and the second organic part within the matrix of obtained polymer in supercritical fluids. The hydrolysis occurs using hydrolysis agents. The polymerization is initiated by free radical initiators.

The present invention has the objective of overcoming the problems of taking multiple steps to generate the polymer composites. The present invention has advantages of generating polymer composites or polymer nanocomposites at a low labor and time consumption, a significant reduction of wastes and cost as depicted in FIG. 5.

The generated materials are defined as polymeric composites in general, polymeric nanocomposites when inorganic network well dispersed in nano meter within the formed backbone of the organic polymer.
and corresponding acrylates thereto, and methacrylates or acrylates having a urethane bond in the molecule thereof, e.g., di-2-methacyroyloxyethyl-2,4-trimethylhexamethylene dicarbamate and a corresponding acrylate thereto.

In the obtained polymer composites, the (Si—O—Si—O)n is a derivative of an alkoxide of Si and methoxides, ethoxides, n-propoxides, iso-propoxides, n-butoxides, tert-butoxides, and the like can be exemplified. From dimers to hexamers of alkoxides thereof can also be used.

In the obtained polymer composites, the (Si—O—Si—O)n represents derivatives of reactive alkoxysilanes generally called as silane coupling agents. Examples of alkoxysilanes having an unsaturated double bond include 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-acryloxypropyl trimethoxysilane, 3-methacryloxypropyl methyl dimethoxysilane, 3-methacryloxypropyl methoxy dimethoxysilane, 3-acryloxypropyl methyl dimethoxysilane, 2-methacryloxy ethoxypropyl trimethoxysilane, vinyl trimethoxysilane, vinyl triethoxysilane, and vinyl tri(2-methoxyethoxy)silane.

Examples of alkoxysilanes having a glycidoxy group include 2-(3,4-epoxycyclohexyl)ethyl trimethoxysilane, 3-glycidoxy propyl trimethoxysilane, 3-glycidoxypropyl methyl dimethoxysilane, 3-glycidoxypropyl methoxy dimethoxysilane, and 3-glycidoxypropyl triethoxysilane. Examples of alkoxysilanes having an amino group include N-2-(aminoethyl)-3-aminopropyl trimethoxysilane, N-2-aminoethyl)-3-aminopropyl triethoxysilane, 3-aminopropyl trimethoxysilane, and N-phenyl-3-aminopropyl trimethoxysilane. Examples of alkoxysilanes having a mercapto group include 3-mercaptopropyl trimethoxysilane and 3-mercaptopropyl triethoxysilane. Examples of alkoxysilanes having an alkoxyl group include methyl trimethoxysilane, dimethyl dimethoxysilane, phenyl trimethoxysilane, diphenyl dimethoxysilane, methyl triethoxysilane, diethoxysilane, phenyl triethoxysilane, diphenyl dimethoxysilane, isobutyl trimethoxysilane, and decyl trimethoxysilane, in addition to the above-exemplified compounds.

Though the disclosed uses Si as the example, the principle is also available for Ti, Zr, Al, Y, La, or Ta system and the like. For example, the reactive alkoxysilane can be replaced with a reactive alkoxycyanitium. Examples of titanate coupling agents having an unsaturated double bond include isopropyl dimethacryloxyisostearoyl titanate, isopropyl diacryloxyisostearoyl titanate, isopropyl triisocyanate titanate, isopropyl triisocyanate titanate, and oxyacyxl dimethacryloxyisostearoyl titanate. Examples of titanate coupling agents having an amino group include isopropyl tri(N-diethylamino) titanate, isopropyl tri(2-aminobenzozoyl) titanate, isopropyl tri(tetraethylenglycolim) titanate, isopropyl 4-amionobenzozensulfonyl di(dodecylbenzenesulfonyl) titanate, and isopropyl di(4-amionobenzozensulfonyl) titanate. The alkoxyl group and/or titanate group of the above-described coupling agent are is reacted with derivatives of various alkoxides, acetylated nates, nitrates, or acetates of Ti, Zr, Al, Y, La, or Ta.

