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Abstract and Keywords 

Gasification of waste biomass to form hydrogen, H2, is a promising new source of green 

energy; while providing the additional benefit of treating challenging and hazardous 

waste streams that pollute the environment. Gasification of biomass in supercritical water 

(SCW) offers an attractive alternative to avoid the energy intensive drying process. In this 

approach, biomass is hydrolyzed by water into smaller molecules in the presence of a 

suitable catalyst.  This study was aimed at developing an alumina supported nickel based 

non-noble metal catalyst suitable for biomass gasification in SCW. A lack of detailed 

characterization on fresh and spent catalysts in SCW has held back progress in this field 

and is critical due to the highly unusual properties of SCW at high pressure and 

temperature compared to ambient water. Typically hydrogen rich gaseous product from 

gasification of biomass in SCW requires temperatures higher than 700 °C, while low 

temperature processes (300-500 °C) produce methane rich gases. Use of suitable catalysts 

can lower the activation energy of the reaction, and hydrogen rich gaseous products can 

be achieved at low temperatures thus lower the operating cost. Use of suitable catalysts 

also can reduce the formation of chars and tars formed during the gasification process in 

SCW. Moreover, non-noble catalysts could be beneficial in terms of availability and cost. 

A kinetic study of SCW gasification is still under development due to the numerous 

intermediate and final products and complex reaction pathways.  

In this research, supercritical water gasification (SCWG) and partial oxidation (SCWPO) 

of a model biomass compound was studied to produce hydrogen rich syngas at lower 

temperatures (400-500 °C). In this respect non-noble nickel catalysts were synthesized, 
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evaluated and characterized (fresh and spent) to study the catalyst role in SCWG.  The 

catalysts studied were synthesized via incipient wetness impregnation of metal salts on 

synthesized θ-alumina nanofibers and commercial gamma alumina (converted to theta) 

pellets (3mm average diameter) as catalyst supports. To synthesize nano structured 

catalyst supports (alumina nanofibers); a one-pot sol-gel route in scCO2 was adopted 

without using any hazardous organic solvents, surfactants or other additives for the first 

time. Aerogel nano catalysts were also directly synthesized via a sol-gel technique using 

isopropanol as solvent and supercritical carbon dioxide (scCO2) as the drying agent. 

In this research, it was found that introduction of oxidant after gasification is beneficial in 

terms of gaseous products and reducing the chemical oxygen demand (COD) in the liquid 

effluents. Another finding is that nickel (Ni) loading on alumina above 11 wt% consumed 

carbon dioxide with a simultaneous increase in methane attributed to hydrogen 

consumption by the methanation reaction. However, lanthanum (La) modified Ni/θ-Al 2O3 

enhanced production of hydrogen by retarding the methanation reaction and promoting 

the water gas shift (WGS) reaction. In addition, adsorption of CO2, one of the main 

products, by La was attributed to shifting the reaction equilibrium to the products and 

thus contributed to enhance hydrogen production.  

Nano catalysts showed higher activity towards hydrogen production, carbon gasification 

efficiency and total organic carbon (TOC) destruction in the liquid effluent compared to 

coarser heterogeneous catalysts. However, hydrogen production using aerogel catalysts 

where metals were loaded directly through sol-gel reaction was found comparatively less 

than nanofiber catalysts where metals were impregnated on the nano support. This 

phenomenon was attributed to the formation of Ni-La-Al-O nano structure complex by 
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direct addition of metals during sol-gel reaction. Unlike impregnated catalysts, 

incorporation of La to the main structure of the sol-gel derived catalysts could not 

contribute to enhance the WGS reaction.  

The fresh and spent catalysts were characterized using different physicochemical 

techniques which revealed that the catalysts were active in SCW even though the metallic 

sites of nickel agglomerated when exposed to SCW conditions, oxidized and reacted with 

the support alumina. It was found that lanthanum retards the formation of graphitic coke, 

and adsorbed carbon dioxide during supercritical water gasification. 

To our knowledge, hydrogen yield, total organic carbon destruction and gasification 

efficiency were significantly higher using La modified Ni/θ-Al 2O3 nano catalyst fibers 

than that of any other reported results of SCWG of any biomass compound at moderate 

temperatures (~500 °C) and pressures (~28 MPa). However, exposing the nanofiber 

catalysts to the SCW environment led to disintegration of the fibrous structure. 

A global kinetic model for TOC destruction in supercritical water was developed using 

non-linear regression, which convincingly fit with the experimental results. 

Key Words: Catalysis, Hydrogen production, TOC destruction, Supercritical water, 

Supercritical Carbon dioxide, Nanomaterials, Characterization of heterogeneous 

catalysts, Kinetics of TOC destruction. 
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Chapter 1 

General Introduction 

1.1 Background and Motivation  

Disposal of hazardous agricultural and industrial organic biomass waste generated from 

feedlots and food processing operations has received worldwide concern in light of 

environmental and health concerns with diminishing land resources. The major sources of 

biomass are agriculture and forest biomass, forestry residues, food processing residues, 

industrial wastes, municipal sewage and household garbage. As one example, direct 

application of livestock manure for soil amendment causes contamination of surface and 

groundwater, and emission of methane gas and nitrous oxide, two potent greenhouse 

gases. In Ontario, Canada, the recent promulgation of the Nutrient Management Act, 

jointly by OMAFRA and the Ontario Ministry of Environment (MOE) has led to a 

limited availability of land for disposal of municipal and agricultural wastes. This not 

only results in higher disposal costs but also may seriously hamper industrial growth.  

Agricultural waste contains up to 95% water1 whereas municipal waste contains 

approximately 80% water and 20% dry solid2, 75% of this solid is organic matter2. 

Conversion of such waste streams to valuable fuels and chemicals using conventional 

techniques such as pyrolysis or catalytic gasification would be energy intensive and 

costly due the excessive drying costs. Society’s need for new sources of green energy, 

while treating challenging and hazardous waste streams that are polluting the 

environment has resulted in the opportunity for new technologies to emerge.  
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1.2. Selection of Technology  

A major problem of biomass is high moisture content (Table 1.1), which is generally 

more than that from solid fossil fuels. As well, sewage may have moisture contents 

exceeding 90 wt% 3. Direct combustion would require drying of the biomass that would 

drastically lower the net energy production. 

Table 1.1: Moisture content in several common biomass wastes.4  
 

Biomass type  Moisture (% wet basis) 

Wheat straw  8-20 

Sawdust  25-55 

RDF pellet  25-35 

Wood bark  30-60 

Corn stalk  40-60 

Rice straw  50-80 

Food waste  70 

Cattle manure  88 

Water hyacinth  95.3 

 

As shown in Table 1.2, at above 31% moisture content, the energy conversion efficiency 

of supercritical water gasification is always higher than that of thermal gasification, 

pyrolysis, liquefaction, and anaerobic digestion5.  
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Table 1.2: A comparison of energy conversion efficiency of different options for 
biomass conversions ( Data from Yoshida et al.5).  
 

Moisture content in feed 5% 31% 55% 75% 

Biomass conversion processes Energy conversion efficiency (%) 

Thermal gasification 61 55 47 27 

Pyrolysis 57 53 45 27 

Liquefaction 39 37 36 34 

Anaerobic digestion 31 31 31 31 

Supercritical water gasification 55 55 55 55 

 

Gasification of biomass in supercritical water offers an attractive alternative to avoid the 

energy intensive drying process, particularly when the water content is above  30% 6.  

Supercritical water gasification (SWG) and supercritical water partial oxidation (SWPO), 

potentially offers a solution, producing syn gas; especially methane or hydrogen rich 

gases depending on the operation conditions and catalysts. This state of the art 

technology is expected to be a significant breakthrough in waste-to-energy power 

generation. This process exhibits unparalleled environmental compliance capabilities, 

without the need for a pollution-abatement system. 

Compared to other biomass thermochemical reforming processes, supercritical water 

reforming has a high gasification efficiency and operates at a lower temperature7. The 

main advantages are: since the solvent is water, the thermal efficiency is not affected by 

biomass humidity; a hydrogen rich gas can be produced by driving the water gas-shift 

reaction (CO + H2O → CO2 + H2); reaction proceeds in a homogeneous medium 
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inhibiting tar formation; the product is compressed to about 30 MPa, avoiding additional 

work for compression of gases and the hydrogen flammability is drastically reduced by 

water. Supercritical water (SCW) possesses physical properties that are very different 

from those of liquid water under ambient conditions. The dielectric constant of SCW is 

much less than that of ambient water (80 at room temperature to 2.5 at 450 °C at 30 

MPa8) with the hydrogen bonding being much weaker. Therefore, SCW behaves like an 

organic solvent and is completely miscible with organic materials. Thus with SCW it is 

possible to conduct reactions with organic compounds in a single fluid phase which 

would otherwise occur in a multiphase system under conventional conditions. The high 

diffusivity of SCW (diffusion coefficient is about 100 times higher than ambient water9) 

can significantly enhance mass transfer. SCW can reduce coke formation on the catalyst 

as it is a good solvent for the intermediate coke precursors10. Hence, gasification of 

biomass in SCW has many advantages including high gasification efficiency and a high 

yield of hydrogen7. 

However, many major difficulties exist, although formation of char and tar are much less 

than that of conventional processes, still plugging and formation of chars and tars during 

biomass gasification is a major concern. Chars come from non-converted biomass, while 

tars are unwanted reaction products. Chars are linked to the conversion yields of the 

process while tars are usually formed by the pyrolysis of organic molecules. Char and tar 

can be minimized by partial oxidation to enhance the gasification process and the 

resulting yield of hydrogen11. Although the formation of char and tar are much lower than 

conventional processes, the complete removal of chars and tars has not yet been reported. 

Catalysts have the advantage of helping on both the conversion yield and solving the 
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plugging problem caused by the presence of char and tars. That is one of the reasons why 

it has been considered by several researchers. 

For hydrogen rich gas production by gasification of biomass, high activation energy i.e. 

high temperatures12 (above 600 °C) are required. To sustain high temperature processes, a 

supply of external energy is needed. This is one of the major shortcomings of the high 

temperature process. In order to moderate the condition (reducing reaction temperature) 

of SCWG, and to reduce investment and equipment cost, one available means is to reduce 

the activation energy by adding a suitable hydrothermal catalyst. 

On the other hand, Peterson et al.12 concluded that obtaining the thermodynamic 

equilibrium gas composition below 600 °C is not possible. Therefore, for low 

temperature processes reduction of activation energy with the use of catalysts becomes 

vital. However, lower temperatures are also more suitable for the production of 

methane12. Methane, which is one of the  main products of SCW gasification, is very 

stable in SCW and is not converted into any smaller molecules13. The production of 

methane could be high in the intermediate temperature range of 374-500oC 12. 

Temperature also affects the tar yield (in the liquid effluent) during SCWG. At low 

temperatures (<600oC), yellowish and a thin layer of a dark brown, oil-like tar has been 

observed in the liquid effluent3, 14. However, clear water was observed at 650oC 3, 14. In 

addition, some organic intermediates may form solid coke (char), which is not a 

thermodynamically stable product, and has a low reactivity at low temperatures 

(<600oC)12. The gasification step must be very fast to avoid the formation of polymeric 

materials and eventually char.  
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Therefore the use of suitable catalysts is required to reduce the methanation reaction 

while breaking the tars and retarding the formation of char at lower temperatures. 

1.3. Selection of Catalysts 

As a solution for SCWG, catalysts must both decrease the amount of formed tars and 

chars and increase the proportion of hydrogen in the synthesized gas. Homogeneous 

materials like alkali catalysts are readily miscible with water and have been found very 

effective for biomass gasification. Lu et al. 7 used K2CO3 for biomass gasification in 

SCW and found the H2 yield two times higher than that without catalyst under the same 

conditions. Watanabe et al.15 studied the effect of both base (NaOH) and metal (ZrO2) 

catalysts on the gasification of lignin in SCW. NaOH proved 2-5 times more effective 

than ZrO2 for hydrogen production. However, alkali catalysts recovery, re-use and 

corrosion problems are still the main concerns with these types of catalysts 16.   

In this regard, Hao et al. 17 compared the performance of five types of metal catalysts: 5 

wt% Ru on activated carbon, 5 wt% Pd on activated carbon, CeO2 particles, nano- CeO2 

and nano-(CeZr)xO2 during the gasification of cellulose at 500 °C at 27 MPa. The 

Ruthenium based catalyst gave the best performance with the highest yield of hydrogen 

and methane, while the others had a similar level of performance. For SCWG of glucose, 

Byrd et al.18 evaluated the Ru/Al2O3  at 700 °C and found a high a yield of H2 with low 

CO and CH4, while Osada et al.19 found CH4 rich gas at 400 °C.  

Although Ru shows very good activity for gasification, Ru catalysts can be poisoned by 

even a trace amount of S 20. Pt group noble metals are also prone to the methanation 

reactions of carbon oxides (equation 1.1 and 1.2) in the presence of hydrogen, which 



 

 

 

7

increases with an increase of temperature21. Noble metals are mainly used for preferential 

methantation of carbon monoxide21, 22. Typical methanation reactions can be written as: 

CO + 3H2 � CH4 + H2O      (1.1)  

CO2 + 4H2 � CH4 + 2H2O      (1.2) 

Furthermore, the relatively high price of noble metals makes these catalysts less attractive 

if suitable low cost heterogeneous catalysts can be utilized, particularly for low cost 

energy production processes. 

Nickel is a commonly used catalyst for SCW gasification with Furusawa et al.23 finding 

that carbon and hydrogen yields increased from 8.3% and 14.1% to 22.7% and 46.2% 

respectively when 0.05 g of 20 wt% Ni/MgO catalyst was added at 400 °C. The reduced 

nickel catalyst was found to enhance the gasification under SCW conditions. A nickel 

catalyst is also known to be favorable for cracking tar molecules and promoting the WGS 

reaction24. Savage and Resende25 reported that nickel and copper provided higher gas 

yields compared to Ru and Rh. When compared to the available alternative catalysts, 

nickel displays several favorable attributes including high activity and low cost.  

Lanthanum (La) may increase a catalyst stability as well as enhance the water gas shift 

reaction like cerium (Ce)26. La and Ce have very similar chemical properties with respect 

to cation charge, ionic radii, and the stability of organic and inorganic complexes27. Kim 

previously found that cerium acts as a promoter of the WGS reaction while investigating 

the removal of CO with non-noble metal oxide26. The stability of Ni/La2O3 was observed 

in methane reforming with CO2
28. It was previously shown to remain active and stable 

even after 150h of conventional steam reforming of ethanol29. That study also showed 

that complete ethanol conversion was achieved with contact times higher than ca. 0.1g s 
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cm-3 and was highly selective (ca. 95%) towards hydrogen29. In this regard, Ni on 

La2O3/Al 2O3 may be a favorable catalyst for supercritical water gasification. La2O3 also 

might be active and stable in SCW, while also having a high melting point (2315°C). 

Thus, the use of catalysts seems to be one of the key points for gasification in 

supercritical water, both towards lowering the amount of residual chars and tars while 

increasing the proportion of hydrogen in the synthesized gas.  

However, the catalyst role in SCWG is still poorly understood due to the unusual 

properties of SCW and a lack of detailed characterization of fresh and spent catalysts. 

The published literatures mostly reported the catalyst’s activity by product evaluation in 

SCWG/SCWO. A recent review of catalytic hydrogen production from biomass in SCW 

by Guo et al. 30 showed activity tests of noble and non-noble catalysts and a possible 

mechanism of Ru and acid-base catalysts activity for hydrogen production. This review 

also lacks details on catalyst characterization which are required to evaluate the 

effectiveness of each catalyst and also to provide specifications for future products.  

1.4. Synthesizing nano catalysts 

Conventional catalysts have low surface areas per unit volume which limits the contact 

area between the reactants and the metallic surface of the catalysts. Nano catalysts with 

high surface areas and aspect ratios can help to eliminate this challenge. Supercritical 

carbon dioxide (ScCO2) can be used as a green solvent to synthesize nano materials31-34. 

In this research, ScCO2 is adopted to synthesize nano structured catalyst supports without 

using any hazardous organic solvents, surfactants or other additives. The nano support 

was then used for impregnation of catalyst development for SCWG. Another approach 
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for nano catalyst synthesis was direct addition of active metals to the support during sol-

gel reaction using isopropanol as solvent and ScCO2 as drying agent. In this approach, 

metal oxide aerogel was synthesized. 

1.5. Selection of Model Compound 

Using a model compound for a feedstock provides several advantages including making 

it easier to understand the basic chemical pathways occurring during conversion in an 

unusual reaction medium such as supercritical water. 

Biomass is typically composed of cellulose, hemicellulose, lignin, and other organic and 

inorganic components. Cellulose is known as one of the most unmanageable components 

for dissolving in hot water35. The complete conversion of cellulose to glucose and its 

oligomers can be achieved at temperatures as high as 400 °C in supercritical water 

conditions36. Therefore glucose (C6H12O6) serves as a model compound for the more 

complex sludge and cellulosic wastes for gasification in supercritical water.  

1.6. Objectives 

The main purpose of this research is to provide a quantitative mechanistic understanding 

of the destruction of wet organic matters so that no other apparatus is necessary for the 

further treatment of liquid effluent while producing hydrogen-rich gas at comparatively 

low temperatures using non-noble catalysts. This understanding is vital for the practical 

application of organic waste treatment, energy recovery from waste, and a cost analysis 

of the supercritical water gasification process. Another goal of this research is to gain a 

detailed structural picture of the catalysts used in SCW and thus to develop a better 
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understanding of the function of the catalysts and to provide guidance in synthesizing 

new and improved catalysts. From the engineering perspective, development of a global 

kinetic model can guide the reactor design for real life application which has not yet been 

developed. 

The objectives of this research can be divided as follows: 

• Production of hydrogen rich gas from a model compound of waste 

biomass. 

• Destruction of total organic compounds (TOCs) in the liquid effluent so 

no subsequent treatment is necessary. 

• Synthesis of non-noble heterogeneous catalysts (Ni based catalysts). 

• Synthesis of high surface area nano catalysts without using 

environmentally hazardous solvents, additives or surfactants. 

• Evaluation of the impact of the synthesized catalysts in a 600 ml reactor 

constructed by Autoclave Engineers by Hastelloy C-276. 

• Gaining the structural picture of the synthesized fresh and spent catalysts 

for SCWG by using different physical and chemical characterization 

techniques including TPR, TPO, TPD, chemisorptions, Raman, SEM, 

TEM, FTIR, TGA, BET and XRD analysis. 

• Development of a global kinetic model which could be a fundamental tool 

for the potential industrial reactor design. 

Other than the objectives mentioned above, the following objectives are also considered 

to have been achieved: 
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• Retardation of the methanation reaction at comparatively lower 

temperatures and thus improving hydrogen selectivity. 

• Adsorption of CO2, one of the main gaseous products of supercritical 

water gasification, to shift the equilibrium towards product while 

increasing the desired product selectivity. 

• Increasing the water gas shift reaction to maximize hydrogen production. 

• Avoiding the formation of intermediate polymeric materials that 

eventually leads to the formation of char or coke.  
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Chapter 2 

Literature Review 

2.1 Introduction 

Biomass is the organic material coming from plants which contains stored energy from 

the sun through photosynthesis.  