Examples 1-4

These examples illustrate the hydrolysis of TEOS within polyethylene under supercritical CO₂ at 35°C. under pressure P=3000 Psi. 1.0 g polyethylene, TEOS and acetic acid are introduced into the autoclave, and subsequently purged with ethylene to remove air. Then compressed CO₂ was introduced into the autoclave and the reactor was heated to 35°C. Compressed CO₂ was continually added into the autoclave to reach the desired pressure at 3000 Psi. The system was run for 24 hrs. After the reaction, the autoclave was cooled down and the compressed CO₂ was vented out. The collected sample was washed by methanol and dried in a vacuum oven at room temperature. The melting temperature of these synthesized samples (PE/SiO₂) are summarized in Table 1. FTIR results of the synthesized samples from examples 1, 2, 3 are displayed in FIG. 7, which illustrates the silica glass formed within the matrix of polyethylene.

Example 5

This example illustrates the hydrolysis of TMOS within polyethylene under supercritical CO₂ at 35°C. at a pressure P=3000 Psi. 1.0 g polyethylene, TMOS and acetic acid were introduced into the autoclave, subsequently purged with ethylene to remove air. Then compressed CO₂ was introduced into the autoclave and heating started to reach 35°C. Compressed CO₂ was continually added into the autoclave to reach a pressure of 3000 Psi. Afterwards, the system was run for 24 hrs. After the reaction, the autoclave was cooled down and the compressed CO₂ was vented out. The collected sample was washed by methanol and dried in a vacuum oven at room temperature. The melting temperature of this synthesized sample (PE/SiO₂) is summarized in Table 1.

Examples 6-8

These examples illustrate the hydrolysis of TEOS within polyethylene in supercritical CO₂ at 60°C. at a pressure P=3000 Psi. 1.0 g PE, TEOS and acetic acid were introduced into the autoclave, subsequently purged with ethylene to remove air. Then the compressed CO₂ was introduced into the autoclave and heating raised to 60°C. Compressed CO₂ was continually added into the autoclave to reach a pressure at 3000 Psi. Afterwards, the system was run for 24 hrs. After the reaction, the autoclave was cooled down and the compressed CO₂ was vented out. The collected sample was washed by methanol and dried in a vacuum oven at room temperature. The melting temperatures of these synthesized samples are summarized in Table 1. FTIR results of the synthesized samples from examples 6, 7, 8 are displayed in FIG. 8, which show the silica glass formed within the matrix of polyethylene.

The dispersion of the formed silica gel particles for samples from examples 6, 7 and 8 is depicted in FIG. 9, 10, 11. It is demonstrated that nano meter silica glass particles were formed within the matrix of polyethylene when the silica concentration was low, and the silica gel network was formed on the surface of polyethylene when increasing the silica concentration. Furthermore, XPS results of samples from examples 6 and 7 are displayed in FIG. 12, which illustrates the silica gel formed within the matrix of PE. The XRD pattern of the sample from example 8 is displayed in FIG. 13, which illustrates the amorphous phase of silica gel formed within the matrix of PE.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>PE</td>
</tr>
<tr>
<td>PES01</td>
</tr>
<tr>
<td>PES02</td>
</tr>
<tr>
<td>PES03</td>
</tr>
<tr>
<td>PES04</td>
</tr>
<tr>
<td>PES05</td>
</tr>
<tr>
<td>PES06</td>
</tr>
</tbody>
</table>
TABLE 1-continued

<table>
<thead>
<tr>
<th>Sample</th>
<th>Synthesis Condition</th>
<th>Si wt %</th>
<th>T\textsubscript{eq} (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES507</td>
<td>60° C, P = 3000 psi, TEOS</td>
<td>5.9</td>
<td>114.00</td>
</tr>
<tr>
<td>PES608</td>
<td>60° C, P = 3000 psi, TEOS</td>
<td>10.5</td>
<td>114.17</td>
</tr>
</tbody>
</table>