2612622 6OOHCOHCO Sunlight +  →+      (2.1) 

The chemical energy in plants gets passed onto animals and people through the food 

chain. This chemical energy also gets passed onto agricultural and industrial wastes, 

municipal sewage and household garbage. One of the better means of utilization of 

biomass resources involves converting the biomass waste into fuel gases. There are 

several potential options to convert solid biomass into gases as follows:   

− Thermal gasification 

− Pyrolysis 

− Anaerobic digestion 

− Supercritical water gasification (SCWG) 

The total energy conversion efficiency is reduced as the moisture content of the biomass 

feed increases, except for anaerobic digestion and supercritical water gasification 

processes (Chapter 1, Table 1.2). This is primarily due to the increasing amount of energy 

consumed in drying the feedstock. In supercritical water gasification, water does not have 

to be removed as it serves as both the solvent and as a hydrogen donor. Thus the drying 
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problem can be avoided using SCWG. Similar to SCWG, the conversion efficiency of an 

anaerobic digestion route (31%) is insensitive to the moisture content in biomass, but its 

efficiency is well below that of SCWG. Above moisture contents of ≈ 31%, the 

conversion efficiency of supercritical water gasification is always higher than that of 

other processes5 (Chapter 1, Table 1.2).  

Under supercritical water conditions, waste feed is quickly and efficiently converted to 

hydrogen, carbon oxides, water and salts with negligible production of NOx, or SOx. 

Supercritical water oxidation (SCWO) is well known to have the ability to treat 

hazardous and toxic chemicals such as chemical warfare agents37.  

2.2 Supercritical water 

A supercritical fluid is defined as a substance at a temperature and pressure above its 

critical point. Figure 2.1 shows the phase diagram of water. The critical point specifies 

the conditions at which a phase boundary ceases to exist. Along the equilibrium line, as 

temperature and pressure increase, the liquid density decreases and vapor density 

increases until the two reach the critical point. Above that point, the fluid becomes a 

single supercritical phase with properties in between those of a gas and a liquid. Water 

above it’s critical point (Tc = 374°C, Pc = 22MPA)38 has physical properties such as 

density, dielectric constant, dissociation constant, and viscosity that undergo dramatic 

changes.  
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Figure 2.1: Schematic phase diagram of water. 

 

Figure 2.2 illustrates the change in density, dielectric constant, and dissociation constant 

as a function of temperature at a constant pressure of 30 MPa. The density of supercritical 

water is about one-tenth that of ambient water. This very low density allows greater 

spacing between water molecules and much less effective hydrogen bonding. As a result, 

SCW has very little capacity to shield ions. The dielectric constant decreases from 80 at 

room temperature to 2.5 at 450 °C and 1.2 at 650 °C. This range of dielectric constants is 

similar to the values of typical nonpolar hydrocarbon solvents such as hexane 1.88, 

benzene 2.3, toluene 2.38, and chloroform 4.81. Again as seen in Figure 2.2, at 30 MPa 

the ionic dissociation constant (Kw) first increases from 10-14 to 10-11 just below 350 °C 

and then decreases by five orders of magnitude or more above 500 °C. The ion product, 

or self-ionization constant, is defined as the product of the concentrations of the acidic 
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and basic forms of water, Kw = [H3O
+][OH-], in units of mol2 kg-2. With a low dielectric 

constant and low ionic dissociation constant, ionic species, namely inorganic salts, are 

practically insoluble in supercritical water. Additionally, SCW has a high diffusivity and 

low viscosity39. 

 

Figure 2.2: Density38, static dielectric constant8 and ion dissociation constant (Kw)40 
of water at 30 MPa as a function of temperature. 

 

One important property of SCW is that there exists almost no mass transfer limitation. 

Generally any catalytic reactions are mass-transfer limited due to the high reaction rates, 

low diffusion rates, and poor fluid flow characteristics. Table 2.1 compares the water 

properties for ambient water, supercritical water and superheated steam9. A highly 

effective diffusion coefficient of supercritical water (about 100 times higher than ambient 
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water) diminishes the chance of a mass-transfer gradient developing in a catalyst internal 

surface area9. The low density and viscosity of SCW enhances the particle Reynolds 

number and effective diffusion coefficient. A catalyst particle Reynolds number (NRep = 

udpρ/µ) is defined as the ratio of inertial forces to viscous forces along the particle. 

Dautzenberg41 suggested that a particle Reynolds number of 10 would prevent external 

mass-transfer limitations. The particle Reynolds number criterion is easily met for both 

SCW and superheated steam scenarios. Similarly, the degree of internal or pore diffusion 

limitation is often represented by the Thiele modulus, φ.  Values much lower than unity 

indicates that pore-diffusion limitations do not exist in the catalyst.  

Table 2.1 Properties of Ambient Water, Steam, and Supercritical Water 9. 

Fluid 
Ambient 

water 

Supercritical 

water 

Superheated 

steam 

Typical Conditions 

Temp. (°C) 25 450 450 

Pressure (psia) 14.7 4000 200 

Properties and Parameters 

Dielectric constant 78 1.8 1.0 

Hydrocarbon solubility (mg/L) variable ∞ variable 

Oxygen solubility (mg/L) 8 ∞ ∞ 

Density, ρ (g/cm3) 0.998 0.128 0.00419 

Viscosity, µ (cp) 0.89 0.0298 2.65 x 10-5 

Particle Reynolds no. Rep 18.5 553 622 

Effective diffusion coeff. De (cm2/s) 7.74 x 10-6 7.67 x 10-4 1.79 x 10-3 

Thiele modulus, φ 2.82 0.0284 0.0122 

 



 

 

 

17

The overall result of these properties is that supercritical water acts as a non-polar dense 

gas that has solvation properties similar to those of low polarity organic solvents. Hence, 

hydrocarbons and gases (e.g O2, N2, CO2 etc.) are highly soluble and usually completely 

miscible under typical SCWG operating conditions. The lower solubility of ions and 

lower activities of H+ and OH- cause reactions to proceed via free radical pathways rather 

than ionic pathways. Due to higher diffusion constants and lower viscosities, mass 

transfer limitations are much lower than those from liquid water. Even pore diffusion 

limitations in catalysts can be avoided using supercritical water.  

2.3 Economic feasibility and current status 

The supercritical water gasification process is still in the early stages of development. 

Experimental research based on bench scale reactors are presently being examined at 

several universities and research centers. Yoshida et al.5 compared the efficiency and 

carbon dioxide emissions among various biomass conversion methods to determine the 

energy flow from biomass resources to electricity, automobile fuels and heat. The 

supercritical water gasification combined cycle was found to be the most efficient option 

for biomasses having high moisture content. Matsumara42 evaluated biomass gasification 

in supercritical water from the point of view of energy, environmental and economic 

aspects. He assumed the system is energetically independent, and no environmentally 

harmful material should be released and that carbon dioxide should be removed from the 

product gas. For supercritical water gasification he found the energy efficiency to be 

64.8%, the cost of product gas 3.05 yen/MJ (0.0342CAD/MJ) which is 1.86 times higher 

than city gas in Tokyo (1.64 yen/MJ), CO2 payback time is 4.19 years. This study found 

that supercritical water gasification is a practical process for decreasing carbon dioxide 
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emissions, and is more advantageous compared to biomethanation. Gasafi et al.43 

conducted an economic analysis of sewage sludge gasification in supercritical water for 

hydrogen generation using the total revenue requirement (TRR) method. The calculated 

cost of hydrogen production and the revenues obtained from the disposal of sewage 

sludge for the TRR were determined. They found that in the case of 211€ t-1
dry matter ($270 

t-1dry matter) from sewage sludge disposal, that hydrogen production costs are similar to 

those from natural gas reforming. If average revenues are assumed to be obtained from 

sewage sludge disposal 245€ t-1
dry matter ($314 t-1dry matter), the costs of hydrogen production 

is 2.3€ GJ-1 ($2.95GJ-1). They found that the production costs of hydrogen as a secondary 

fuel are closely coupled with the fuel costs (primary energy costs) in conventional 

processes. The primary energy costs increase the medium and long term production, 

whereas gasification of sewage sludge costs play only a minor role. Moreover, the 

sewage sludge disposal is associated with negative costs (revenues). Consequently, the 

sewage sludge gasification in supercritical water is a cost effective process. Concentrated 

carbon dioxide evolved from the supercritical water gasification can be further used, such 

as in the beverage industry. 

Commercial application of SCWG has not yet occurred. The pilot plant VERENA is one 

of the largest SCWG units in operation with a capacity of 100kg/h44. This experimental 

facility using agricultural matter as feedstock has an operating capacity to 35MPa and 

700 °C, while the usual operating condition is 28MPa and 660 °C44. To improve 

efficiency of SCWG, studies on the effect of operating parameters, reaction kinetics and 

thermodynamic analysis are required. 
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2.4 Thermodynamics and Chemistry 

Thermodynamic analysis of biomass gasification can provide a theoretical basis for the 

design, optimization and operation of a system where the energy efficiency is 

important45. A system is in equilibrium when there is no tendency in thermal, mechanical, 

chemical and phase changes within the system. These conditions are met only when there 

is no heat transfer from one location to another, no unbalance of forces between parts of 

the system, or no chemical reaction or any transfer of mass between the various phases in 

the system. 

The equilibrium composition and thermodynamic limits of gasification of biomass in 

supercritical water can be predicted using equilibrium models. For process design, 

evaluation and improvement, an equilibrium model can serve as a guide. Generally two 

approaches are adopted for equilibrium modeling:  

1.  Stoichiometric  

2.  Non-stoichiometric. 

A clearly defined reaction mechanism including information on the reaction rates of all 

chemical reactions and species involved is required for the stoichiometric approach. 

Within the given residence time, the chemical reactions are not sufficiently fast to reach 

equilibrium in most gasification processes46. Moreover, the stoichiometric approach gives 

the limiting conditions for a known gasification reaction rather than the true composition 

of the product gas.  

On the other hand, the non-stoichiometric method requires information only on the 

reaction temperature, pressure and an elemental composition of the feedstock, which may 
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be available directly from the ultimate analysis of the feed. The non-stoichiometric 

approach is suitable for reactions whose mechanism is complex or less clear, for example 

hydrogen production from biomass gasification in SCW.   

Both chemical equilibrium and phase equilibrium problems have to be solved for in the 

design of a SCW gasifier. Minimization of the Gibbs free energy can be one of the most 

effective means to solve these problems. This is based on the principle that at an 

equilibrium state, the total Gibbs free energy of a system is minimized subject to molar 

balance constraints. 

This approach has been successfully used for conventional thermal gasification in air i.e. 

oxygen47. The situation is different using supercritical water gasification than with 

conventional gasification. This is because in the equation of state for the mixture, the 

fugacity of each species is a relatively complex function of pressure, temperature and 

mixture composition. Thus, it is beyond the scope of most commercial software packages 

for equilibrium calculation48. The non-stoichiometric equilibrium based on Gibbs free 

energy minimization approaches used by researchers for supercritical water gasification 

is described as follows. 

Based on Gibbs free energy minimization, Lu et al.45 and Tang and Kitagawa48 

performed chemical equilibrium analysis for the production of hydrogen from biomass 

gasification in SCW. Yan et al.49 also used a non-stoichiometric approach to predict the 

performance of hydrogen production in SCW based on Gibbs free energy minimization.  

Let us consider a system of fixed mass with uniform temperature and pressure. In the 

absence of kinetic and potential energy, the energy balance is:  
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 dU = dQ – dW                                              (2.2) 

dU = dQ - PdV                                                                                          (2.3) 

For irreversible processes: 

dS ≥  
T

dQ
                                                                                                     (2.4) 

dQ ≤ T TdS                                                                                               (2.5) 

Eliminating dQ between equations (2.3 and 2.5): 

TdS– dU – PdV ≥ 0             (2.6) 

We know, 

              G = H – TS                                                                            (2.7) 

              H = U + PV                                                                            (2.8) 

The Gibbs function can be written as follows: 

            G = U + PV – TS                                                                                          (2.9) 

Differentiating both sides of equation (2.9) gives: 

           dG = dU + PdV + VdP – TdS – SdT                                                                (2.10) 

          dG – VdP + SdT = – (TdS – dU – PdV)                                                    (2.11) 

From equation 2.9 and 2.11, we get 

          dG – VdP + SdT ≤ 0                                                                                        (2.12) 

For a system with constant temperature and pressure, we get 

          dG ≤ 0                                                                                                    (2.13) 
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Equation 2.13 indicates that the Gibbs energy of a system always gets very small during 

an irreversible process. This brings the system close to equilibrium which reaches 

equilibrium at minimum Gibbs energy. 

At equilibrium, the total Gibbs free energy must be minimized. Therefore, 

dG = 0                                                                                                    (2.14) 

The equation of element conservation also should be satisfied at equilibrium: 

0

1
k

N

i
iki bna =∑

−

,  k = 1, 2, 3, …, M                                             (2.15) 

where aki = molar number of element k in compound i, and b° = total molar number of 

element in the initial reactant. 

The Gibbs free energy of a system involving several species, i with number of moles, ni 

in the mixture is:  

∑
=

=
Ki

i
iinG µ                                                                                                    (2.16) 

If at unity pressure, the reference state is set, the chemical potential for species i can be 

calculated as 

ii fRT
i

ln0 += µµ                                                                                         (2.17) 

At a certain temperature and pressure, the number of moles of each species in the system 

can be calculated by optimization, until the calculation reaches the minimum Gibbs free 

energy. 
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The fugacity coefficient of component i, φi, can be expressed as: 
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φ                                                     (2.18) 

The fugacity can be calculated from the relation as follows: 

P

f i
i =φ                                                                                                     (2.19) 

An equation of state is needed to evaluate the integral equation 2.18. The ideal gas law 

equation of state can be misleading providing erroneous results, as at high pressure the 

mixture is non-ideal. Due to non-idealities, different researchers have used the following 

equations of state to solve the above problem. 

1. Van der Waals equation of state 

2. Peng-Robinson (PR) equation of state 

3. Statistical association fluid theory (SAFT) equation of state 

4. Soave-Redlich-Kwong (SRK) equation of state 

5. Duan’s equation of state 

Antal in 1978 predicted complete gasification with hydrogen rich gas product by steam 

reforming of cellulose in a high excess of water above 600 °C50. Glucose is considered as 

the model compound of biomass for thermodynamic analysis to make the stoichiometry 

easier. Complete conversions of glucose to H2 or CH4 are the limiting steps of the 

reaction. 
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Formation of hydrogen 

2226126 1266 HCOOHOHC + →+     ∆n = +11 (2.20) 

Formation of methane 

   ∆n = +5 (2.21) 

The strong variation of reaction enthalpies of H2 and CH4 formation is attributed to the 

gas composition variation as a function of temperature. Equation 2.20 is endothermic 

while equation 2.21 is slightly endothermic45. From equation 2.20, it is seen that water is 

not only the solvent but is also a reactant with hydrogen in the water being released by 

the gasification reaction. According to Le Chatelier’s principle, for an endothermic 

reaction increased temperature favours more product formation. Thus the formation of H2 

predominates over that of CH4 at high temperatures (equation 2.20 is a stronger 

endothermic reaction than equation 2.21). The pressure dependence of the gas yields is 

far less pronounced. With increasing pressure, the yield of H2 decreases, whereas that of 

CH4 increases. In accordance with Le Chatelier’s principle, an increase in pressure due to 

decreasing volume causes the reaction to shift to the side with fewer moles of gases. Thus 

CH4 is preferred at higher pressures. As shown in equations (2.20) and (2.21), the 

formation of H2 needs more water than the formation of CH4. Hence, a higher 

concentration of biomass, which means a lower concentration of water, should support 

CH4 formation.  

Voll et al.51 and Tang and Kitagawa48 (Figure 2.3) provided a thermodynamic analysis of 

supercritical water gasification of glucose at temperatures above 500 °C. Their analysis 

by minimizing the Gibbs free energy considered the following chemical species: glucose 

246126 33 COCHOHC + →
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and H2O as reactants, and H2, CO, CO2, CH4, C2H6, C3H8, C2H4, and C3H6 as products of 

the reaction. Voll et al.51 found the molar fraction (mol of product per mol of feed) of 

glucose, C3H8, C2H4, C3H6 and solid carbon equal to zero whereas C2H6 was less than 10-

5 ppm. They observed that an increase in the temperature increased the molar fraction of 

hydrogen and carbon monoxide while it decreased the molar fraction of carbon dioxide 

and methane. They attributed this result to the higher temperatures favoring the methane 

reforming reaction. 

 

Figure 2.3: Supercritical water gasification of glucose at P = 28.0 MPa and feed 
concentration of 0.6 M glucose. Dashed line: Solid line: Voll et al.51, Tang and 

Kitagawa48. 

 

Tang and Kitagawa showed by calculation that at low temperatures, glucose gasification 

does not consume water but forms water48. They assumed the following reaction for 

glucose decomposition at lower temperatures: 
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OHCHHCOOHC 2426126 33392 +++ →       (2.22) 

The authors predicted methane reforming and water gas shift reaction at higher 

temperatures as follows:  

CH4 + H2O �  CO + 3H2             (2.23) 

CO + H2O � CO2 + H2               (2.24) 

Yan et al.49 developed a non-stoichiometric thermodynamic model based on minimum 

free energy to predict the performance of hydrogen production from biomass in SCW.  

Figure 2.4 illustrates the influence of temperature on gaseous products of glucose 

gasification in SCW.  

 
 

Figure 2.4: Effect of temperature on glucose gasification in SCW49 (Feed 
concentration 0.6 M;  P = 28.0 MPa). 
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The hydrogen and carbon dioxide yields increase as the temperature increases, while the 

methane yield decreases. The carbon monoxide yields increase at first and then decrease 

as the temperature increases, and it is much lower than that of the other species. 

Figure 2.5 illustrates the effect of pressure on the gaseous products of glucose 

gasification in SCW.  

 
Figure 2.5: Effect of pressure on glucose gasification in SCW49 (Feed concentration 

0.6 M;  T = 873 K). 

 

In each case, methane is in competition with hydrogen formation. The hydrogen yield 

slightly decreases while the methane yield slightly increases as the pressure increases. 

Carbon dioxide remains almost constant. The carbon monoxide yield is much lower than 
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that of the other gases. Therefore, pressure from 20 MPa to 35 MPa, has no great effect 

on the glucose gasification. 

Figure 2.6 illustrates the effect of concentration on gaseous products of glucose 

gasification in SCW. The hydrogen yield drops by 81%, and the methane yield increases 

by a factor of 20 as the glucose concentration increases from 0.1 to 1.0 M. A decrease of 

29% in the carbon dioxide yield and a small increase in the carbon monoxide yield were 

also predicted. 

 
Figure 2.6: Effect of concentration on glucose gasification in SCW49 (P = 28.0 MPa; 

T=873 K). 
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From the above thermodynamic analysis it is seen that high temperature, low pressure 

and low concentration is favourable for high hydrogen yield. Catalysts can minimize the 

activation energy and thus promote the yield of hydrogen at lower temperatures. 

2.5 Kinetics 

A kinetic analysis of the decomposition rate in SCWG is important to design the reactor 

system for the potential industrial implementation. Kruse and Gawlik studied the sub and 

supercritical conversion of biomass and concluded that the following simplified reaction 

pathways of liquefaction and/or gasification for the biomass (Figure 2.7)52 are occurring.  

 

 

Figure 2.7: Simplified  reaction scheme of liquefaction and/or gasification of 
biomass model compound52. 
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They showed two parallel paths of conversion; the left path is through a free radical 

reaction process which is preferred at supercritical conditions while the right path is 

through ionic reactions, preferred at subcritical conditions. From the properties of SCW 

as discussed before, it may be concluded that the intermediate decomposition products 

are dissolved in SCW as a result of its high solvent power for organic compounds. This  

allows faster reaction rates while minimizing the formation of tar or char52. 

The overall biomass gasification reaction in supercritical water for the production of 

hydrogen is represented as follows1: 

222 )2/2()2( HxyCOOHyOCH yx +−+ →−+     (2.25) 

where x and y are the elemental molar ratios of H/C and O/C in biomass, respectively. In 

addition to gasification, three major competing reactions occur during the gasification of 

biomass in supercritical water1 as follows: 

Steam reforming: 

22 )2/2()1( HxyCOOHyOCH yx +−+ →−+     (2.26) 

Water gas shift reaction: 

CO + H2O  CO2 + H2               (2.27) 
 

Methanation reaction: 

CO + H2  CH4 + H2O       (2.28) 

CO2 + 4H2 CH4 + 2H2O                           (2.29) 

As the primary objective of biomass gasification in supercritical water gasification is 

hydrogen production, reaction (2.28) and (2.29) must be restrained while CO reacting 
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with water to form CO2 and H2 is desired in reaction (2.27). Other than the products 

mentioned above, other intermediate products (i.e. char and tar) are also formed during 

SCW gasification. 

The detailed kinetics of biomass gasification, even using the model compound glucose is 

still unavailable due to multi-component intermediate reactants and products involved in 

this complex reaction mechanism. More than thirty components in the liquid product 

stream were detected during gasification of glucose in SCW53, 54. Kabyemela et al. 

studied glucose and fructose decomposition in sub and supercritical water at residence 

times to 2 sec in a tubular reactor, finding first order reaction kinetics. The main products 

of glucose decomposition reported were fructose, erythrose, glycolaldehyde, 

dihydroxyacetone, glyceraldehyde, 1,6-anhydroglucose, and pyruvaldehyde. The 

reactions involved were three types, namely isomerization, bond cleavage, and 

dehydration. On the other hand, Lee et al.13 studied the conversion of glucose without 

catalysts in a tubular reactor at 480-750° C, 28 MPa, 10-50 sec. They found that below 

600 °C the hydrogen yield increases with increased residence time when gasifying 

glucose in supercritical water. They did not study the liquid phase in detail, rather 

performed a kinetic analysis of COD (chemical oxygen demand) destruction assuming 

pseudo first order reaction during the gasification of glucose in supercritical water. Their 

kinetic investigation leads to the following first order reaction rates: 

Glucose as a function of its concentration, Cg: 

gg C
RT

r )
9.3

6.67exp(10 26.009.3 ±−=− ±       (2.30) 

The COD as a function of the corresponding concentration Cc: 
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cc C
RT

r )
9.3

0.71exp(10 23.095.2 ±−=− ±       (2.31) 

Jesus et al.55 developed a model for corn silage using a mathematical approximation 

based on zero-order kinetics as follows:  

])[101.6exp(10)(min)
][

][9.47
exp(10 38.21-2 KT

KRT

KJ
Y −− ×+= τ   (2.32) 

Jin et al.56 studied the TOC (Total organic carbon) kinetics of oxidation of food wastes. 

They found a fast reaction rate at an early stage of reaction (within 50 seconds) and slow 

reactions afterwards.   

2.6 Challenges 

Although the SCWG process seems to be very efficient for hydrogen production, some 

physical limitations and/or technical difficulties have been encountered. Due to the severe 

process conditions (typically: T = 600 °C, P = 300 bar and a corrosive environment), 

experimental investigations on SCWG is expensive and time consuming. Chars from 

non-converted biomass and tars from unwanted reaction products are two major 

challenges in SCWG. Chars are linked to the conversion yields of the process, while tars 

are usually formed by pyrolysis of organic molecules. Because of sedimentation, these 

char and tars plug continuous reactors after several hours of running, while also limiting 

the amount of hydrogen production. Although SCWG can lower the amount of chars and 

tars compared to low pressure processes, this drawback has to be carefully considered 

because of the rather small volume of laboratory reactors and tubing. Antal et al.16 

produced less than a few percent of such residual compounds in SCWG, whereas Corella 
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and his coworkers57 observed 10-20% chars and 4% tars in atmospheric pressure steam 

gasification. 

Three major limitations considering the material of reactor construction should be 

considered; i.e. corrosion, pressure resistance and hydrogen aging. Antal et al.16 showed 

that the inner walls of nickel alloy reactors were strongly corroded by the reaction. Only 

specific geometries and specific materials can be used due to the high pressures and 

temperatures used in SCWG. As an example, it is impossible to build whole titanium 

reactors with high corrosion resistance by comparison to classical stainless steels, due to 

the low allowable stress (pressure resistance) of titanium. The contact of metallic 

materials with hydrogen gas is well known for weakening the strength (pressure 

resistance) of the used materials. Combined with the high pressure constraint, hydrogen 

aging can limit the duration of use of reactors and tubing. In this research a 600ml 

Hastelloy C-276 reactor was utilized to withstand these difficulties while preventing 

plugging from chars and tars. 

Separation of hydrogen from the other formed gases, especially carbon dioxide, is 

another relevant problem. Matsumura et al.58 proposed to mix the formed gas and sub-

critical water, which dissolves most of the carbon dioxide.  

2.7 Effects of process parameters 

Despite the above mentioned challenges, experiments conducted by various research 

groups have revealed that the influence of process conditions (temperature, pressure, 

residence time, concentration of the organics, catalysis) can control the yields and 

selectivity of the desirable gas products.  
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2.7.1 Effects of temperature 

Perhaps the reaction temperature is the single most important parameter that influences 

the performance of SCW gasification. As discussed earlier in the thermodynamic and 

kinetics analysis sections (Figure 2.4), it was seen that with increased temperature, 

production of hydrogen yield was increased and the gasification efficiency and 

destruction of COD was also increased (Figure 2.8). In the absence of a catalyst, 

temperature has a significant effect on the specific yield of gasification1. Peterson et al.12 

divided the gasification process in pressurized water into three groups depending on the 

primary products of gasification. 

In the high temperature range (500-800oC) the gasification efficiency in SCW is high due 

to the high reactivity of biomass59. For these high temperatures, catalysts may not be 

required as hydrogen rich gas is produced.  

Table 2.2 Division of hydrothermal reaction by temperature of reaction12 
Temperature range Catalyst  Product yield 

High temperature (>500oC) No catalyst* Hydrogen rich gas 

Medium temperature (Tc to 
500oC) 

With/without 
catalysts 

Methane rich gas 

Low temperature (<Tc) With catalysts 
Other gases from smaller 
organic molecules 

* catalysts may be used if needed, Tc – critical temperature 

One major shortcoming of the high temperature process is that thermodynamically high 

temperature processes are less efficient than low temperature ones. To sustain the 

process, external energy may be needed. In this respect, low temperature (300-600oC) 

processes are more efficient, but the unaided gasification in this temperature range may 
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be difficult to achieve. Hence, the use of a catalyst becomes essential for low temperature 

processes. In addition, a lower temperature is more suitable for methane production. 

The gaseous products from SCWG depend on the chemical reactions involved and their 

rate. The product gas composition would be governed by the chemical equilibrium of the 

reactions involved. The kinetic rate of any Arrhenius type equation increases with 

temperature55, 60.  Equations (2.30, 2.31 & 2.32), developed for SCW gasification also 

predict that the reaction rate constant increases with temperature. Therefore, the overall 

gasification yield increases with temperatures and also with time. 

As shown in Figure 2.8 by Lee et al.13 for glucose gasification at 28MPa, the hydrogen 

and carbon dioxide yield increases with temperature. Carbon monoxide increases with 

temperature at low temperature, but after reaching a maximum it drops rapidly. Figure 

2.8 also shows that the carbon, hydrogen, and oxygen conversion gasification efficiencies 

increase with the reaction temperature. The gasification efficiencies are defined as the 

percentage of the total moles of C, H or O atom in gaseous products per moles of C, H or 

O atom of glucose feed. At 700oC, the carbon gasification efficiency reaches 100% 

attributing complete conversion of glucose to product gas. Interestingly, the hydrogen 

gasification efficiency is higher than 100% due to the contribution of the supercritical 

water to the hydrogen in the product gas. This helps confirm the role of SCW that serves 

as both a hydrogen source as well as a solvent for glucose gasification. 
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Figure 2.8: Effect of reactor temperature on 0.6 M glucose in supercritical water at 
28 MPa and 30 s reactor residence time: (a) gas yields, (b) molar fractions of 

gaseous products, (c) gasification efficiencies, (d) glucose and COD conversion13. 

 

Hao et al.14 noticed a very large effect of temperature at 25 MPa. A 167% increase in the 

carbon conversion efficiency (CE), and more than 300% increase in the gasification 

efficiency (GE) was observed with a 30% increase in reaction temperature (500 to 

650oC). They also noticed that the hydrogen production increased by 46% and the CO 

was reduced by 74%. Whereas Lee et al’s13 results showed that both hydrogen and CO 

increase with temperature but beyond 660oC, the CO yield dropped below that of H2. 

Lee et al.13 inferred that a significant fraction of the glucose is converted to carbon 

monoxide and remains stable between temperatures 510-660oC. Above 660oC, carbon 
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monoxide undergoes the water gas shift reaction and other intermediate products are also 

converted to hydrogen. According to most researchers 13, 53, 61, 62, glucose is first broken 

down into several water-soluble intermediates before being converted to final gaseous 

products. To explain the effect of temperature for glucose conversion in SCW Lee et al.13 

proposed the following mechanism: 

Biomass → water-soluble intermediate → gases (mostly CO) 

CxHyOz → CmHnOp + H2O → CO + H2                                             (2.33) 

CO later undergoes the water gas shift reaction forming additional hydrogen. 
 

CO + H2O → CO2 + H2                                                     (2.34) 
 

Lee et al.13 summarized that the rate of CO formation is faster than that of the water gas 

shift reaction at low temperatures. However, at higher temperatures the WGS reaction is 

very fast which results in an increase in hydrogen and a net reduction in CO. They found 

that above 650 °C, CO production was reduced due to the water-gas shift reaction (Figure 

2.8). Some of the intermediate products also undergo reaction that produces hydrogen 

and carbon dioxide. 

CmHnOp + H2O → CO2 + H2                                           (2.35) 

From reactions (2.34) and (2.35) it is evident that with a rise in temperature, the carbon 

dioxide and hydrogen yields increase.  

Holgate et al.53 conducted supercritical water gasification in a tubular reactor in the 

temperature range 425-600 °C at 24.6 MPa with 5.1-9.9 s reaction times. In contrast to 

the calculated chemical equilibrium, at 550 °C the production of CO was about two mol 
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per mol glucose feed. About the same yield of CO2 and H2 was observed. However, at 

600 °C they found the CO content was minimal and about 10 mol H2 and 6 mol CO2 

were formed per mol of glucose.   

On the other hand, the results from Kersten et al.63 from the University of Twente are 

different from Holgate et al. Kersten et al. investigated the gasification of glycerol, 

glucose, and pinewood in supercritical water in quartz capillary reactors with internal 

diameters of 1mm. Over 700 experiments were conducted in the temperature range 400-

800 °C, at 5-45 MPa, and 1-20wt% organic feedstock concentration. Below 650 °C, very 

low carbon conversion to gases was observed being a strong function of the temperature. 

Focusing on the results with glucose, an interesting finding was that CO was the main gas 

product at 600 °C. The yields of hydrogen and CO2 increased with temperature, with CO 

still being the main product at 650 and 700 °C. At 800 °C, H2 and CO2 strongly increased 

with a corresponding decrease of CO caused by the water-gas shift reaction. Complete 

conversion of glucose was achieved at much diluted solution (1wt %) at 650 °C or above.  

Methane, which is another important product of SCW gasification, could be high in the 

intermediate temperature range of 374-500oC (Table 2.2). Methane is very stable in 

SCW, and is not converted into any smaller molecules13. From Figure 2.4 and 2.5 it was 

shown that with an increase in temperature methane production decreases. But Lee et 

al.13 found an increase in methane formation with an increase in temperature (Figure 2.8). 

Tar yield (in the liquid effluent) is also affected by the temperature during SCWG. At low 

temperatures (T<Tc), the tar yield is high with low gas production59. A yellowish and thin 

layer of a dark brown, oil-like tar was observed in the liquid effluent at low temperatures 



 

 

 

39

(<600oC)3, 14. But at 650oC, clear water was observed3, 14. Lee et al.13 observed the liquid 

product was almost red at 510oC, while it varied to dark brown, orange, yellow as the 

temperature increased up to 600oC. They found the liquid product clear at 680oC.  

Total organic compound (TOC) analysis is used to measure the liquid effluent (tar) 

quantitatively. Chemical oxygen demand (COD), an alternative to TOC in the liquid 

effluent, was used by Lee et al.13 The decomposition of glucose and destruction of COD 

highly increased and thereby reached 100% conversion at higher temperatures (>700oC).  

At low temperatures (~6000C) Lu et al.7 also observed yellowish liquid (tar) while 

gasifying sawdust in SCW. They found that the amount of TOC in the liquid at 650oC is 

much lower than TOC at 600oC.  

In summary, it can be concluded that the effect of temperature is significant particularly 

in the temperature range of 500-700oC12 and the total gas yield increases with an increase 

in temperature while TOC in the liquid product decreases. The yield of hydrogen, and 

carbon dioxide is higher at high temperatures12.  

2.7.2 Effects of reaction pressure 

Conducting over 200 experiments Kersten et al.63 found the pressure dependence range of 

13.8 to 41.8 MPa on reaction products is insignificant. Hao et al.14 observed no great 

effect of pressure on gasification efficiency and the fraction of gas product from 25MPa 

to 30 MPa at temperatures of 500 and 650 °C.  

On the other hand, Lu et al.7 found a 7% increase in the hydrogen yield for a 65% 

increase in pressure, although the unconverted TOC increased with pressure. Gasification 
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efficiency (GE) and carbon conversion efficiency (CE) are not monotonic functions of 

pressure. Over a wider range of pressure, GE and CE seem to be independent of pressure.  

2.7.3 Effects of residence time 

Residence time has an important effect on the conversion of biomass, especially at the 

beginning of the reaction.  However, this time depends on many factors including 

reaction temperature, biomass type and the reactor vessel type.  

Jesus et al.60 correlated results from the gasification of corn silage, with time at 700 °C 

and 25 MPa. A linear relationship between carbon conversion and residence time was 

developed. 

YC =Kτ =0.11τ (R2=1)       (2.36) 
 

Hao et al.14 studied the effect of residence time from 0.5 to 3.8 min on SCW gasification 

of 0.4 M glucose at 650oC and 25 MPa. GE increased from 93.6% to 117.6% and CE 

increased from 77.5% to 98.7% with increasing residence time from 1.7 to 3.7 minutes. 

In their experiments, a minimum of 3.6 minutes resident time was needed for reasonable 

gasification efficiency.  

Lee et al.13 examined the effect of residence time for 0.6 M glucose gasified in SCW at 

28 MPa, 600 °C and 700oC. At 700 °C the yields of all the gases remained almost 

constant except at the shortest residence time, 10.4 s. However H2 and CH4 yields 

increased with residence time at the lower temperature, 600oC. A slight decreasing 

tendency of CO was observed with increasing residence time.  
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Lu et al7 found the yields of H2, CO2 and CH4 increased with residence time. They 

gasified wood sawdust in SCW at 25 MPa, 650oC within the range of 9 to 46 second. The 

gasification efficiency (GE) and carbon conversion efficiency (CE) increased while the 

unconverted TOC in the liquid effluent decreased with increasing residence time. These 

data suggest that longer residence times were favorable for biomass gasification.  

2.7.4 Effects of solution concentration 

Solid biomass and water are the main components of the feedstock for SCWG. The solid 

concentration in the feedstock could be a major design issue for the commercial 

application of SCWG.  

Gasification of glucose as a model biomass in SCW, Matsumura et al.59 found that the 

yields of H2, CH4 and CO2 decrease while CO increases with an increase in glucose 

concentration in the feedstock. Hao et al.14 showed that the percentages of H2 and CO2 in 

the total product gas increases with increasing glucose concentration in the range of 0.1 

M to 0.9 M, but that CO and CH4 fractions were reduced while the GE decreased. 

Kersten et al.63 found that at 700 °C and 30 MPa, H2 and CO2 decreased with initial 

glucose concentration from 1 to 7wt% while CO and CH4 remained almost constant. 

Nearly complete gasification was achieved with the lowest concentration at 650 °C or 

above. 

The experiments with real biomass gasification in SCW1, 7 also showed that both 

gasification efficiency (GE) and carbon conversion efficiency (CE) decreased with an 

increase in feed concentration. The yields of H2, CH4 and CO2 also decreased with feed 

concentration, while the yield of CO increased.  
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2.8 Catalysis as a solution 

Without catalysts, high activation energy is needed for the various discussed reactions to 

increase the selectivity of hydrogen production. From the earlier discussion (section 

2.6.1) it is seen that high temperatures (600 °C and above) are favourable for the 

production of hydrogen rich product gas while moderate temperatures ( 500 °C) favour 

the production of methane in SCW gasification (Table 2.2). Since catalysts lower the 

activation energy, hydrogen rich gas production is possible at lower temperatures. The 

biggest obstacle to the development of this technology is the high costs of equipment and 

operation. Therefore, research on the catalytic supercritical water gasification is gaining 

significant attention.  

As a solution, catalysts must increase the rate of a desired chemical reaction (activity) 

and guide the product distribution towards those desired (selectivity). Therefore, a 

catalyst may still be useful in the case of unfavourable thermodynamics, if reaching the 

chemical equilibrium is not the goal12.  

For SCWG, catalysts should not only decrease the amount of tars and chars formed, but 

also increase the proportion of hydrogen in the synthesized gas. Since the chemical 

equilibrium composition is not influenced by the catalyst, increasing the rate of a 

gasification reaction with a catalyst is only useful if the thermodynamics are favourable. 

The primary objective of biomass gasification at moderate temperatures ( 500 °C) is to 

produce either a gas with a medium calorific value (i.e., methane-rich) or to produce 

hydrogen12. At temperatures below 500 °C, catalytic effects from the reactor wall is 
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insignificant12. As summarized by Peterson et al.12, obtaining the thermodynamic 

equilibrium gas composition below 600 °C is not possible due to the following reasons: 

1. Glucose decomposed in SCW to reactive intermediates such as 5-HMF can 

form polymeric materials of very low reactivity. 

2. Formation of methane by decarboxylation of acetic acid or by decarbonylation 

of acetaldehyde may occur. A secondary methane formation by the hydrogenation of CO 

and/or CO2 can also happen.  

3. Although not a thermodynamically stable product, some organic intermediates 

may form solid coke (char), which has a very low reactivity at these temperatures. 

The complete conversion of the biomass feed by catalysis depends on the catalyst's 

ability to gasify reactive intermediates that are rapidly formed from the feed molecules by 

hydrolysis and dehydration. To avoid the formation of polymeric materials and 

eventually char, the gasification step must be very fast. Two competing reaction 

pathways can be followed by these reactive intermediates; firstly formation of gaseous 

products (CO, CO2, H2), and secondly formation of oils and finally char64.  