Examples 9 and 10

These examples illustrate the copolymerization of ethylene and VTMO under supercritical CO\textsubscript{2} at 60° C, under pressure P=2500 psi. Pre-cooled reactants and the initiator dissolved in heptane were weighed and added into one 100 ml Parr microautoclave. By means of an ISCO syringe pump (2601D), the compressed ethylene was pumped into the autoclave to purge for three times to remove air, then continually to about 950 psi at room temperature. The autoclave was heated to the desired temperature at 60° C at a rate of 3° C/min, while gradually pumping compressed ethylene to P=2500 psi. The stirring speed was controlled at 400 revolutions per minute (rpm). The autoclave was coupled with an in situ FTIR with an ATR probe and pressure transducer, which allows monitoring of the reaction process and ethylene consumption. The reaction lasted for 4 hours in which the ethylene consumption rate was monitored. The system pressure was kept at a constant pressure of 2500 psi, a pulse technique of compressed ethylene was applied in order to measure the ethylene consumption rate. After the reaction, the autoclave was cooled to room temperature, and compressed ethylene was carefully vented leaving the solid sample in the autoclave. The collected sample was washed using about 50-65 ml methanol for three times in a filter connected to a vacuum line, and subsequently dried in a vacuum oven at 30° C overnight. The dried sample was weighed and applied as the final product. The reaction condition for samples from example 9 and 10 was compared in Table 2. The synthesized procedure were followed by in situ FTIR samples from example 9 and displayed in FIGS. 14, 15 and 16. These results demonstrate vinyl silane incorporated into the formed polyethylene through copolymerization under supercritical ethylene. Furthermore, the reaction rate of ethylene was compared in Table 3. XPS results of samples from examples 9 and 10 are displayed in FIG. 17, which illuminate surface silica composition in the obtained polymer composites.

TABLE 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of W\textsubscript{VTMO} Condition</td>
<td></td>
</tr>
<tr>
<td>No. 9</td>
<td>80° C, P = 2500 psi, W\textsubscript{VTMO} = 1 g.</td>
</tr>
<tr>
<td>No. 10</td>
<td>80° C, P = 2500 psi, W\textsubscript{VTMO} = 2 g.</td>
</tr>
</tbody>
</table>

Examples 9-13 illustrate an alternative synthesis route for polymer composites and/or polymer nanocomposites.

Example 11

This example illustrates the polymerization of vinyl acetate on the nano powder of zirconia in supercritical CO\textsubscript{2}. 10.10 g vinyl acetate, 0.0047 mol diethyl peroxycarboxylate (DEPDC) in 10 g heptane, 0.20 g nano powder of zirconia were introduced into the autoclave, subsequently purged with CO\textsubscript{2} to remove air. Then, the compressed CO\textsubscript{2} was introduced into the autoclave and started heating to 80° C. The compressed CO\textsubscript{2} was continually added into the autoclave to reach a pressure of 2300 psi. Afterwards, the system was run for 4 hrs. After the reaction, the autoclave was cooled down and CO\textsubscript{2} was vented out. The collected sample was a white adhesive. Cooled methanol was added to the sample and stirred gently. After drying under vacuum at room temperature, solvent was removed and the sample becomes white solid. ZrO\textsubscript{2} content is calculated as 1.95% by weight.

Example 12

This example illustrates the polymerization of vinyl acetate and vinyltrimethoxysilane (VTMO) and hydrolysis of VTMO with acetic acid on the nano powder of zirconia in supercritical CO\textsubscript{2}. 10.10 g vinyl acetate, 0.0047 mol diethyl peroxycarboxylate (DEPDC) in 15 g heptane, 0.60 g vinyltrimethoxysilane (VTMO), 0.93 g acetic acid, and 0.20 g nano powder of zirconia were introduced into the autoclave, subsequently purged with CO\textsubscript{2} to remove the air. Then, the compressed CO\textsubscript{2} was introduced into the autoclave and heating initiated to 80° C. The compressed CO\textsubscript{2} was continually added into the autoclave to reach a pressure of 2850 psi. The system was run for 4 hrs. After the reaction, the autoclave was cooled down and CO\textsubscript{2} was vented out. The collected sample was a white adhesive. Cooled methanol was added to the sample and stirred gently. After drying under vacuum at room temperature, the solvent was removed and the sample was a white solid. ZrO\textsubscript{2} content was calculated as 1.88% by weight, and SiO\textsubscript{2} content 2.31 wt %.

Example 13

This example illustrates the polymerization of vinyl acetate and vinyltrimethoxysilane (VTMO), and hydrolysis of tetraethyl orthosilicate and NTMO with acetic acid on the nano powder of zirconia in supercritical CO\textsubscript{2}. 10.57 g vinyl acetate, 0.0047 mol diethyl peroxycarboxylate (DEPDC) in 15 g heptane, 0.61 g vinyltrimethoxysilane (VTMO), 1.17 g tetraethyl orthosilicate (TEOS), 2.57 g ace-
US 7,763,357 B2

One-Pot Nanocomposite Synthesis in Supercritical Fluids

A series of examples are shown to prove the concept of the one-step synthesis route in supercritical fluids including carbon dioxide and ethylene. In this route, the following reactions occur: a) free radical polymerization (includes initiation, propagation, and termination steps), b) hydrolysis to produce metal oxide particles, and c) linkage of the metal oxide particles to the polymer chain.

Ethylene can be polymerized at above 40°C to generate white powder, increasing the reaction temperature results in an increased rate of reaction. Examples are selected and described as in FIG. 18. Herein polymerization was carried out at 40, 50, and 60°C, respectively. The characteristic peaks of polyethylene at 2929, 2849 cm⁻¹, 1472 and 1463 cm⁻¹, 729 and 720 cm⁻¹ increased corresponding to polyethylene formation during the polymerization. The collected polyethylene is white powder. These examples illustrate possibility of free radical polymerization of ethylene can occur under supercritical conditions.

Copolymerization of ethylene and vinyl acetate occurs at or above 40°C, increasing the reaction temperature results in an increased reaction rate. One example is selected and described as in FIG. 19. It is seen that vinyl acetate was consumed corresponding to the increase in intensity of the peak at 1648 cm⁻¹, the formation of PEVA corresponding to the increases in intensities of peaks at 2920 and 2850 cm⁻¹ and 1729 cm⁻¹. The collected poly(ethylene-co-vinyl acetate) is either white powder or adhesive solid depending upon the ratio of ethylene and vinyl acetate. These examples illustrate the possibility of the free radical copolymerization of ethylene and vinyl acetate can occur under supercritical conditions.

Copolymerization of ethylene and VTMO occurs at above 60°C, increasing the reaction temperature results in increasing the reaction rate. One example is selected and described as shown previously in FIG. 15. During the heating copolymerization of ethylene and VTMO is seen to occur corresponding to the increases of intensities of peaks at 2921 and 2852 cm⁻¹, 1260 and 1094 cm⁻¹. The collected polymer composite is a white powder. The property of polymer composites varies upon the ratio of ethylene and silicate. This example illustrates the possibility of free radical copolymerization of ethylene or vinyl acetate or both and VTMO can occur under supercritical conditions.

Hydrolysis of TEOS with acetic acid occurs at above 30°C under supercritical CO₂. Increasing reaction temperature to 60°C results in full hydrolysis of TEOS. Examples are selected and described as discussed previously and shown in FIGS. 8 and 9 where FIG. 8 is a FT-IR spectra of polymer composites, which shows the formation of Si-O bonding in (Si—O—Si)n network within polyethylene corresponding to appearance of peaks at 1261 and 1047 cm⁻¹ while FIG. 9 is a SEM photomicrograph of the polymer composite showing that the formed silica particles can reach a high dispersion in a nano-scale.