A good catalyst must rupture the C–C bond very fast and at the same time dissociate H2O 

into H+ and OH- radicals on the catalyst surface. Adsorbed CxHyOz fragments can then 

combine with these radicals and release CO and CO2. The adsorbed hydrogen atoms from 

the cleaved CxHyOz fragments and from water splitting combine to form H2. A good 

gasification catalyst must exhibit these minimum mechanistic features. Additional 

features include fast equilibration of the water–gas shift reaction, and the hydrogenation 

of CO and CO2 to CH4 and H2O. Depending on the selected catalyst, either a hydrogen-

rich or a methane-rich gas is produced by the SCW gasification process. 
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2.8.1. Homogeneous catalysts 

Alkali metal catalysts (Na2CO3, KHCO3, K2CO3, NaOH, etc) for SCWG of biomass 

mainly improve the water-gas shift reaction. SCWG of pyrocatechol by Kruse et al.65 

reported that increasing the content of KOH from 0 to 5%, the production of H2 and CO2 

increased while the CO yield was smallest. This phenomenon was attributed to the 

catalytic effect on the water-gas shift reaction in the process by adding KOH. They 

reported similar activity on the gas-phase composition when compared with LiOH but to 

a smaller extent. Garcia Jarana et al.66 reported that the water-gas shift reaction is 

accelerated by adding KOH while conducting SCWG of industrial organic waste using 

KOH. The water gas shift reaction was described as follows: 

CO + H2O � HCOOH � CO2 + H2                                               (2.37)  

Conducting SCWG experiments on n-hexadecane and lignin with NaOH (400 °C, 

30 Mpa) Watanabe et al.15 reported that the addition of NaOH makes the output of H2 

four times higher than that of being without NaOH. They found the production of coke is 

also effectively inhibited. Kersten et al.63 reported that adding Na+ or K+ cations as an 

assistant to Ru/TiO2 catalyst for SCWG can promote the water-gas shift reaction, 

although the carbon conversion rate was not affected. Using K2CO3 and Trona 

(NaHCO3·Na2CO3·2H2O) as catalysts by Yanik et al67 it was found that the H2 yield 

increased significantly for the SCWG of lignocellulosic materials (cotton stalk and 

corncob) and tannery waste. Sinag et al.68 gasified glucose in SCW using 0.5wt% K2CO3. 

At 1oC/min and 3oC/min heating rates, the hydrogen yield was higher with K2CO3 than 

that with Raney nickel.  The K2CO3 catalyzed water-gas shift reaction on H2 production 

can be explained through the formation of HCOO−K+: 
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K2CO3 + H2O → KHCO3 + KOH                                    (2.38) 

KOH + CO → HCOOK                                               (2.39) 

Reaction of formate (HCOO−K+) with water forms hydrogen. 

HCOOK + H2O → KHCO3 + H2                                              (2.40) 

Formation of CO2 and K2CO3 completes the catalytic cycle 

2KHCO3 → CO2 + K2CO3 + H2O                                                        (2.41) 

From the above discussion it is clear that alkali catalysts are important to achieve high 

hydrogen yield, but may cause corrosion, plugging or fouling16, 68. The recovery and 

reuse of homogeneous catalysts is also difficult. 

2.8.2. Heterogeneous catalysts 

Heterogeneous catalysts have the advantages of high selectivity, recyclability, and 

environment-friendliness over homogeneous catalysts. Metals give a high level of carbon 

conversion to gas at a relatively low temperature59.  

Due to the relatively low cost of nickel catalyst and its wide application in many 

petrochemical industries, many researchers have introduced it into supercritical water 

gasification reaction systems to gain a better understanding of its hydrothermal activity 

and stability. Other researchers use metals like Ru, Rh, Pt, Pd, Cr, W; although Pt, Pd, Cr, 

W have shown low activity69.  Savage and Resende25 reported that nickel and copper 

provided higher gas yields. They summarized the effect of metals on SCWG as shown in 

Table 2.3. 

 



 

 

 

46

Table 2.3: Summary of the catalysts used in SCWG25 

Catalyst Reactions promoted Comments 

Nickel 
Tar cracking, water gas shift, 
methanation, hydrogenation 

Increases gas yields substantially 

Raney nickel Same as Ni Provides colorless aqueous phase 

Ruthenium Actively breaks C−C bonds Maintains activity for long time 

Rhodium Effective to decompose benzene rings High activity for decomposition 

 

Stable supports for these active metals includes ZrO2 (monoclinic), α-Al 2O3, TiO2 (rutile), 

and carbon12. With many kinds of real compounds (lignin, cellulose, etc) for gasification 

in supercritical water, Ni catalysts have shown high activity. However, due to the 

adsorption of intermediate products on the catalyst surface from the process, the catalyst 

deactivates70. Although Elliott69 reported that only reduced nickel possesses catalytic 

activity, Savage and Resende25 found that exposure of nickel wires to supercritical water 

did not reduce the activity of H2 production. Therefore the deactivation may be due to the 

formation of coke or adsorption of intermediate products on the catalyst surface.  

Furusawa et al.23 gasified lignin in SCW using a Ni/MgO catalyst. They found that with 

an increase of the Ni metal surface area, carbon gasification increased. The best catalytic 

performance observed used a 10 wt% Ni/MgO (600 °C) under the reaction conditions 

tested. Minowa et al.71 showed the importance of Ni catalyst on the steam reforming and 

methanation reactions. Sinag et al.68 investigated  Raney nickel for degradation of 
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glucose in SCW at 500 °C, 30 MPa and found both the intermediate phenols and furfurals 

were reduced and the gas yield increased in the presence of catalysts. 

Byrd et al.18 evaluated the Ru/Al2O3 catalyst for SCWG of glucose at high temperature 

(700 °C). They reported high yields of H2 with low CO and CH4 yield at high 

temperature and low glucose concentration. In the subsequent investigation of gasificaton 

of glycerol in SCW72, the high activity of Ru/Al2O3 for C–C bond scission was shown. 

The catalytic mechanism can be explained as: hydroxyl groups containing oxygenated 

compounds adsorb to the catalytic Ru surface predominantly through one or more oxygen 

atoms. On the catalyst surface, the reactant undergoes dehydrogenation first, followed by 

subsequent cleavage of C–C or C–O bonds. Cleavage of C–C bonds leads to the water-

gas shift reaction and possible methanation reaction to form synthesis gas.  Cleavage of 

C–O bonds gives organic acids and alcohols.  

High H2 selectivity using a Ru catalyst was shown by Osada et al.19 at low temperature 

(400 °C) for SCWG of lignin and glucose. When catalyzed at the low temperatures, the 

intermediate compound formaldehyde was decomposed to CH4, CO2 and H2 rapidly. 

However, without a catalyst, formaldehyde was converted to methanol and CO2. A wide 

range of heterogeneous catalysts for SCWG was investigated by Sato et al.73 They found 

that the activity order is: Ru/γ-Al 2O3 > Ru/C > Rh/C > Pt/γ-Al 2O3, Pd/C and Pd/γ-Al 2O3. 

Although Ru shows very good activity, even a trace amount of S can cause Ru catalyst 

poisoning20. This trace amount of S can exist in Ru/C catalysts in the form of sulphur and 

sulphate ions20. Sulphur most likely blocks the sites necessary for C-C bond scission and 

for methanation. 
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ZrO2 was investigated by Watanabe et al.15, 74 for the SCWG of glucose and lignin. They 

reported that ZrO2 not only reduced CH4 production but also increased the H2 yield, 

although the catalytic effect was less than NaOH. Activated carbon such as spruce wood 

charcoal, macadamia shell charcoal, coal activated carbon and coconut shell can also be 

used for catalytic SCWG of organic feedstocks. Matsumura and co-workers3 showed that 

activated carbon not only increased carbon gasification efficiency, but also improved the 

water-gas shift and methanation reactions. However, deactivation on carbon gasification 

occurred after 4 h and water-gas shift reaction occurred after 2 h. Antal et al.16 reported 

that steam reforming of biomass laden gel over a carbon catalyst can produce a gas 

composed of hydrogen, carbon dioxide, methane, carbon monoxide, and traces of ethane.  

Comparing with the noble metals, Ni is very inexpensive; therefore it is more suited for 

large-scale hydrogen production by biomass gasification. Ni has shown higher activity 

and performance than alkali catalysts, and activated carbon.  Ni provides higher gas yield 

than Ru and Rh25. Moreover, if Ni is doped with other metals like cerium or lanthanum, 

the stability and reactivity can be potentially enhanced. 
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Chapter 3 

Supercritical water gasification and partial oxidation of glucose: Effect 

of Ni/Al 2O3 catalysts on gaseous products and chemical oxygen demand 

(COD) destruction 

In this chapter, gasification and partial oxidation of glucose was conducted with and 

without catalysts at various temperatures in supercritical water. Part of this chapter is 

reproduced from the published article by the author: Effect of nickel loading on hydrogen 

production and chemical oxygen demand (COD) destruction from glucose oxidation and 

gasification in supercritical water75 with permission from International Journal of 

Hydrogen Energy 35 (10), 5034-5042, 2010; Copyright [2009] Elsevier Ltd.  

 

 

3.1 Introduction 

With increasing public awareness about the growing environmental impacts and 

depletion of fossil fuels, hydrogen production from biomass is considered an effective 

solution towards green energy production. The CO2 produced from gasification is 

balanced by photosynthesis through biomass growth providing a carbon neutral approach. 

However, the water content of biomass is generally high, in the range of 90% or above. 

Thermochemical conversion processes require prior drying which consumes a large 

amount of energy. Supercritical water gasification (SCWG) can be a promising 

alternative to the pyrolysis of wet biomass or incineration of aqueous organic waste 
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streams.  Supercritical water oxidation (SCWO) is an emerging technology to treat 

hazardous wastewater streams37, 76.  SCWG is also used in producing green gases such as 

hydrogen11. Supercritical water (SCW) can dissolve most organic substances and gases 

and has low viscosity and excellent mass transfer ability8. Above the critical conditions of 

water (374 °C, 22.13 MPa) all organic compounds are present in a single dense fluid 

phase, minimizing mass-transfer resistance and facilitating rapid reaction rates. In the last 

decades, there have been a number of studies carried out on the gasification of wet 

biomass3, 61 7, 16, 23 and aqueous organic wastes66, 77, 78 in supercritical water. Enhancement 

of biomass conversion through oxidation in supercritical water53, 79 or partial oxidation11, 

15, 80 has also been studied. The gaseous product composition from supercritical water 

gasification of glucose significantly depends on the reactant concentration61 and 

temperature3, 13, 53. 

Catalysts play an important role in hydrogen production from biomass gasification in 

supercritical water by increasing the hydrogen yield, reducing tar and char formation, and 

affecting the matter gasification efficiencies. Watanabe and co-workers15 studied the 

effect of various catalysts on the gasification of biomass model compounds in a batch 

reactor at a temperature range of 400–440 °C and observed that the yield of H2 from n-

C16 and lignin with zirconia was twice that without a catalyst at the same conditions. The 

H2 yield with NaOH was 4 times higher than that without catalyst. However, Yu and 

Antal61 reported that 95% or higher gasification efficiency in supercritical water requires 

a reaction temperature above 600 °C. Courson et al.24 and Wang et al.81 reported that 

nickel catalysts cracked tar and enhanced the water–gas shift, methanation, and 

hydrogenation reactions. From an economic and energy efficiency point of view, high 
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gasification efficiency at low temperatures with higher hydrogen yields is favorable. 

Nickel has a high melting point of 1453 °C and is a readily available inexpensive metal 

widely used in the petrochemical industries, making it a reasonable choice for 

examination of supercritical water gasification and oxidation. Homogeneous catalysts 

such as KOH and NaOH, which can easily dissolve in SCWG to produce hydrogen-rich 

gas, can cause corrosion of the reactor wall16, 67. Minowa et al.71 reported that reduced 

nickel catalyst enhanced the gasification of cellulose and the water gas shift reaction in 

hot compressed water. From an economic perspective, lower temperature gasification that 

coincides with maximum hydrogen and methane rich fuels is favorable11. These findings 

motivated us to study nickel as a catalyst to obtain hydrogen-rich gas from the 

gasification of biomass and partial oxidation of ungasified products (char and tar) in 

supercritical water. 

In this study, we demonstrate a new approach of introducing hydrogen peroxide as an 

oxygen source after 15 min of reaction time for glucose gasification in supercritical water 

at relatively low temperatures i.e. 400–500 °C. Hydrogen peroxide can help to 

decompose intermediate products that are not gasified during supercritical water 

gasification (SWG) in the first 15 min of the reaction time. The yield of hydrogen is 

expected to increase via CO formation by partial oxidation of the intermediate products 

as well as char and tar formed prior to H2O2 injection. In this work, different loadings of 

nickel on theta(θ) alumina catalysts were synthesized via an impregnation method22 and 

were subsequently tested for supercritical water gasification (SCWG) and supercritical 

water partial oxidation (SWPO) at a temperature range 400, 450, and 500 °C to 

investigate catalysis of hydrogen production. 
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3.2. Materials and methods 

3.2.1. Materials 

Nickel nitrate hexahydrate (NiNO3·6H2O), reduced commercial nickel on silica alumina 

and glucose were obtained from Sigma–Aldrich (Oakville, Ontario, Canada). Hydrogen 

peroxide aqueous solution (50% H2O2 solution) was obtained from EMD Chemicals Inc 

(Gibbstown, NJ, U.S.A). De-ionized water was obtained from a compact ultrapure water 

system (EASY pure LF, Mandel Scientific co, model BDI-D7381). For catalyst 

preparation, γ-Al 2O3 pellets with 3 mm average particle diameter, 198 m2/gm BET 

surface area and pore volume of 0.421 cm3/gm received from Aldrich (Mississauga, 

Canada).  

3.2.2 Catalyst preparation  

θ-Al 2O3 pellets were used as catalyst supports for catalyst synthesis. Because it was 

found to be stable in SCW. On the other hand γ-Al 2O3 was found to be dissolved in SCW. 

It may be due the defects in crystalline structure of γ-Al 2O3
82. θ-Al 2O3 has monoclinic 

symmetry in catalyst structure82. In addition, converting γ -Al2O3 to θ-Al 2O3 pore size 

increased which allows better impregnation of active metals, and penetration of bulky 

intermediate products formed by SCWG.  Calcining γ-Al 2O3 to 1050 °C at a rate of 10 °C 

per min converts γ-Al 2O3 to θ-Al 2O3. Catalyst synthesis by the incipient impregnation 

method was described elsewhere22. For a typical synthesis, the required metal salt 

solution was prepared in a volume of pure water corresponding to 130 vol% of pore 

volume of alumina (0.248 cm3/gm, measured by Micromeritics ASAP 2010) used for 

catalyst support. The required amount of nickel is calculated from the nickel present in 
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NiNO3·6H2O. For example, preparing one gram 18wt% Ni on alumina catalyst requires 

0.18 gram nickel that can be obtained from 0.89 gram NiNO3·6H2O. All alumina was 

dipped into the solution at once for uniform metal dispersion. The catalysts was then 

placed in a beaker which was then placed in another closed beaker of 10 vol% NH3-H2O 

solution for ammonia vapor treatment for 10 min at 60 °C inside the oven. Any metal salt 

on the catalyst support was converted to ammonium salt by ammoniacal treatment which 

increases the activity and Ni dispersion83. Ammoniacal treatment converts the metal salt 

anion to ammonium salt. The NH3-H2O vapor treated catalysts were then taken out from 

the closed beaker and heated from 60 to 120 °C at rate of 1°C, then to 250 °C at a rate of 

1.5 °C. In this step most of the ammonium salts attached to the catalysts are removed by 

sublimation. Hydrogen reduction and thermal treatment at 600 °C for 2 h was performed 

afterwards, in a stream of 10 vol% H2 diluted with N2 with a rate of 6 L/h from room 

temperature to 600 °C at 3 °C/min. 

The reduced catalysts were weighed to measure the actual loading of nickel by the 

difference between support alumina and nickel loaded catalyst. In our synthesis the actual 

loading was slightly less than the calculated loading. For instance, the calculated 8 wt% 

nickel on alumina was actually approximately 7.5 wt% nickel on alumina, calculated 

12 wt% loading was found 11 wt% and 20 wt% loading was 18 wt%. Due to diffusion 

limitations, impregnation was repeated more than once in order to achieve high nickel 

loadings. For example, while the 7.5 wt% nickel on θ-Al 2O3 was loaded in one step using 

incipient impregnation, the 18 wt% nickel was synthesized in three steps wherein the 

reduced 7.5 wt% nickel/alumina was further impregnated to approximately 14 wt% 

nickel/alumina and then to 18 wt% nickel/alumina. The BET (Brunauer-Emmett-Teller) 
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surface area, pore size distribution, and pore volume were determined from nitrogen 

adsorption- and desorption isotherm data obtained at −193 °C in a constant-volume 

adsorption apparatus (Micromeritics ASAP 2010) using 99.995% pure N2 gas obtained 

from Praxair (Oakville, Canada). The prepared samples were degassed at 150 °C for 

5 hour before measurements.  Table 3.1 portrays the summery of surface area, pore size 

and pore volume of gamma (γ) and theta (θ) alumina and synthesized catalysts. 

Table 3.1. Physical properties of the synthesized catalysts. 

Sample 
BET surface 

area (m2/g) 

Average pore 

size (nm) 

Micropore 

volume (cm3/g) 

γ-alumina 198 8.5 0.42 

θ-alumina 57 17.4 0.25 

7.5 wt% Ni/θ-alumina 51 14.0 0.18 

11 wt% Ni/θ-alumina 49 15.8 0.19 

18 wt% Ni/θ-alumina 46 10.2 0.12 

63 wt% Ni/silica–alumina 

commercial catalyst (powder) 
190 7.54 0.27 

 
 

3.2.3 SCWG Apparatus 

Figure 3.1 portrays a schematic diagram of the experimental SCWG setup. Experiments 

were performed in the main reactor body which was obtained from Autoclave Engineers, 

Erie, Penna, U.S.A. The reactor was constructed of Hastelloy C-276 with a capacity of 

600 ml. The batch reactor allows for sampling of gas and liquid samples throughout the 

experiments. The reactor was heated with a 1.5 kW electrical furnace that surrounded its 

main body supplied by the same manufacturer.  
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Figure 3.1: Schematic diagram of the SCWO batch unit. 

 

3.2.4 Experimental procedures 

The experimental procedure consists of several steps started by opening and washing the 

reactor body thoroughly with distilled water to remove any residue from previous 

experiments. The catalyst and 70 ml of de-ionized water were added to the reactor, after 

which it was closed and purged with helium gas at a constant pressure of 0.2 MPa for 

20 min to drive away any air and oxygen present in the system. After purging with 

helium, the outlet valve (VO1) was closed and the pressure in the reactor increased to 

0.7 MPa to prevent water evaporation during the heating phase. The reactor was then 

heated to the desired temperature, and the pressure was increased accordingly to about 

22.8 MPa. After reaching the desired temperature, the reactor was left for 5 min to 

stabilize. Subsequently, the feed was injected into the reactor by employing a syringe 

pump (Model 100 DX, Lincoln NE, USA). As soon as the feed injection was complete, 
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the reaction time (t) was started. Injection of feed solution increased the pressure to about 

28MPa. After 15 min of reaction time, a known amount of hydrogen peroxide was 

injected into the reactor using the syringe pump. After 30 min, the valve (VO1) was 

opened to allow for effluent gases to pass through the condenser (double pipe H/E), 

where it was cooled and then depressurized using a high pressure reducing regulator 

(KHP series Solon, OH, USA). The cooled depressurized effluent passed to a gas liquid 

separator from which the gases left the separator to pass through an in-line filter to 

remove any moisture prior to the OMEGA mass flow meter (FMA 1700/1800 series 0–

2 L/min, Laval (Quebec), Canada). The mass flow meter was equipped with a totalizer 

that utilizes a K-factor to relate the mass flow rate of an actual gas to nitrogen, the 

calibrated reference gas. The actual gas flow rate was calculated by determining the 

average K-factor for the produced gas by means of the mole fraction of each gas in the 

stream, as shown by equation (3.1). 