The above examples illustrate possibilities of separate polymerization or copolymerization of ethylene and vinyl acetate or ethylene and VTMO and hydrolysis of TEOS-VTMO with acetic acid under supercritical conditions.

The one step synthesis route is developed based on these separate reactions, which reflects different parts of one step synthesis route.

The present invention is further illustrated by the following non-limiting examples. The following examples illustrate the present invention but are not intended to limit it in any manner.

General Procedures of Synthesis of Polymer Composites

Pre-cooled reactants and the initiator dissolved in heptane were weighed and added into one 100 ml Parr microautoclave. By means of an Iso syringe pump (260D), the compressed ethylene was pumped into the autoclave to purge for three times to remove air, then continuously to about 950 Psi at room temperature. Heating the autoclave to designed temperature 80°C at a rate of 3°C/min and while gradually pumping compressed ethylene to P=2500 Psi. The stirring speed was controlled at 400 revolutions per minute (rpm). The autoclave was coupled with an in-situ FTIR using an ATR probe and a pressure transducer, which allows monitoring the reaction process and ethylene consumption. Though a relatively fast reaction was observed during the first hour, the reaction lasted for 4 hours for detailed observations of ethylene consumption rate and enhancement of complete hydrolysis of organic alkoxides. The system pressure was kept at a constant pressure of 2500 Psi. A pulse technique of compressed ethylene was applied in order to measure the ethylene consumption rate. After the reaction, the autoclave was cooled to room temperature, and compressed ethylene was carefully vented leaving the solid sample in the autoclave. The collected sample was washed by about 50-65 ml methanol for three times in a filter connecting to vacuum line, and subsequently dried in a vacuum oven at 30°C overnight. The dried sample was weighed and applied as the final product.

Example 14

This example illustrates the copolymerization of ethylene and VTMO and hydrolysis of TEOS-VTMO with acetic acid under supercritical ethylene.

1.03 g VTMO, 2.03 g TEOS, 0.0089 mol DEPDC in 20.02 g heptane, 4.06 g acetic acid are introduced into the autoclave, subsequently purged with ethylene to remove air. Then compressed ethylene is introduced into the autoclave and starts heating to 80°C. Ethylene is continually added into the autoclave to reach pressure at 2500 Psi. Afterwards the system was run for 4 hrs. FIGS. 20 and 21 show the procedure of experimental and ethylene reaction rate during the polymerization. FIG. 20 shows changes of in situ FT-IR spectra of the reactants under supercritical ethylene. The decreases of absorbance of VTMO, TEOS acetic acid is seen due to dilution effect with supercritical fluid. FIG. 21 illustrates the in situ FT-IR during the heating procedure. The increases in intensities of peaks at 2917 and 2849 cm⁻¹ indicate copolymerization of ethylene and VTMO to form the organic part, while the increases in intensities of peaks at 1472, 1462 and 1260 cm⁻¹ indicate the hydrolysis of TEOS and VTMO occurs to form the inorganic part. After the reaction, the autoclave is cooled down and ethylene is vented out. The collected sample is white powder, 11.31 g. Silica content is
15 calculated as 4.1% by weight. The XPS studies of the polymer composite obtained is illustrated in FIG. 22a.

Example 15

This example illustrates the polymerization of ethylene and VTMO and hydrolysis of TEOS/VTMO with acetic acid in supercritical ethylene. The ratio of TEOS/VTMO was changed compared to example 14.1.06 g VTMO, 4.00 g TEOS, 0.0091 mol DEPDC in 20.07 g heptane, 6.65 g acetic acid are introduced into the autoclave, subsequently purged with ethylene to remove air. Then compressed ethylene is introduced into the autoclave and starts heating to 80°C. Ethylene is continually added into the autoclave to reach pressure at 2500 Psi. Afterwards the system is run for 4 hrs. After the reaction, the autoclave is cooled down and ethylene is vented out. The collected sample is white powder, 12.32 g. Silica content is calculated as 6.05% by weight. The XPS result of the polymer composite obtained from this example is illustrated in FIG. 22a.