)(

1

ifactoriref
factor KyK

KAvg
∑

=                     (3.1)  

where Kref is the K-factor for the reference gas, and yi is the mole fraction of the 

individual components. The actual gas flow rate was calculated by (3.2) 

reffactortotal QKAvgQ ×=           (3.2)  

where Qtotal is the mass flow rate of the actual gas and Qref is the mass flow rate of the 

reference gas. After passing through the mass flow meter, the product gases were 

collected in 3L Tedlar gas sampling bags for subsequent analysis.  
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3.2.5 Gas & liquid analysis 

The gaseous products were analyzed by a gas chromatograph (Shimadzu, GC-2014) 

equipped with a thermal conductivity detector (TCD) and 120/80 D Hayesep stainless 

steel 3.18 mm ID, 6.2 m nickel packed column (Grace Davidson, City and State). Helium 

was used as the carrier gas. The gas chromatograph was calibrated using a standard gas 

mixture of known composition. The analysis was performed manually using 1 ml SGE 

gas tight syringe (Model number 008100, Reno, NV USA) by collecting the sample from 

the gas bag. The injection of sample gas into the GC was repeated and the results were 

averaged to minimize analytical error. The liquid effluent was analyzed for chemical 

oxygen demand (COD), and pH. Total chemical oxygen demand (TCOD) was measured 

using HACH methods and test kits (HACH Odyssey DR/2500). pH was measured using 

an OAKTON portable pH meter (Model WD-35615-22). 

3.2.6 Yield calculations 

Calculation of product gas yield and carbon gasification efficiency (CGE) was performed 

using the procedure of Yu and Antal61. The aforementioned authors calculated the CGE 

as mol carbon in gas per mol carbon in feed and measured gas yields as mol of gas 

species produced per mol of glucose in the feed. The maximum theoretical hydrogen that 

can be produced from glucose (C6H12O6) is 12 mol H2 in accordance with equation (3.3) 

following the method proposed by Cortright et al.84 6 moles of H2 is generated directly 

(Equation 3.4) and another 6 moles of H2 is formed through the water–gas shift reaction 

(Equation 3.5). 

C6H12O6+6H2O→6CO2+12H2            (3.3) 
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Equation (3.3) may follow reactions as follows84: 

 Thermal decomposition,  

C6H12O6→6CO+6H2               (3.4) 

 The water–gas shift reaction, 

CO+H2O  CO2 + H2                                 (3.5)  

However, carbon oxides may undergo methanation reactions in the presence of hydrogen 

depicted by Equations (3.6) and (3.7).  

Methanation reaction 

CO + 3H2  CH4 + H2O          (3.6)  

CO2 + 4H2  CH4 + 2H2O          (3.7)  

COD destruction efficiency was selected as a parameter to track the liquid effluent 

quality and to optimize, together with the maximum hydrogen yield for the gasification 

and partial oxidation of glucose in supercritical water. The COD destruction efficiency 

was defined as:  

100×
−

=
initial

finalinitial
ndestructio COD

CODCOD
COD       (3.9) 

3.3 Results and discussions 

3.3.1 Effect of oxygen to carbon molar ratio (MR) on gas and liquid products 

A series of non-catalytic experiments were conducted at 400 °C at different oxygen to 

carbon molar ratios (MR) to maximize the hydrogen yield in the product gas (Figure 3.2). 

The maximum yield of hydrogen (0.32 mol/mol feed) and CO (1.13 mol/mol feed) was 
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observed at a MR of 0.8. Lee et al. observed only 0.08mol H2 / mol glucose feed at 480° 

C while gasifying glucose in supercritical water without oxidant13. Introducing hydrogen 

peroxide at 15 minutes of reaction time, partially oxidized the ungasified intermediate 

products to CO rich gases; CO later undergoes the water gas shift reaction to produce 

more hydrogen and carbon dioxide (Equation 3.5). However, hydrogen production 

decreased while CO2 increased significantly when the MR was increased to 0.9. This 

phenomenon can be attributed to the availability of oxygen which converts CO to CO2 by 

direct oxidation instead of through the water gas shift reaction. The optimized MR of 0.8 

was selected as a base line for the higher examined temperatures of 450 and 500 °C. The 

production of methane slightly decreased with an increase of MR as shown in Figure 3.2. 
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Figure 3.2: Oxygen to carbon molar ratio (MR) effect on gas yield in the non-
catalytic partial oxidation at 400 °C.  
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Figure 3.3 exhibits the liquid effluent characteristic results which show that the COD 

reduction and carbon gasification efficiency were increased with an increase in MR. The 

higher the COD reduction, the higher the purity of the liquid effluent. The low COD 

reduction efficiency with low MR of 0.5 can be explained by the lack of oxidant to 

oxidize ungasified intermediate products. Increasing the MR to 0.9 gave a 97% COD 

reduction efficiency. The highest carbon gasification efficiency (86%) was achieved at a 

MR 0.9. Without using any oxidant, Lee et al. found only 38.6% COD destruction while 

carbon gasification efficiency was only 16.5% at 480 °C while gasifying 0.6M glucose in 

supercritical water13. The liquid effluent is acidic due to formation of organic acids, 

mainly acetic acid54. The pH was slightly increased with increasing of the MR. 
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Figure 3.3: Liquid effluent characteristics in the non-catalytic partial oxidation at 
400 °C.  
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3.3.2 Effect of temperature on gas and liquid product distribution 

The effect of reaction temperature on the gas yield without use of a catalyst is depicted in 

Figure 3.4. By increasing the temperature from 400 to 500 °C, the hydrogen yield 

increased from 0.24 to 0.61 mol/mol glucose feed, which is attributed to the higher 

conversion at higher temperatures85. The CO2 and CH4 yield also increased whereas CO 

remains relatively constant; similar to the results of Holgate and Tester53.  
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Figure 3.4: Temperature effect on gas yield in the non-catalytic partial oxidation 
where MR: 0.8. 

 

Figure 3.5 shows the liquid effluent results. COD destruction was found over 90% due to 

the use of H2O2 oxidant. Lee et al. found much less COD destruction (38.6%) at 480 °C 

without using oxidant while gasifying 0.6M glucose in supercritical water13. They 
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increased the reaction temperature for higher COD destruction. At 600 °C and 750 °C 

they observed 86.7% and 99.8% COD reduction respectively.  The main aim of tracking 

the COD is to understand the amount of carboneous products (tar) remaining in the 

liquid. Similarly, the carbon gasification efficiency was increased with an increase in 

temperature. Without oxidant Lee et al. found 16.5% carbon gasification efficiency at 

480 °C, while it reached 99.7 % at 750 °C13. It was seen that pH remained relatively 

unaffected by the reaction temperature. Accordingly, a temperature of 500 °C and MR of 

0.8 were selected as the baseline for the following catalytic experiments. 
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Figure 3.5: Liquid effluent characteristics in the non-catalytic partial oxidation 
where MR: 0.8. 
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3.3.3 Effect of the commercial catalyst on gas and liquid product distribution 

To examine the effect on gaseous and liquid products, a commercial powder catalyst (i.e. 

63wt% Ni on silica-alumina) was evaluated with and without oxidant. Figure 3.6 portrays 

the gas yield for these experiments.  
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Figure 3.6: Effect of commercial catalyst on gas yield at 500 °C; where A: non-
catalytic, MR=0.8; B: catalyst amount 1.0 gm, MR= 0.8; C: catalyst amount 1.0 gm, 

MR= 0; D: catalyst amount 0.5g, MR= 0; E: catalyst amount 1g, MR= 0.8. H2O2 
injected after 15 min gasification reaction except experiment E in which H2O2 was 

injected prior to the feed. 

 

In experiment A and B, H2O2 (oxidant) was introduced at 15 minutes reaction time while 

experiment A and B are non-catalytic and catalytic gasification of glucose respectively. 

Upon introducing the catalyst, the hydrogen yield was enhanced by 2.5 times (0.6 
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mol/mol feed to 1.5 mol/mol feed). The observed higher amount of CO is attributed to 

the cracking of intermediate products by the catalyst. Tar was cracked by Ni catalysts to 

produce gaseous products; especially CO24, 81. Carbon monoxide may undergo the water 

gas shift reaction catalyzed by Ni to produce more hydrogen. Some of the carbon oxides 

may undergo methanation reaction catalyzed by Ni. As seen, the CO2 yield is decreased 

while CH4 formation increased by introducing catalyst (comparing experiment A and B). 

By examining equations 3.3 and 3.5, the CO2 amount should be increased with increased 

H2. This result can be explained as the high loading of Ni (63 wt%) enhanced the 

methanation reaction of CO2 (Equation 3.7) which reduced the amount of CO2, increasing 

the amount of CH4 and consuming H2; otherwise the H2 yield would be much higher. 

Experiment C shows the catalytic gasification on the product yield without using any 

oxidant (H2O2). There is a significant difference in the product distribution between 

gasification and gasification followed by partial oxidation (experiments B and C), 

showing that the product yield decreased drastically without oxidant. This result confirms 

that H2O2 helps to increase the gasification of unconverted carbon species (tar and char).   

Comparing the gasification results without oxidant, using 1 gm and 0.5 gm catalyst 

(experiment C and D) shows that the amount of catalysts had little influence on the H2 

fraction in the gaseous products. Experiment E was conducted to understand the effect of 

oxygen on products if H2O2 was introduced prior to the feed (i.e. before gasification). 

Hydrogen and other gaseous yields (experiment E) were found almost the same as 

without using any catalyst (experiment A), which is attributed to the potential inhibition 

of catalyst activity by oxidation of the metallic sites of Ni on the catalyst surface. 



 

 

 

65

Hydrogen production was found much higher if the oxidant was introduced after 

gasification (i.e. at 15 minutes reaction time).  

This finding validates our new approach of injecting the hydrogen peroxide (H2O2) after 

gasification reaction for 15 minutes (that is, the feed was injected first and after 15 min, 

the oxidant was injected). By using this procedure, catalyst inhibition can be mitigated 

and potentially more hydrogen could be obtained by oxidizing the intermediate products. 

The liquid effluent characteristics are reported in Table 3.2. Experiment B shows the 

highest yield of all types of gaseous products examined corresponding with higher COD 

destruction. Upon introducing the catalyst, the COD destruction increased to 95%. This 

result confirms that Ni catalysts have a strong effect on cracking tars and chars. Again 

without oxidant (experiments C and D), the observed COD destruction is much lower. At 

a MR of 0.8 (experiment B) the COD reduction efficiency increased from 78% 

(experiment C without oxidant) to 95%. This result indicates that the presence of oxygen 

enhances the gasification process, which is confirmed by the higher yield of gases in 

experiment B compared to C. Industrially, oxygen or air could be used instead of H2O2 to 

lower the operating cost. 
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Table 3.2: Liquid effluent characteristics at 500 °C with commercial Ni/silica-
alumina (63wt% Ni).  

Experiments MR pH 
Carbon gasification 

efficiency (%) 

COD reduction 

efficiency (%) 

A 0.8 3.3 87 91 

B 0.8 3.2 107 95 

C 0 3.2 90 78 

D 0 3.2 82 78 

E 0.8 3.3 109 82 

A: non-catalytic, MR=0.8; B: catalyst amount 0.5g, MR= 0.8; C: catalyst amount 0.5g, 
MR= 0; D: catalyst amount 1g, MR= 0; E: catalyst amount 1g, MR= 0.8. (H2O2 injected 
after 15 min gasification reaction except experiment B in which H2O2 was injected before 
the feed). 
 

3.3.4 Effect of the synthesized catalyst loading on gas and liquid product 

distribution 

From the previous section it was seen that the excess loading of Ni increase methanation 

reaction, there we synthesized our own catalysts to evaluate the effect of Ni loading. 

Figure 3.7 portrays the effect of nickel loading on the gaseous product distribution using 

the synthesized metallic Ni on θ-alumina catalyst. The maximum yield of hydrogen, 

which coincided with the maximum COD reduction efficiency, was observed at 11 wt% 

loading. The trend of hydrogen yield was similar to that reported for gasification of lignin 

using Ni/MgO86 where the H2 yield increased from 1.9 to 11% by increasing the amount 

of nickel deposited on MgO from 5 to 15 wt% Ni/MgO. However, as the amount of 

deposited nickel increased to 20 wt%, the H2 yield decreased to 9.3%. It was also noted 

that by increasing the Ni loading to 18 wt%, a significant decrease in CO2 was found 

along with an equivalent increase in methane (Figure 3.7). This is possibly due to CO2 
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reacting with hydrogen to form methane which could have consumed some of the 

hydrogen and eventually decreased its yield (Equation 3.7). The lower available surface 

area with increased loading (Table 3.1: physical properties of the synthesized catalysts) 

may have enhanced the methanation reaction.  

To investigate the effect of metal size on hydrogen yield, the 11 wt% Ni/θ alumina 

catalyst pellet was crushed to a mesh size of 0.2-0.5 mm. As shown in Figure 3.6 

(11wt%Ni*), the hydrogen yield increased from 1.06 to 1.18 mol/mole glucose. 
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Figure 3.7: Effect of nickel loading on gas yield at 500 °C, where MR: 0.8. *crushed 
catalyst. 

 

The COD reduction was found slightly increased from 87% (uncrushed catalysts) to 90% 

(crushed catalysts). This result can be explained as crushing of the catalyst helps open 



 

 

 

68

any blocked active metallic pore walls that were blocked during metal salt impregnation 

on the support surface during synthesis. The liquid effluent remained acidic with the pH 

remaining relatively constant. 
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Figure 3.7: Effect of nickel loading on liquid effluent at 500 °C and MR 0.8. 
*Crushed catalyst. 

 

3.4 Conclusions 

Using a new approach in which gasification is followed by partial oxidation, the 

production of hydrogen was enhanced compared to only gasification or partial oxidation 

of glucose in supercritical water. The presence of oxygen after gasification for 15 minutes 

enhanced the decomposition of the intermediate products to form gaseous products. The 

gaseous products were composed mainly of carbon dioxide (CO2), carbon monoxide 
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(CO), hydrogen (H2), and methane (CH4). Nickel catalysts were found to facilitate 

cracking of the tar and char intermediates. The hydrogen gas yield and destruction COD 

increased with an increase in temperature. For partial oxidation, the optimum oxygen to 

carbon molar ratio (MR) was found at 0.8.  Among the different metallic Ni loadings 

(7.5, 11, 18 wt%) on θ-Al 2O3, 11 wt% was found optimum in terms of hydrogen yield. 

Increasing the metallic loading from 11wt% to 18wt% decreased the hydrogen yield 

along with increasing the methane formation by methanation of carbon dioxide. 

Hydrogen production was found sensitive to the catalyst size as crushed catalysts 

enhanced the hydrogen yield and COD destruction. Commercial Ni/silica–alumina 

catalyst (0.1 mm average diameter) enhanced the yield of H2 by 0.3 mol/mol glucose due 

to the higher active metal surface area (four times) compared to the synthesized catalysts 

(3.0 mm average diameter). However, with an excess loading of nickel (63wt%), the 

methanation reaction of carbon dioxide was enhanced. The COD destruction efficiency 

reached as high as 97%; i.e. almost clear liquid effluent was formed which could be 

disposed to lake or sand without further treatment. The relatively low hydrogen yield 

(maximum 1.5 mol/mol glucose) obtained was due to limitations in reactor temperature 

i.e. 500 °C. 
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Chapter 4 

Production of hydrogen-rich gas through supercritical water 

gasification of glucose using La-modified Ni/Al2O3 catalysts 

In this chapter, synthesized Ni/Al2O3 catalyst was modified through La adsorption.  

Commercial alumina pellets, synthesized alumina nanofibers were taken as the catalyst 

support for incipient impregnation while a sol-gel process were adopted for synthesizing 

the Ni-La-Al-O nano-structure as catalyst. Evaluation of fresh and spent catalysts was 

conducted. La adsorption of the Ni/Al2O3 catalyst was found to increase the activity and 

production of hydrogen rich gaseous yield and reduce methanation reactions. Nano 

catalysts were found to be very active towards the production of hydrogen. This chapter 

is mostly a reproduction from the article by the author submitted to Industrial 

Engineering & Chemistry Research87: Production of hydrogen-rich gas in Supercritical 

Water from Glucose using La-modified Ni/Al2O3 catalysts.  

 

4.1 Introduction  

Hydrogen (H2) is considered as one of the most promising potential clean energy sources 

for sustainable development and has a high energy density by weight88. One of the most 

promising renewable sources for hydrogen generation is from the gasification of waste 

biomass. Gasification of waste biomass allows destroying hazardous organic matters into 
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light gases, such as H2, CH4, CO2 and CO 89. Hydrogen can be used in fuel cells for 

power generation while the syngas (H2+CO) can be used for producing chemicals and 

liquid fuels. Syngas is also used for cleaner combustion technology, as well as direct 

feeding for next generation high efficiency internal combustion engines90.  

In recent years, low quality biomasses such as agricultural and municipal waste have 

received significant attention to produce syngas via the gasification process. However, a 

large amount of energy is lost for drying these wet feedstocks, which significantly 

decreases the overall thermal efficiency of a gasifier69, 89. In addition, formation of char 

and tar from the biomass during gasification decreases the gas yield16. However, 

gasification of biomass using supercritical water (SCW) has the potential to overcome 

these barriers. SCW offers an attractive alternative to avoid the energy intensive drying 

process, particularly when the water content is above 30%6. Above 31% moisture 

content, the energy conversion efficiency of SCW gasification is always higher than 

thermal gasification, pyrolysis, liquefaction, or anaerobic digestion5. The lower dielectric 

constant and weaker hydrogen bonding of water in the supercritical state compared to 

water under ambient conditions makes SCW similar to organic solvents. Therefore, 

organic compounds that are present in the biomass have enhanced solubility in SCW, 

with the various reactions taking place in a single fluid phase. The high diffusivity of 

SCW is also favorable for enhanced mass transfer during the gasification process91.  The 

high effective diffusion coefficient of SCW (about 100 times higher than that of ambient 

water) diminishes the chance of any mass-transfer gradient in the catalyst internal surface 

area9. Using the SCW process also provides high pressure product that eliminates further 

compression steps, contributing to its energy efficiency.  
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The advantage of using glucose as the model compound of biomass is that it is soluble in 

water and represents a wide fraction of biomass compounds present in both agricultural 

waste and sewage sludge2. In this study, glucose was used for the biomass analog for the 

activity tests. During glucose gasification in SCW, a group of competing reactions occur 

as follows1: 

Steam reforming:  C6H12O6 + H2O → 6 CO + 6 H2   (4.1)  

Water-gas shift:  CO + H2O � CO2 + H2    (4.2)  

Methanation:   CO + 3H2 � CH4 + H2O    (4.3)  

CO2 + 4H2 � CH4 + 2H2O    (4.4)  

As the objective of biomass gasification in supercritical water is generally hydrogen 

production, reactions (4.3) and (4.4) must be restrained as CO reacting with water to form 

CO2 and H2 is desired in reaction (4.2). Other than the gaseous products mentioned 

above, some intermediate products (char and tar) are also formed during SCW 

gasification which can be minimized by partial oxidation to enhance the gasification 

process and the resulting yield of hydrogen11, 75. By employing a suitable catalyst, the H2 

production can be enhanced, approximated by the following general reactions: 

Gasification: +++  → 422 CHHCOOHC Catalyst
yx intermediate products (4.5) 

Intermediate products ++  → 2HCOCatalyst  other products    (4.6) 

In the last chapter we showed the non-catalytic effects of temperature and oxygen to 

carbon molar ratio (MR) on hydrogen yield from glucose and on the chemical oxygen 

demand (COD) destruction. Within the reactor limitations, 500 °C and 0.8 MR were 

found optimized for the production of hydrogen. 500 °C is considered as a moderate 
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temperature for SWG producing methane rich gases even using a catalyst12. However, a 

proper design of catalyst may produce hydrogen rich gas instead of methane rich gas at 

moderate temperatures. 

To reduce the temperatures (i.e. activation energy) required for the total conversion of 

biomass, the use of catalysts is still in its infancy. Homogeneous materials like alkali 

catalysts are readily miscible with water and found very effective for biomass gasification. 

Lu et al. 7 used K2CO3 for biomass gasification in SCW and found that the H2 yield was 

two times higher than that without catalyst at the same conditions. Watanabe et al.15 

studied the effect of both base (NaOH) and metal (ZrO2) catalysts on the gasification of 

lignin in SCW. NaOH proved 2-5 times more effective than ZrO2 for hydrogen 

production. However, alkali catalyst recovery, re-use and reactor corrosion problems are 

significant concerns with these types of catalysts16.   

Using a supported solid catalyst can avoid these separation and reactor corrosion 

problems. As well, heterogeneous metal catalysts are also relatively easy to recover, 

helping reduce the cost of the catalyst. However, chromium, tungsten, platinum, and 

palladium have shown very low activity69.  A wide range of heterogeneous catalysts for 

SCWG was investigated by Sato et al.73. They found that the activity order is Ru/γ-

Al 2O3 > Ru/C > Rh/C > Pt/γ-Al 2O3, Pd/C and Pd/γ-Al 2O3. Although Ru showed very 

good activity, even a trace amount of S can cause Ru catalyst poisoning20. In addition, Pt 

group noble metals are prone to methanation of carbon oxides in the presence of 

hydrogen, which increases with an increase of temperature21. Furthermore, the relatively 

high price of noble metals makes these catalysts less attractive if suitable low cost 

heterogeneous catalysts can be formed.  
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Using nickel, a relatively inexpensive metal, Furusawa et al.23 found that carbon and 

hydrogen yields increased from 8.3% and 14.1% to 22.7% and 46.2% respectively when 

0.05 g of 20 wt% Ni/MgO catalyst was added at 400 °C. A nickel catalyst was also found 

to be favorable for cracking tar molecules and promoting the WGS reaction24. When 

compared to the available alternative catalysts, nickel displays several favorable 

attributes including high activity and low cost. Nickel also has a high melting point 

(1453°C) which is very important for a biomass gasification catalyst.  

However, the amount of nickel loading on the support is a key factor for a successful 

catalyst synthesis. Sato et al.86 reported that a maximum hydrogen yield was obtained 

with 10wt% Ni/MgO during the gasification of lignin in SCW. Beyond 10wt% nickel 

loading, the hydrogen production decreased and the amount of methane formation 

increased. In the last chapter, it was found that the maximum yield of hydrogen was 

obtained with 11wt% Ni on θ-alumina and hydrogen production decreasing and the 

methane increasing above this loading. At 18wt% Ni loading on θ-Al 2O3, a reduction of 

carbon dioxide was observed with an equivalent amount of methane formation indicating 

enhanced methanation of CO2. The CO product remained nearly constant using 7.5 to 

18wt% Ni loading on θ-Al 2O3,
75

 indicating that CO did not participate significantly in the 

methanation reaction. Methane is very stable in SCW, and does not convert into any 

smaller molecules13. 

Conventional catalysts have low surface area per unit volume which limits the contact 

area between the reactants and the metallic surface of the catalysts. Nano catalysts with 

high surface areas and aspect ratios can help eliminating the challenge. It is also evident 
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that high surface area catalysts increase the activity and selectivity by increasing the 

active catalyst sites for the reactants.  

Production of hydrogen rich gases, and inhibition of the methanation reaction of CO2 

motivated the present study. In this study we wanted to synthesize low cost catalyst with 

favorable selectivity to produce hydrogen while destroying any organic matter 

completely so that no other processing is necessary for further treatment of liquid effluent 

from the reactor. In this regard, Ni on La impregnated Al2O3 catalysts were investigated 

for SCW gasification of glucose for the first time. Kim previously found that Cerium acts 

as a promoter of the WGS reaction when performing auto exhaust emission control26. La 

and Ce have very similar chemical properties with respect to cation charge, ionic radii, 

and stability of organic and inorganic complexes27. Therefore La may act as promoter for 

water gas shift reaction in SCW and thus increase hydrogen yield. In addition, it is 

hypothesized that the La2O3 acted as an adsorbent which selectively adsorbs carbon 

dioxide29, 92; as a result methanation of CO2 may be reduced. 

Other than impregnation on alumina nanofibers to synthesize nano-catalysts, ultrafine 

NiO-La2O3-Al 2O3 aerogel catalyst was also prepared by combination of a sol-gel method 

and a supercritical drying technique. Aerogels show promise in catalytic applications due 

to their unique morphological and chemical properties. An aerogel is a solid-state 

substance similar to a gel where the liquid component is replaced with gas. Aerogels 

made with aluminum oxide are known as alumina aerogels. These aerogels, especially 

when "metal-doped" with another metal, are used as catalysts. The main advantages of 

sol-gel techniques for the preparation of materials are low temperature of processing, 

versatility, flexible rheology allowing easy shaping and embedding. 
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4.2 Experimental 

The model compound glucose, metallic precursors nickel nitrate hexahydrate 

[NiNO3·6H2O], lanthanum nitrate hexahydrate [La(NO3)3·6H2O], reagent grade 

98%Al(III) isopropxide, 99.5%isopropanol, 99.7% acetic acid were obtained from 

Sigma-Aldrich (Mississauga, Ontario, Canada), and used as received. Hydrogen peroxide 

(H2O2) was added as an oxidant for partial oxidation of intermediate products using a 

50% H2O2 in water solution as received from EMD Chemicals Inc. De-ionized water, 

was obtained from an ultrapure water system (EASY pure LF, Mandel Scientific co, 

model BDI-D7381) to prepare the solutions. For catalyst preparation, γ-Al 2O3 pellets 

with 3 mm average particle diameter, 198 m2/gm BET surface area and pore volume of 

0.421 cm3/gm received from Aldrich (Mississauga, Canada). The BET (Brunauer-

Emmett-Teller) surface area, pore size and distribution, and pore volume were 

determined from nitrogen adsorption and desorption isotherm data obtained at 77 K with 

a constant-volume adsorption apparatus (Micromeritics ASAP 2010) using N2 as the 

probe gas. The prepared samples were degassed at 150°C for 5 hour before the nitrogen 

adsorption experiments.   

4.2.1 Catalysts Synthesis  

4.2.1.1 Incipient impregnation  

The La2O3 doped 18wt% Ni/θ-Al 2O3 catalysts were prepared via incipient wetness 

technique, as described previously22. The alumina nanofibers were synthesized in 

supercritical carbon dioxide (scCO2) as a green solvent using alumina isopropoxide and 

acetic acid31 and described in chapter 7. The as received γ-Al 2O3 and alumina nanofibers 
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were transformed to θ-Al 2O3 which has better high temperature properties by calcining at 

1050 °C12. θ-Al 2O3 was found to be stable in SCW. On the other hand γ-Al 2O3 was found 

to be dissolved in SCW. It may be due the defects in crystalline structure of γ-Al 2O3
82. θ-

Al 2O3 has monoclinic symmetry in catalyst structure82. In addition, converting γ -Al2O3 to 

θ-Al 2O3 pore size increased which allows better impregnation of active metals, and 

penetration of bulky intermediate products formed by SCWG. The synthesis process 

includes two steps: (i) modification of the support θ-Al 2O3 with La2O3 followed by (ii) 

nickel loading, or reversed when studying order of addition. The solutions were prepared 

by dissolving (Ni(NO3)2·6 H2O or La(NO3)3·6 H2O) salts in de-ionized water. 130 vol% 

of pore volume of support θ-Al 2O3 was used to prepare the nitrate solutions. During the 

impregnation step, the nitrate solutions were introduced to the θ-Al 2O3 with continuous 

mixing. After impregnation, the resultant samples were dried slowly (0.5 °C/min) and 

then treated with NH3-H2O vapor as described previously22, 93 to convert the metal salt 

anion to ammonium salt. The NH3-H2O vapor treated sample was dried to 120 °C at a 

rate 1°C/min and then to 250 °C at a rate 1.5 °C/min for one hour. This thermal treatment 

also helped to remove ammonium salts by sublimation. Finally, the catalysts were 

reduced using hydrogen (5% by volume) in nitrogen. A block diagram showing the 

sequence of catalyst synthesis steps is given below: 
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Figure 4.1: Block diagram of catalyst synthesis. 

 

4.2.1.2 Sol-gel technique 

In the second approach for catalyst synthesis, the required amount of aluminum 

isopropoxide ( i.e. 20 gm for synthesizing 5 gm of catalyst) dispersed in isopropanol (80 

ml) was placed in a 250 ml flask and the resultant mixture was kept under vigorous 

stirring at 75°C for one hour. To the cloudy sol, 0.3 ml of 1M nitric acid was added for 

peptization (the process responsible for the formation of stable dispersion of colloidal 

particles) and the sol was refluxed with stirring at 75°C for 1 h to obtain clear sol. Here 

acetic acid was used as the polycondensation agent for slow hydrolysis of aluminum 

isopropoxide. An appropriate amount of lanthanum nitrate and nickel nitrate were 

dissolved in isopropanol and the individual solutions were then added to the clear 

boehmite sol at 15 minutes intervals, with the resultant mixture refluxed at 75°C for 1 h 

with vigorous stirring. The transparent sol turned to olive green upon addition of the 
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nickel solution and sudden gelation was observed. The sol was kept for three days at 

room temperature in a sealed flask for aging. After aging, the resultant gel was washed 

with acetone to remove any traces of water, nitric acid, etc. This washed gel was dried in 

scCO2 at 4000 psi and 60 °C to remove unreacted acid, alcohol and ester from the gel 

formation. The rate of venting CO2 was approximately 0.2ml/min to prevent collapse of 

nano-stuctured morphology. At the end of drying, a porous aerogel was obtained which 

was calcined to 200 °C in air at a rate of 1.5°C/min to prevent the collapse of porous 

structure keeping the high surface area. The catalysts were then reduced using hydrogen 

(5% by volume) in nitrogen at 600 °C.  

4.2.2 Catalyst Activity Tests in Supercritical Water 

The activity of the synthesized catalysts was established using a 600 ml batch autoclave 

reactor constructed from Hastelloy C-276, equipped with 1.5 kW electric furnace for 

heating (Autoclave Engineers, Erie, Penn., USA) as described in the last chapter. Briefly, 

in a typical experiment the required amount of catalyst was loaded along with 70 ml of 

deionized water which were injected into the rector, which was finally purged with He 

for 10 minutes. The reactor was then pressurized to 0.7MPa with helium in order to 

prevent water evaporation and then heated to 500 °C. With the increase of temperature 

the reactor pressure increased to about 28 MPa at 500 °C. The required amount of 

glucose solution was then pumped into the reactor using a syringe pump (Isco Model 100 

DX, Lincoln NE, USA). The initial reaction time (t0) was started upon injection of the 

feed into the reactor. The oxidation agent H2O2 was injected after 15 minutes of reaction 

time with the syringe pump to facilitate partial oxidation of the reaction intermediates. 

After 30 min reaction time, the products were cooled down to ambient temperature using 
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a double pipe heat exchanger and separated by a gas-liquid separator operating by sudden 

expansion (from 0.635 inner diameter of stainless tube to 3 liter volume vessel). The 

product gas was then passed through a 2 micron filter to remove any remaining moisture 

and passed through an OMEGA mass flow meter (FMA 1700/1800 series 0-2 L/min, 

Laval, Quebec, Canada). The product gases were then collected in a 3L volume Tedlar 

gas sampling bag for subsequent analysis.  

4.2.3 Products Analysis  

To determine the percent of gasification and hydrogen yield, the product gases were 

analyzed by gas chromatography (Shimadzu, GC-2014) using a 120/80 D Hayesep 

stainless steel Nickel packed column (Grace Davidson) with dimensions of 6.2 m x 3.18 

mm, a thermal conductivity detector (TCD) and helium as the carrier gas. The gas yield, 

and carbon gasification efficiency (CGE), were calculated as shown in equations 4.7 and 

4.8, as reported by Yu et al61.   

feedinegluofmol

producedgasofmol
yield

cos
=       (4.7) 

feedincarbonmol

producedincarbonmol
CGE = X 100%     (4.8) 

The liquid effluents from the SCWG experiments were analyzed to measure the Total 

Organic Carbon (TOC) content using a TOC-VCPH (Shimadzu Instruments). The TOC 

decomposition X, was used to evaluate the extent of decomposition, as defined by: 

0][

][
1,

TOC

TOC
XiondecompositTOC e−=      (4.9) 

where [TOC]o is the initial TOC and [TOC]e is the residual TOC after reaction. 
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4.3 Results and Discussion 

In this study the synthesis and comparative performance of Ni/θ-Al 2O3 and Ni-La/θ-

Al 2O3 catalysts were investigated for the production of hydrogen from glucose using 

supercritical water gasification (SCWG). The effect of La2O3 for promoting hydrogen 

yield and reducing the methanation activity was studied. The reaction mechanism is 

described.  

4.3.1 BET Surface area, Pore size, Pore volume 

The surface area, average pore diameter and pore volume of the prepared catalysts are 

summarized in Table 4.1 using BET method.  

Table 4.1. Physical properties of the synthesized catalysts. 

Catalysts 
SBET 

(m2/g) 
Dpore 
(nm) 

Vpore 
(cm3/gm) 

A θ-alumina pellets (commercial) 57 17.4 0.248 

B 7.5wt%Ni/ θ-alumina 51 14.0 0.179 

C 11wt%Ni/ θ-alumina 49 13.8 0.154 

D 18wt% Ni/ θ-alumina 46 10.2 0.118 

E 3.5wt% La2O3/θ-alumina 60 15.9 0.237 

F 7wt% La2O3/θ-alumina 50 11.4 0.143 

G 3.5wt% La2O3-18wt% Ni/ θ-alumina 48 12.9 0.154 

H 3.5wt% La2O3-18wt% Ni/ θ-alumina* 46 6.8 0.078 

I 3.5wt% La2O3-18wt% Ni/ θ-alumina (crushed) 44 17.8 0.202 

J 3.5wt% La2O3-18wt% Ni/ θ-alumina nanofiber 101 15.0 0.373 

K 
Nano structured 3.5wt% La2O3-18wt% Ni-

alumina (sol-gel) 
339 4.2 0.381 

SBET = BET surface area; Dpore= Adsoption average pore diameter (4V/A); Vpore= 
Single-point adsorption total pore volume per gram. * La2O3 impregnated after Ni 
loading. All catalysts were reduced at 600 °C. 
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After nickel loading the surface area (SBET), average pore diameter (Dpore), and pore 

volume (Vpore) of the catalysts decreased (Catalyst A to D). Pore blocking by the nickel 

species is believed to be mainly responsible for the reduced surface area and pore 

volume.   

Contrary to Ni loading, it is interesting to see that after La2O3 loading on alumina the 

surface area was slightly increased (catalyst E compared to unloaded alumina A) 

indicating that La2O3 was primarily deposited on the outer surface of the alumina support. 

The large diameter of the La3+ ions hinders diffusion into the alumina pores and is 

subsequently dispersed as a monolayer on the top of the θ-alumina surface94. However, 

increasing the amount of lanthanum to 7wt% onto Al2O3 (catalyst F) also decreased the 

surface area and pore volume attributed to blockage of inter-crystalline pores. 

When depositing the same amount (3.5 wt%) of La on alumina before Ni loading 

(catalyst G) a higher surface area, pore diameter and pore volume were found compared 

to La loaded after Ni loading (catalyst H). This can be attributed to La being deposited on 

active nickel on top of the catalyst surface.  

The Nano catalysts showed significantly higher surface areas. Sol-gel derived catalysts 

showed the highest surface area with smallest average pore size (micro pores) among the 

catalysts evaluated. Formation of microporous network may be the reason for the high 

surface area. Another reason is that the sol-gel derived catalyst support was not converted 

to θ-Al 2O3 like the other catalyst supports, as all the metals and support were mixed 

together during synthesis. The nanofiber catalysts at θ phase of the support showed much 

higher surface areas than the commercial catalysts of the same phase. 
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4.3.2 Catalysts evaluation  

In the last chapter, gasification followed by partial oxidation at 15 minutes reaction time 

was found beneficial for the higher hydrogen production and organic carbon destruction. 

Within the reactor limitation at a reaction time of 30 minutes and temperature of 500 ºC, 

oxygen to carbon molar ratios (MR) 0.8 was found optimum towards hydrogen 

production. In this investigation, the catalytic activity of both plain Ni and La modified 

Ni on θ-Al 2O3 catalysts was analyzed with and without oxidant in a batch autoclave 

reactor using glucose as the biomass model compound. When oxidant was applied, 

MR(carbon to oxygen molar ratio) 0.8 at 15 minutes reaction time was used for partial 

oxidation of unconverted organic compounds. 

4.3.2.1 Effects of types of catalysts  

Figure 4.2 displays the product gas yield data for the three different Ni loadings on θ-

Al 2O3 catalysts used in the gasification of glucose in SCW. One can see from Figure 4.2 

that with the variation of nickel loading from 7.5 to 18wt%, the hydrogen and carbon 

monoxide yields were not affected significantly. The hydrogen to carbon monoxide ratio 

is around 1:2, which can be considered a poor syngas ratio. For production of methanol 

or diesel (Fischer-Tropsch), the syngas ratio (hydrogen:carbon monoxide) should be 

higher than 2:1 (equations 4.10 and 4.11). 

Methanol synthesis: OHCHHCO Catalyst
322  →+     (4.10) 

Fischer-Tropsch: OHCHHCO Catalyst
2222 +−− →+    (4.11) 
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As also shown in Figure 4.2, the CO yield remains almost constant while the formation of 

methane increased and the formation of carbon dioxide decreased for Ni loading 11 to 

18wt%. Enhancement of the methanation reaction of CO2 with an increased amount of 

nickel has been considered to be responsible for this increased methane and decreased 

CO2 formation. This observation is consistent with the results reported by Youssef et al 93 

using 7 to 18wt% Ni on alumina catalysts under similar reaction conditions. Loosely 

bonded nickel on the alumina support deposited by excess nickel loading may be 

responsible for this methanation reaction. As the methanation reaction consumes 

hydrogen produced from the gasification reaction, the hydrogen yield would be higher 

with increased Ni loading if this methanation reaction could be restrained. 
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Figure 4.2: Effect of Ni loading on theta alumina pellets on gaseous product where, 
B) 7.5wt%Ni/θ Al2O3, C) 11wt%Ni/θ Al2O3, D) 18wt%Ni/θ Al2O3 T= 500 °C, 

MR=0.8, t=30 min, P=28MPa, Feed= 0.25M Glucose. 
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To further examine the role of lanthanum on the gaseous products, La2O3 on alumina 

catalysts were also evaluated under the same reaction conditions. From Figure 4.3, it is 

observed that lanthanum on alumina (cat. E and cat. F) increased the hydrogen and 

carbon dioxide yield and decreased the carbon monoxide and methane formation 

significantly compared to nickel on alumina (cat. D). This result confirms that lanthanum 

oxide acts as co-catalyst rather than promoter in SCWG.  