Example 16

This example illustrates the polymerization of ethylene, vinyl acetate and VTMO and hydrolysis of TEOS/VTMO with acetic acid under supercritical ethylene. 1.30 g VTMO, 2.10 g TEOS, DEPDC 0.0092 mol in 20.05 g heptane, 4.19 g acetic acid and 2.06 g vinyl acetate are introduced into the autoclave, subsequently purged with ethylene to remove air. Compressed ethylene gas is then introduced into the autoclave and starts heating to 80°C. Ethylene is continually added into the autoclave to reach a pressure of 2500 Psi. Afterwards the system is run for 3 hrs. FIG. 23 shows the FT-IR results of reactants and products during the process. The increases in intensities of peaks at 2919 and 2850 cm⁻¹ are contributed by polyethylene formation. The decrease of intensity of peak at 1647 cm⁻¹ is due to vinyl acetate converting to PEVA. The significant changes in the wavelength range of 1100-1300 cm⁻¹ is due to formation of silica in the copolymer. After the reaction, the autoclave is cooled down and ethylene is vented out. The collected sample is white powder, 12.91 g. Silica content is calculated as Si, 5.4% by weight. XPS result of polymer composite obtained from Example 16 is illustrated in FIG. 24a.

Example 17

This example illustrates the polymerization of ethylene and VTMO and hydrolysis of TEOS/VTMO with acetic acid under supercritical ethylene, the ratio of TEOS/VTMO is changed compared to examples 1 and 2. 2.01 g VTMO, 10.02 g TEOS, 0.0046 mol DEPDC in 10 g heptane, 15.95 g acetic acid are introduced into the autoclave, subsequently purged with ethylene to remove air. Then compressed ethylene is introduced into the autoclave and starts heating to 80°C. Ethylene is continually added into the autoclave to reach pressure at 2500 Psi. Afterwards the system is run for 4 hrs. After the reaction, the autoclave is cooled down and ethylene is vented out. The collected sample is white powder, 5.96 g. Silica content is calculated as Si, 29.3% by weight. XPS studies of the resulting polymer composite obtained from this example is illustrated in FIG. 24b.

Example 18

This example illustrates the polymerization of vinyl acetate and VTMO and hydrolysis of TEOS/VTMO with acetic acid at 60°C under supercritical CO₂. 15.14 g vinyl acetate, 2.01 g VTMO, 2.05 g TEOS, 0.0046 mol DEPDC in 10 g heptane, 5.29 g acetic acid are introduced into the autoclave, subsequently purged with CO₂ to remove air. Then compressed CO₂ is introduced into the autoclave and starts heating to 60°C. Compressed CO₂ was continually added into the autoclave to reach a pressure of 3400 Psi. Afterwards, the system is run for 4 hrs. After the reaction, the autoclave was cooled down and CO₂ was vented out. The collected sample is an adhesive compound, and washed by methanol, and then dried under vacuum. Silica content is calculated as Si, 3.98% by weight.

Example 19

This example illustrates the polymerization of vinyl acetate and VTMO and hydrolysis of TEOS/VTMO with acetic acid at 80°C under supercritical CO₂. 15.07 g vinyl acetate, 2.02 g VTMO, 2.08 g TEOS, 0.0069 mol in 15 g heptane, 5.30 g acetic acid are introduced into the autoclave, subsequently purged with CO₂ to remove air. Then compressed CO₂ is introduced into the autoclave and starts heating to 80°C. Compressed CO₂ is continually added into the autoclave to reach pressure at 2300 Psi. Afterwards the system is run for 4 hrs. After the reaction, the autoclave is cooled down and CO₂ is vented out. The collected sample is a viscous liquid, adhesive-type compound, and washed by methanol, and then dried under vacuum. The silica content is calculated as Si, 4.03% by weight.

To summarize, the affecting factors for the one-pot synthesis are summarized in FIG. 26.

CONCLUSIONS

While the present invention has been described with what are presently considered to be the preferred embodiments, the claims are not to be limited to the disclosed embodiments. To the contrary, the claims are intended to cover various modifications and equivalent structures and functions as are apparent from the appended claims. One of skill in the art may alter the described examples, and reasonable modifications and variations are possible from the foregoing disclosure without departing from the spirit and scope of the present invention.

As used herein, the terms “comprises”, “comprising”, “including” and “includes” are to be construed as being inclusive and open ended, and not exclusive. Specifically, when used in this specification including claims, the terms “comprises”, “comprising”, “including” and “includes” and variations thereof mean the specified features, steps or components are included. These terms are not to be interpreted to exclude the presence of other features, steps or components.

The foregoing description of the preferred embodiments of the invention has been presented to illustrate the principles of the invention and not to limit the invention to the particular embodiment illustrated. It is intended that the scope of the invention be defined by all of the embodiments encompassed within the following claims and their equivalents.

REFERENCES CITED

U.S. Patent Documents

US 7,763,357 B2

17

OTHER REFERENCES
Therefore what is claimed is:
1. A method of preparing polymer composites, polymer nanocomposites, or organic-inorganic hybrid materials, comprising hydrolysis, or polymerization and hydrolysis within polymers in supercritical fluids.
2. The method of claim 1, wherein said polymers comprise polyethylene, poly(ethylene co vinyl acetate), or other polyolefins.
3. The method of claim 1, wherein said hydrolysis applies to metal alkoxides of inorganic precursors with hydrolysis agents comprising organic or inorganic acids or bases in supercritical fluids.
4. The method of claim 3, wherein said hydrolysis agents comprise organic or inorganic acids or bases in either organic solution or aqueous solution under supercritical conditions.
5. The method of claim 3, wherein said hydrolysis agents are selected from the group consisting of organic acids, formic acid, acetic acid.
6. The method of claim 3, wherein inorganic metal alkoxides as precursors are TEOs, TMOS.
7. The method of claim 1, wherein said polymerization is conducted using vinyl monomers, selected from the group consisting of ethylene, propylene, styrene, vinyl acetate, vinyl silanes, and vinyl chloride.
8. The method of claim 1, wherein said polymerization is initiated by free radicals generated from radical initiators selected from the group consisting of organic peroxides, peroxycarbonate and AIBN.
9. The method of claim 1, wherein said hydrolysis and polymerization employ coupling agents such as metal alkoxides containing vinyl group.
10. The method of claim 9, wherein said coupling agents apply to VTMOS.
11. The method of claim 1, wherein said reactions can be carried out in either organic solvents or inorganic solvents including supercritical fluids.
12. The method of claim 1, wherein polymeric composites are generated from the method of claim 1, said compositions generally having polymer and inorganic network chemically bonded to the polymer.
13. The method of claim 12, wherein the polymeric composites comprise: a thermoplastic elastomer polyolefin which is the free radical polymerization product of vinyl monomers; and Si, Ti, Zr inorganic polymer or network which is the hydrolysis result of these precursors.
14. The method of claim 13, wherein said vinyl monomer is ethylene, vinyl acetate.
15. The method of claim 13, wherein said vinyl monomers also include vinyl silanes.
16. The method of claim 13, wherein said inorganic networks are (O-Me-O)n, (O-Me(-)O-Me(H))n.
17. The method of claim 13, wherein the inorganic networks (O-Me-O) are chemically bonded to the polymer.
18. The method of claim 13, wherein the amount of said polyolefin is between about 100 and about 0 parts per part organic network.
19. The method of claim 13, wherein the amount of said inorganic network is between about 100 and about 0 parts per part organic polymer.
20. The method of claim 13 comprising application on solid surfaces as coating, internal pores of porous materials as filler, and free space inside solid materials.

* * * * *