0

0.5

1

1.5

2

2.5

D E F G G* H

Catalysts

H
2,

C
O

,C
H

4 
yi

el
d 

(m
ol

/m
ol

 fe
ed

)

0

1

2

3

4

5

6

C
O

2 
yi

el
d 

(m
ol

/m
ol

 fe
ed

)

Hydrogen
Carbon monoxide
Methane
Carbon dioxide

 

Figure 4.3: Effect of Ni, La2O3 and Ni-La2O3 on theta alumina pellets on gaseous 
product where, D) 18wt%Ni/θ Al2O3,  E) 3.5wt% La2O3 /θ Al2O3, F) 7 wt% La2O3 /θ 
Al 2O3, G) 18wt%Ni -3.5wt% La2O3 /θ Al2O3 (La2O3 impregnated before Ni loading), 

G*) 18wt%NiO -3.5wt% La 2O3 /θ Al2O3 (oxidized at 500 °C before reaction) , H) 
18wt%Ni -3.5wt% La 2O3 /θ Al2O3 (La2O3 impregnated after Ni loading ); T= 500 °C, 

MR=0.8, t=30 min, P=28MPa, Feed= 0.25M Glucose, Catalyst= 1.0gm. 
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With an increased loading of lanthanum oxide (cat. F), the hydrogen yield was not 

affected compared to catalyst E (lower La loading), while the carbon monoxide formation 

decreases and the carbon dioxide formation increases. This observation can be attributed 

to oxidation of CO, whose concentration was slightly decreased with an excess loading of 

lanthanum. Comparing catalyst D with catalysts E and F, a higher hydrogen yield with 

corresponding lower carbon monoxide formation is observed and attributed to lanthanum 

as a co-catalyst of the WGS reaction, which consumes carbon monoxide. The observed 

lower yield of methane and higher yield of CO2 with La on alumina can be attributed to 

the inhibition of the methanation reaction and promotion of the WGS reaction by La. 

The loading of 18wt% nickel on La modified alumina catalyst (cat. G) increased the 

hydrogen yield 25 mol% compared to catalyst E and F and 65mol% compared to catalyst 

D (Figure 4.3). Comparing catalyst D (18wt%Ni/Al2O3) with catalyst G (18wt%Ni-

3.5wt% La2O3/Al 2O3), the methane formation decreased approximately 50mol% with La 

adsorption (Figure 4.3). The formation of methane was approximately similar to that 

found by La/Al2O3 catalysts. From the reported results92, it is hypothesized that the La2O3 

acted as an adsorbent which selectively adsorbs carbon dioxide29. As a result, the 

methanation reaction (Equation 5) was significantly minimized, hence the lower methane 

formation. Like catalysts E and F, lanthanum modified alumina even after loading 18wt% 

nickel (cat. G) reduces the formation of carbon monoxide (Figure 4.3) while increasing 

CO2 and H2 indicating the promotion of the WGS reaction (equation 4.2). Therefore, 

using the La with 18wt% nickel loaded catalyst (cat. G), the hydrogen production was 

considerably enhanced. At the investigated reaction temperature (500 °C), the hydrogen 

yield with 18wt% Ni on lanthanum modified alumina support (cat. G) is significantly 
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higher than that reported previously for glucose gasification in SCW with or without 

catalysts 13, 74, 75, 95.   

It is seen that methanation of carbon dioxide is restrained even in the presence of higher 

amounts of nickel on the catalyst (Cat. G). Lanthanum impregnation before and after 

nickel loading also significantly affected the gaseous product yields. When comparing the 

effects of the sequence of La2O3 loading, lanthanum oxide loading before (cat. G) and 

after (cat. H) Ni loading, from Figure 4.3 it is seen that lanthanum loading before nickel 

loading enhances the hydrogen yield, while the carbon monoxide is lowered by about 

60mol%. Even the methane formation in catalyst G (La is loaded before Ni loading) is 

lower compared to catalyst H (La is loaded after Ni loading).  The results indicate that 

La2O3 blocked some active nickel species when lanthanum was loaded after nickel on the 

alumina support. La molecule has much larger radii than Ni molecule; therefore if Ni is 

loaded after La, free space of La still remains to act as catalyst active sites for SCWG.  

The oxidized catalyst (by oxidation of catalyst G to G*) shows about 50% less hydrogen 

production with a reduction of carbon oxides indicating less gasification. This result 

indicates that the reduced catalysts are more active than the oxidized catalysts. 

From the above discussion, catalyst G (18wt%Ni-3.5wt%La2O3/θ-Al 2O3) shows the best 

performance among the evaluated catalysts for hydrogen production with a very good 

syngas (hydrogen to carbon monoxide) ratio slightly higher than 2, which can be used as 

a low emission fuel source and is suitable for synthetic diesel and methanol production. 

Catalyst G is used for further study to investigate the effect of size, oxidant, reaction 

time, temperature, and feed concentration. 
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The liquid effluents from the SCWG experiments that did not gasify were measured by 

TOC analysis. Figure 4.4 shows the carbon gasification efficiency (CGE), and TOC 

destruction of the evaluated catalysts.  
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Figure 4.4: Effect of Ni, La2O3 and Ni-La2O3 on carbon gasification efficiency and 
TOC destruction where, D) 18wt%Ni/θ Al2O3,  E) 3.5wt% La2O3 /θ Al2O3, F) 7 wt% 
La2O3 /θ Al2O3, G) 18wt%Ni -3.5wt% La2O3 /θ Al2O3 (La2O3 impregnated before Ni 

loading), G*) 18wt%NiO -3.5wt% La2O3 /θ Al2O3 (oxidized at 500 °C before 
reaction) , H) 18wt%Ni -3.5wt% La2O3 /θ Al2O3 (La2O3 impregnated after Ni 

loading ); T= 500 °C, MR=0.8, t=30 min, P=28MPa, Catalysts=1.0gm, Feed= 0.25M 
Glucose. 

It is seen that up to 91% of TOC decomposition was obtained using the studied catalysts. 

High CGE and TOC conversion are due to further oxidation of intermediate products by 

hydrogen peroxide after 15 minutes SCWG reaction of glucose. 97to 98% carbon 

gasification efficiency is achievable with Ni and Ni loaded catalysts (cat. D, G, H) while 

lanthanum shows comparatively lower carbon gasification efficiency (cat. E and F) and 
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TOC conversion. The highest TOC decomposition was observed with 18wt%Ni loaded 

on 3.5wt% lanthanum modified alumina (cat. G) (Figure 4.4).  

4.3.2.2 Effects of catalyst size  

To evaluate the catalyst particle size on gas yield, experiments with catalyst G (average 

size 3 mm), grinded powder of catalyst G (average size 0.1-0.3 mm), and nano catalysts 

(Ni-La impregnated on nano alumina fibers, average catalyst support size 0.5-1.0 µm31) at 

500 °C and 28MPa for 30 minutes were conducted without using oxident. For 

comparison, direct sol-gel prepared nano aerogel catalyst was also investigated. All of the 

catalysts evaluated were La modified Ni/Al2O3. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Hydrogen Carbon
Monoxide

Methane Carbon Dioxide

G
as

 y
ie

ld
 (

m
ol

/ m
ol

l f
ee

d)

2000 - 3000 µm 100 - 300 µm
0.5-1.0 µm (nano fiber) Sol-gel derived nano netwrok

 

Figure 4.5: Effect of catalysts (Ni-La2O3/Al2O3) size on gaseous products. T= 500 °C, 
t=30 min, P=28MPa, MR=0.0, Feed= 0.25M Glucose, Catalyst 1.0 gm.  
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From Figure 4.5 it is seen that the hydrogen yield increased with decreasing catalyst size. 

The nano catalyst showed the highest yield while the pellet size (approx. 3 mm) showed 

the lowest activity. Carbon monoxide and methane also decreased with decreasing 

catalysts size. This phenomenon can be explained by an increased number of active sites 

available by exposing blocked pores (created by metal impregnation) for reactions with 

the smaller particles compared to larger particles. Another reason may be due to coarse 

catalysts may poses some mass transfer limitation. During the study of catalytic phenol 

oxidation in supercritical water, Oshima et al.96 showed that external mass transfer 

resistance was negligible for small size catalysts (size 0.18-0.25 mm), however larger 

size catalysts posed some mass transfer resistance. Some bulky intermediate products of 

SCWG may not be able to use micropores of coarser size catalysts. One dimensional 

nanofibers can overcome these problems by exposing a higher surface area and higher 

dispersion of active metals on the surface. It was previously discussed that lanthanum 

increased the water gas shift reaction and retarded the methanation reaction. Nano 

aerogel catalysts using direct metals loading through the sol-gel technique showed a 

comparatively higher hydrogen yield compared to coarser heterogeneous catalysts but 

lower hydrogen production compared to the fibrous nano catalysts. Sol-gel derived 

catalysts showed a higher CO and CH4 production compared to other catalysts. Low CO2 

with high CO production by the sol-gel derived catalyst is attributed to lowering the 

water gas shift (WGS) reaction, i.e. La might not contributes to enhance the WGS 

reaction like impregnated catalysts and thus reducing hydrogen production. This 

phenomenon can be attributed to the formation of Ni-La-Al-O network by direct addition 

of metal salt during synthesis of the sol-gel reaction. Unlike the impregnation method, 
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where metals are deposited on the support, in the sol-gel process, metals are incorporated 

with the supports. Kaddouri et al. found Ni-La-Si-O system during synthesizing Ni-La on 

silica by a sol-gel process via propionates97. It was previously shown that oxidized 

catalyst has a lower activity towards hydrogen production (Figure 4.3; cat G*). However, 

the nano catalysts showed a much higher performance towards hydrogen selectivity (Fig. 

4.3) compared to the conventional impregnated catalysts. 

The effect of the particle size on total organic carbon (TOC) conversion and carbon 

gasification efficiency (CGE) are shown in Figure 4.6.  
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Figure 4.6: Effect of catalysts (Ni-La2O3/Al2O3) size on TOC conversion and CGE; 
T= 500 °C, t=30 min, P=28MPa, MR=0.0, Feed= 0.25M Glucose, Catalyst 1.0 gm 
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TOC conversion and carbon gasification efficiency increased with decreased catalyst 

sizw i.e. increased surface area. TOC conversion and carbon gasification efficiency over 

80% was achieved using the nano catalysts. The Sol-gel prepared catalysts showed the 

best performance in terms of TOC conversion and CGE. But from Figure 4.5 it is seen 

that hydrogen production is less using the sol-gel prepared catalyst than that using the 

nanofiber catalysts. This can be explained that although carbon gasification was higher 

(high yield of CO and CH4) using the sol-gel derived catalysts, the WGS reaction was not 

enhanced by La in comparison to nanofiber catalysts. This phenomenon can be attributed 

to incorporation of metals (especially La) with the support during synthesis using the sol-

gel process. 

4.3.2.3 Effects of Oxidant 

For comparison purposes, gasification and partial oxidation (oxidant introduced at 15 

minutes reaction time) of glucose in SCW was conducted with crushed catalyst G 

(18wt%Ni-3.5wt%La2O3/θAl 2O3). Figure 4.7 shows the effect on the gaseous product 

yields.  

Interestingly it is seen that both H2 and CH4 production are higher in the gasification 

process than that with partial oxidation. However production of CO2 is much higher in 

the partial oxidation process. This may be explained as the direct oxidation of some 

carboneous products to CO2 occurs instead of producing CO which could undergo the 

WGS reaction producing H2 and CO2. Oxidation of carboneous products also limits 

conversion to methane by decomposition of any intermediate products. Some direct 

conversion of CO to CO2 by oxidation may also happen that reduces the WGS (equation 
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4.2) and the methanation reaction (equation 4.3) of CO. On the other hand in gasification 

both the WGS and methanation of CO took place. These are the possible reasons for 

lower production of H2 and CH4 and higher production of CO2 by oxidation compared to 

gasification.  
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Figure 4.7: Effect of oxidant on gaseous products. Catalyst 18wt%Ni-
3.5wt%La2O3/θAl 2O3, size: 0.1-0.3 mm, amount =1.0 gm, T=500 °C, P=28MPa, 

Feed= 0.25M glucose.  

 

Figure 4.8 provides a comparison of TOC conversion and CGE for gasification and 

partial oxidation. It is seen that both TOC destruction and CGE increased slightly by 

using oxidant. The oxidant helps to gasify carboneous products to carbon oxides mostly 

to CO2 as confirmed by gaseous yields (Figure 4.7). From the gaseous products it is seen 

that using oxidant production of H2 and CH4 decreased although here we observed both 
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TOC destruction efficiency and CGE increased significantly. This raises the question of 

where the excess hydrogen goes to. One possible explanation is that some water is 

formed through oxidation instead of steam reforming, WGS and methanation reactions 

(equations 4.1 to 4.4) which could be responsible for reduction of H2 and CH4 as follows: 

C6H12O6 + 6O2 �6 CO2 + 6H2O      (4.12) 
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Figure 4.8: Effect of oxidant on TOC conversion and CGE. Catalyst 18wt%Ni-
3.5wt%La2O3/θAl 2O3, size: 0.1-0.3 mm, amount =1.0 gm, T=500 °C, P=28MPa, 

Feed= 0.25M glucose.  

 

4.3.2.4 Effect of Residence Time and Temperature 

As seen from the previous section using catalyst G (crushed 18wt%Ni-

3.5wt%La2O3/θAl 2O3), partial oxidation produced less hydrogen; here using the same 

catalyst, we examine the effect of reaction time and temperature on the gaseous and 
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liquid products without using oxidant. Figure 4.9 shows the time and temperature effects 

on the gaseous products formed during SCWG of glucose. Increasing reaction time 

increases the hydrogen production (Figure 4.9 A), while carbon monoxide decreases with 

time (Figure 4.9 B).  
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Figure 4.9: Effect of time and temperature on gaseous products. Catalyst size: 0.1-

0.3 mm, amount =1 gm, P=28MPa, Feed= 0.25M Glucose.  

 

Reduction of carbon monoxide yield with increasing hydrogen can be attributed to the 

water gas shift reaction, shown by equation 4.2. From this observation, it can be 

hypothesized that at the initial stage of the reaction (up to 10 minutes) intermediate tar 

decomposition to CO dominates the WGS reaction of CO. Methane and carbon dioxides 

also increase with time and temperature. There may be some methanation reaction of 
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carbon oxides and some methane coming from the dissociation of intermediate liquid 

products with increasing time and temperature. 

Figure 4.10 shows that increasing reaction time and temperature leads to the TOC 

conversion and CGE increasing i.e. the gaseous products increased due to a higher 

conversion of the liquid intermediates.  
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Figure 4.10: Effect of time and temperature on TOC conversion and CGE. a) TOC 
conversion, b) CGE. Catalyst size: 0.1-0.3 mm, amount =1 gm, P=28MPa, Feed= 

0.25M Glucose.  

  

To further study the effect of reaction time, the temperature was fixed at 500 °C, and the 

reaction time was increased to 60 and 120 minutes. The hydrogen yield starts decreasing 

at 60 minutes and 120 minutes (Figure 4.11). It is interesting that both hydrogen and 

carbon monoxide decreased at higher reaction times while methane and carbon dioxides 

increased. This observation may be explained as both the water gas shift and methanation 

reactions of carbon monoxide (reaction 4.2 and 4.3) happened at higher reaction times. 

Combination of equations 4.2 and 4.3 gives (WGS and methanation reactions) 

2CO + 2H2 � CO2 + CH4       (4.13) 
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Equation 4.13 can explain the reason for reduction of CO and H2 with an increase of CO2 

and CH4.  

From Figure 4.11 it is also seen that both the TOC conversion and CGE increases with 

reaction time. TOC conversion reached almost 90% while CGE reached over 96% due to 

increased gasification.  
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Figure 4.11: Effect of time and temperature on gaseous products and TOC 
conversion and CGE. Catalyst size: 0.1-0.3 mm, amount =1 gm, MR=0.0, T=500 °C, 

P=28MPa, Feed= 0.25M Glucose.  

 

4.3.2.5 Effect of Feed Concentration 

Figure 4.12 shows the effect of feed concentration on the gaseous products and TOC 

conversion and carbon gasification efficiency using crushed catalyst G (crushed 

18wt%Ni-3.5wt%La2O3/θAl 2O3) without oxidant. It is seen that higher concentrations 
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lower the hydrogen and carbon dioxide yield, while only a slight increase of carbon 

monoxide and methane production is observed. Similar results were found by Kirsten et 

al.63. A thermodynamic analysis by Yan et al.49 also showed a similar tendency. The TOC 

conversion and carbon gasification efficiency being reduced with increased concentration 

is attributed to a lower gasification of organic compounds occurring. From the above 

observations it is clear that low concentration with increased time and temperature is 

favorable for the production of hydrogen and higher gasification yields. 
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Figure 4.12: Effect of feed concentration on gaseous products and TOC conversion 
and CGE. Catalyst size: 0.1-0.3 mm, amount =1 gm, MR=0.0, T=500 °C, P=28MPa. 
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4.3.2.6 Effects of TOC destruction on gaseous yield 

Destruction of TOC affects the yield of gaseous products. For a better understanding of 

the performance of catalysts, high concentrated glucose corresponding to low TOC 

conversion was studied. The TOC conversion was varied for the different catalysts with 

the same feed concentration. Figure 4.13 shows that the gas yields with 18wt%Ni/θ-

Al 2O3 (cat. D), 3.5wt%La2O3/θ-Al 2O3 (cat. E) and 18wt%Ni-3.5wt%La2O3/ θ-Al 2O3 (cat. 

G). 
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Figure 4.13: Effect of TOC destruction on gaseous products. D) 18wt%Ni/θ Al2O3,  
E) 3.5wt% La2O3 /θ Al2O3 G) 18wt%Ni -3.5wt% La2O3 /θ Al2O3;  T= 500 °C, 

MR=0.8, t=30 min, P=28MPa, Feed= 0.25M Glucose. 
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In all cases the 18wt%Ni-3.5wt%La2O3/ θ-Al 2O3 (cat. G) shows the best performance in 

terms of hydrogen yield. CO increases with TOC destruction using Ni/Al2O3 catalyst (cat. 

D) whereas with the lanthanum and lanthanum modified catalysts (Cat. E and G), the CO 

yield decreased. This phenomenon is described by the water gas shift reaction being 

boosted by lanthanum.  

Using La2O3/ Al2O3 (cat. E), and Ni-La2O3/ Al2O3 (cat. G), CH4 formation was barely 

affected; while using Ni/ Al2O3 catalyst (cat. D), the CH4 formation was increased 

significantly with increased TOC conversion. Lower hydrogen and carbon dioxide were 

formed using catalyst D compared to catalysts E and G. This observation confirms that 

the carbon dioxide methanation reaction was enhanced using the plain Ni catalyst and 

resisting this reaction by adsorption with lanthanum.  

4.3.3 Mechanistic Elucidation and Reaction Mechanism 

The reaction pathways for dissociation of glucose in supercritical water have been 

described in detail elsewhere52, 62. In the supercritical region, the ion product is higher 

than that in ambient water, providing hydroxyl or hydronium ions to catalyze reactions 

such as hydrolysis and water eliminations as well as rearrangements52. Water elimination 

may also occur via a free-radical reaction pathway. The carbon−carbon scission is a 

typical free-radical reaction. Cortright et al.84 reported the mechanism of C-C, C-O 

cleavage and dehydration, dehydrogenation and hydrogenation of biomass reforming in 

the presence of metal catalyst in liquid water. More than thirty intermediate products in 

liquid were reported through glucose gasification in supercritical water 53, 54. From our 

evaluation results, it is seen that TOC reduces while CGE increases with time. Therefore 
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it can be hypothesized that glucose is first broken down into several water-soluble 

intermediates, which later undergo steam-reforming reactions to produce gaseous 

products. 

Glucose → water-soluble intermediate → gases 

Let us consider the ideal case, glucose gasification in supercritical water should follow 

equation 4.14. 

 C6H12O6 + 6H2O� 6 CO2 + 12 H2      (4.14) 

However, if SCWG of glucose solely followed reaction 4.19, the molar ratio of CH4/CO2 

and H2/CO2 would become 0:6 and 2:1 respectively. Moreover, the presence of methane 

is significant, between 7 to 14 mol%, increasing with time suggesting decomposition of 

glucose to methane via intermediate products. Another possibility is methanation of 

carbon oxides (equation 4.3 and 4.4). If methane is formed only by the methanation, the 

reaction tendency of carbon oxides and hydrogen would be decreased. From our 

evaluation and reported results, CH4 is observed even at the lowest reaction time. 

Therefore methane may form via thermal decomposition of glucose and intermediate 

products. In addition, a high concentration of water helps drive the methanation reactions 

(equation 4.3 and 4.4) in the reverse direction. Moreover, it is seen that the lanthnanum 

modified catalyst retarded the methanation reaction (section 4.3.2.1).  

Therefore, the thermal decomposition of glucose can be written as follows: 

2426126 44 HCHCOCOOHC +++→      (4.15) 

CO further undergoes the WGS reaction to produce additional H2 and CO2. 

4CO + 4H2O � 4CO2 + 4H2       (4.2)  
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The high excess of water may help drive the WGS shift reaction in the forward direction 

i.e. not limited by chemical equilibrium. In addition, La enhances the WGS reaction. The 

resultant stoichiometric equation from combining (4.15) and (4.2) should be:  

24226126 854 HCHCOOHOHC Catalyst ++ →+     (4.16) 

If all glucose molecules fed were converted by this reaction, the molar ratio of CO2/H2 

and CH4/H2 would be 0.625:1 and 0.125: 1 respectively. From the experimental results at 

500 °C (Figure 4.9) it is seen that CO2/H2 varied with time from 0.65:1 to 1.5:1, 

attributing that H2 is formed less than the assumed reaction (equation 4.16). If the WGS 

reaction is the main source of CO2; the molar ratio of CO2/H2 would be the same 

(equation 4.2). However, a significant reduction of CO/H2 ratio with time from 0.88:1 to 

0.03:1(Figure 4.9) confirms the major role of WGS for H2 production. The presence of 

CO also helps prove that the entire CO did not go to the WGS reaction. Therefore the 

equation 4.16 can be rewritten as follows:  

24226126 743 HCHCOCOOHOHC Catalyst +++ →+    (4.17) 

From equation 4.17, the molar ratio of CO2/H2 and CH4/H2 are 0.57:1 and 0.14: 1 

respectively. The experimental results of the CO2/H2 and CH4/H2 ratios are only a little 

higher than the proposed reaction (equation 4.17) at the beginning while increasing with 

time. On the other hand, the experimental CH4/H2 molar ratio at 500 °C varied with time 

from 0.2:1 to 0.4:1, attributing formation of CH4 is higher than the proposed reaction 

(equation 4.16). Increasing the ratio of methane to hydrogen indicates that some methane 

is also coming from the methanation reactions (equations 4.3 and 4.4). Therefore it can 

be hypothesized that the initial gasification reaction of glucose followed equation 4.17. 



 

 

 

103

However decomposition of intermediate products (equation 4.6), WGS (equation 4.2), 

and methanation reactions (equations 4.3 and 4.4) are competitively taking place in the 

reaction system at the conditions investigated in the current system.  

4.4 Conclusions 

The hydrogen yield during supercritical water gasification of glucose was found to 

increase with lanthanum modified nickel on alumina heterogeneous catalyst.  This was 

attributed to retardation of the methanation reaction of carbon dioxide and by promoting 

the water gas shift reaction. Adsorption of carbon dioxide, one of the main products of 

SCWG/SCWO reaction, by lanthanum oxide is ascribed for the shift of the reaction 

equilibrium, thus enhancing hydrogen production. Adsorption of lanthanum before nickel 

loading on the support was found more active towards hydrogen production. Gasification 

of glucose was found to produce more hydrogen than partial oxidation using the 

lanthanum modified catalysts. However, the total organic carbon conversion and carbon 

gasification efficiency increased significantly with addition of oxidant. The reason for the 

lower hydrogen production is explained as a direct oxidation of carbon monoxide to 

carbon dioxide which otherwise can participate in the water gas shift reaction for further 

hydrogen yield. 

Decomposition of TOC can be increased by nickel loading on lanthanum modified 

alumina. However, excess lanthanum did not increase the hydrogen yield and TOC 

decomposition. Increasing the reaction time increases the hydrogen yield and TOC 

destruction. One important finding is that use of 18wt%Ni/ θ-Al 2O3 produces methane 

rich gas whereas after adsorption, La produces hydrogen rich gaseous products. 
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Additionally, syngas ratio (H2:CO) of 18wt%Ni/ θAl 2O3 is 1:2 whereas addition of La 

changes the ratio (H2:CO)  to 2:1; an ideal ratio for production of methanol (CO + 2H2 → 

CH3OH), and synthetic fuel.  

Another finding is that the smaller the catalyst size, the higher the hydrogen production, 

carbon gasification efficiency and TOC destruction. Nano catalysts showed higher 

activity compared to coarser heterogeneous catalysts. Increased active sites, i.e. active 

metal dispersion were attributed to these increased activities. Sol-gel derived aerogel 

catalyst where metals were loaded directly was found very active towards hydrogen 

production and TOC destruction. However, hydrogen production with sol-gel derived 

catalyst was comparatively less than metals loaded on nanofiber catalysts. This 

phenomenon was attributed to incorporation of active metals with alumina main structure 

forming Ni-La-Al-O network by the sol-gel derived process. Although integration of Ni 

with main Al-structure by this method showed very good activity towards gasification, 

unlike impregnated catalysts the desired WGS reaction was not enhanced by incorporated 

La.   
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Chapter 5 

Characterization of fresh and spent Ni based catalysts used for 

supercritical water gasification. 

In this chapter synthesized fresh and spent Ni-based catalysts were characterized in order 

to gain a better understanding of the catalyst’s role in supercritical water gasification. The 

evaluation results found in chapter 3 and 4 motivated us to characterize catalysts in detail 

for future commercial SCWG use. Part of this chapter is reproduced from the submitted 

article by the author: Characterization of nickel based catalysts used in supercritical water 

gasification of glucose with permission from Applied Catalysis A: General; Elsevier Ltd.  

 

5.1 Introduction  

Energy shortages and environmental pollution are two major concerns for a sustainable 

future. Among many options, gasification of waste biomass for the production of 

hydrogen, as a renewable and green alternative energy source has received significant 

attention recently. Gasification of biomass in supercritical water (SCW) offers an 

attractive alternative to avoid the energy intensive drying process. In this approach, 

biomass is hydrolyzed by water into smaller molecules in the presence of a suitable 

catalyst. SCW exists at temperatures and pressures above the critical point of water and is 

an innovative solvent to dissolve organic materials. Many applications of this new 

solvent such as oxidation of organic wastes, gasification of biomass and separation of 

metals has been researched with and without catalysts; however the role of the catalyst 
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has not been sufficiently addressed. Catalysts can play a major role in supercritical water 

gasification for the desired yield. A useful catalyst is normally characterized by a balance 

of its activity and stability. However the properties of SCW are completely different from 

ambient water which makes the catalyst behave differently. In SCW, maintaining catalyst 

activity is critical which may become deactivated from catalyst structure changes, loaded 

metals may be agglomerated or transformed, and different types of coke may be formed 

on the catalyst surface. A metal oxide may retain its active crystalline phase, but the 

crystal may coarsen or grow larger under hydrothermal environments. Because crystal 

growth normally results in a loss of surface area and activity, it becomes an important 

selection criterion for use in SCWG. 

One important property of SCW is that there exists almost no mass transfer limitation. 

Generally, catalytic reactions are mass-transfer limited due to the high reaction rates, low 

diffusion rates, and poor fluid flow characteristics. The high effective diffusion 

coefficient of SCW (about 100 times higher than that of ambient water) diminishes the 

chance of any mass-transfer gradient in the catalyst internal surface area9. The Thiele 

modulus, which represents the degree of internal or pore diffusion limitation, was shown 

to be less than unity for SCW, indicating that pore-diffusion limitations do not exist in the 

catalyst9. Although SCW has very good characteristics, high pressure and temperature 

and corrosive nature of SCW rigorously affects the catalyst’s properties.  

Homogeneous materials like alkali catalysts are readily miscible with water and found 

very effective for biomass gasification7, 15. However, alkali catalysts recovery, re-use and 

reactor corrosion problems are significant concerns with these types of catalysts16.   
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Water-insoluble (heterogeneous) catalysts have been preferred by researchers to 

minimize unwanted contamination of liquid effluents. In this regard, heterogeneous 

catalysts based on noble metals for SCWG has been reported by Sato et al.73. They found 

that the activity order is Ru/γ-Al 2O3 > Ru/C > Rh/C > Pt/γ-Al 2O3, Pd/C and Pd/γ-Al 2O3. 

However, when one considers the high cost and limited availability of noble metals, it is 

more practical, from the industrial standpoint to develop low cost transition metal-based 

catalyst with high stability and activity. Moreover, although Ru showed very good 

activity, even a trace amount of S can cause Ru catalyst poisoning20. In addition, Pt group 

noble metals are prone to methanation of carbon oxides in the presence of hydrogen, 

which increases with an increase of temperature21.  

Using nickel, a relatively inexpensive metal, Furusawa et al.23 found that carbon and 

hydrogen yields increased from 8.3% and 14.1% to 22.7% and 46.2% respectively when 

0.05 g of 20 wt% Ni/MgO catalyst was added at 400 °C. A nickel catalyst was also found 

to be favorable for cracking tar molecules and promoting the WGS reaction24. When 

compared to the available alternative catalysts, nickel displays several favorable 

attributes including high activity and low cost. Nickel also has a high melting point 

(1453°C) which is very important for a biomass gasification catalyst.  

La2O3 is known to be able to stabilize alumina and can avoid metal agglomeration98. 

Moreover, La doped Ni/Al2O3 catalysts were found to be very active for increasing 

hydrogen production through retarding the methanation and promoting the water gas shift 

reaction in our previous study (chapter 4).  
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Recent reviews on previous studies of catalytic SCWG demonstrated the feasibility of 

catalytic SCWG and focused on the activity of different catalysts, the reaction pathways, 

and the probable reaction kinetics mainly based on the product distribution4, 30. However, 

none of these studies focused on the physical or chemical changes of catalysts, interaction 

with support, coke deposition on the catalyst surface, or adsorption of any product by the 

metals during SCWG and how these changes in the catalysts might correlate with their 

activities. Such information would improve our current understanding of catalyst 

behavior and catalyst deactivation during SCWG processing. Therefore, characterization 

of the fresh and spent catalysts is critical for a better understanding of the catalyst role in 

SCW and the reaction mechanism. 

5.2 Experimental 

The synthesized fresh and spent catalysts used in SCWG were investigated using various 

physiochemical instruments. The characterization techniques involved were to determine 

if the catalyst experiences any physical or chemical change, interaction with support, 

types of coke formation, adsorption of any main product to shift the equilibrium 

conditions during gasification in supercritical water.  The synthesis procedures of 

catalysts were described in detail in chapter 4. 

5.2.1 Characterization Techniques 

The BET (Brunauer-Emmett-Teller) surface area, pore size and distribution, and pore 

volume were determined from nitrogen adsorption and desorption isotherm data obtained 

at 77 K with a constant-volume adsorption apparatus (Micromeritics ASAP 2010) using 
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N2 as the probe gas. The prepared samples were degassed at 150°C for 5h before the 

nitrogen adsorption experiments.   

The catalyst reduction temperature, the available amount of reduced metal species, and 

metal support interaction were assessed using the temperature programmed reduction 

(TPR) method. The temperature programmed oxidation (TPO) method was applied to 

determine the coke deposited on the spent catalyst while CO2-temperature programmed 

desorption (TPD) was carried out to determine the CO2 adsorption properties of the 

synthesized catalysts. All the TPR, TPO, and TPD experiments were carried out using a 

Micromeritics Autochem 2920. Before TPR measurements, 100-150 mg of the fresh 

catalyst was completely oxidized at 750 °C by flowing a stream of gas containing 5% O2 

in He.  For the spent catalysts no pretreatment i.e oxidation was carried out in order to 

determine if any carboneous deposition or oxidation of catalysts happened during SCWG. 

The TPR analysis was performed by circulating a stream of gas containing 10 % H2 and 

balanced Ar at a rate of 50 mL/min. The temperature was raised from ambient to 750°C 

at a rate of 10°C/min. A thermal conductivity detector (TCD) was used to record the 

change of hydrogen concentration of the gas stream passing through the catalyst sample 

for calculating the amount of hydrogen consumed during the reduction process.  

The amount of reducible species was calculated from the amount of hydrogen consumed 

during TPR analysis using the following equation:  

ν
ρ gHNi

Ni

VMW
W 2=       (5.1) 
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where, WNi represents the weight of reducible species, MWNi the molecular weight of 

nickel, 
2HV  the volume of hydrogen consumed, ρg the gas molar density at STP and ν is 

stoichimetric number based on the reaction. The reaction involved can be written as: 

NiO + H2 → Ni + H2O      (5.2) 

where one mole of hydrogen is required to reduce one mole of nickel. The % of reduction 

was thus calculated according to the following equation: 

% Reduction = 
W

WNi X 100%      (5.3) 

where, WNi represents the weight of reducible species, and W is the actual metal amount 

in the catalyst. 

TPO was carried out subsequent to the TPR experiments by flowing a stream of 5% O2 

and balanced He gas through the bed of reduced catalyst at a rate of 50 mL/min. The bed 

temperature was increased from ambient to 750°C at a rate of 10°C/min and the TCD 

detector analyzed the gas in the exit stream. For CO2-TPD analysis, 10%CO2 and balance 

He gas was flowed through the bed of reduced catalyst at a rate of 50mL/min; the 

temperature was raised at 10°C/min to 500°C and kept for 30 min, i.e. the typical reaction 

temperature and time of supercritical water gasification. The CO2 adsorbed catalysts were 

then cooled to 60 °C and raised to 900 °C at 10°C/min with helium flow to determine 

adsorbed CO2 from the desorption peaks with respect to temperature; TCD analyzed the 

exit gas stream. 

H2 pulse chemisorptions experiments were also conducted using a Micromeritics 

Autochem 2920 to determine the active metal surface area, the percent dispersion and the 

active particle size of the nickel crystallites on the alumina support. A stream of Ar gas 
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was flowed through a bed of pre-reduced catalyst at a rate of 50 mL/min. When the argon 

flow was stable, a series of hydrogen pulses (1.0 mL) were injected into the system at 

40°C with the gas leaving the system being analyzed by a TCD detector.  As hydrogen 

gas was adsorbed on the active nickel sites, peaks were created in the TCD reading of the 

outlet stream. The hydrogen pulse was discontinued when two consecutive peaks showed 

the same area.    

The amount of hydrogen chemically adsorbed on the active sites of the catalyst was used 

to calculate the percent dispersion according to: 

%D =
Wf

AX
        (5.4) 

where A is a constant, X is the total hydrogen chemisorbed, W is the percentage of 

weight metal and f is the fraction of reduced metal. The average crystal size (dv) can be 

calculated from the following equation: 

dv = 
DS

V

m

m

%

1×
ϕ

       (5.5) 

where φ represents the particle shape constant, Sm represents the average surface area of 

metal surface exposed per surface metal atom, and Vm represents the volume of metal 

atoms. 

Thermogravimetric analysis (TGA) was performed to measure the weight gain due to 

oxidation of reduced catalysts, and the weight loss due to oxidation of adsorbed species 

(carbon) on the spent catalysts. The analysis was performed using a TGA/SDT A851 

instrument at a heating rate of 10°C/min in air. 
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Powder X-ray diffraction (XRD) patterns of crushed catalysts were collected to estimate 

crystallinities of fresh and used catalysts. A Rigaku rotating-anode XRD was used 

employing CuKα radiation, with monochromation achieved using a curved crystal, 

diffracted beam, graphite monochrometer. The instrument was operated at 45kV and 

160mA, using the normal scan rate of 10° per minute (equivalent to 0.5° two-theta on 

conventional diffractometers) in the 2θ range from 2° to 82°. X-rays were collimated 

using 1° divergent and scatter slits, and a 0.15mm receiving slit. 

The crystalline sizes can be calculated using the Scherrer equation99: 

θββ
λ
cos)(

9.0

0−
=XRDd        (5.6) 

where dxrd is the volume average diameter of the crystallite, λ is the Cu-Kα radiation  

(1.79 radian), and (β-β0) is the full width at half maxima of the peak.  

The coke deposition on the catalyst surface was characterized by Raman spectroscopy 

using a Kaiser Optical Systems RXNI-785 with an excitation wavelength of 785 nm.  

The nanostructured morphologies of the sample were obtained from Transmission 

Electron Microscopy (TEM) images (Model JEOL 2010F). Before TEM analysis, the 

powdered samples were dispersed in methanol by sonication and then placed and dried 

by normal evaporation on a copper grid covered with holey carbon film. 
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5.3 Results and Discussion 

5.3.1 BET Surface area, Pore size, Pore volume 

The surface area, average pore diameter and pore volume of the prepared fresh and spent 

catalysts are summarized in Table 5.1.  

Table 5.1: Physiochemical properties of catalysts: 

Catalysts SBET 

(m2/g) 

Dpore 

(nm) 

Vpore 

(cm3/gm) 

A θ-alumina 57 17.4 0.248 

B 7.5wt%Ni/ θ-alumina* 51 14.0 0.179 

C 11wt%Ni/ θ-alumina* 49 13.8 0.154 

D 18wt% Ni/ θ-alumina* 
Fresh 46 10.2 0.118 

Spent 31 9.6 0.076 

E 
3.5wt% La2O3/θ-

alumina 

Fresh 60 15.9 0.237 

Spent 50 9.9 0.125 

F 7wt% La2O3/θ-alumina 
Fresh 50 11.4 0.143 

Spent 45 11.0 0.124 

G 
3.5wt% La2O3-18wt% 

Ni/ θ-alumina 

Fresh 48 12.9 0.154 

Spent 40 9.5 0.091 

H 
3.5wt% La2O3-18wt% 

Ni/ θ-alumina** 

Fresh 46 6.8 0.078 

Spent 36 10.1 0.091 

J 
3.5wt% La2O3-18wt% 

Ni/ θ-alumina 
nanofiber 

Fresh 101 15.0 0.373 

Spent 12 11.9 0.024 

K 
Nano structured 

3.5wt% La2O3-18wt% 
Ni-alumina (sol-gel) 

Fresh 339 4.2 0.381 

Spent 25 7.6 0.051 

SBET = BET surface area; Dpore= Adsoption average pore diameter (4V/A); Vpore= 
Single-point adsorption total pore volume per gram. ** La2O3 impregnated after Ni 
loading. * Reference catalysts75 
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After nickel loading the surface area, average pore diameter, and pore volume of the 

catalysts were decreased (Catalyst A to D). Pore blocking by the nickel species is 

believed to be mainly responsible for the reduced surface area and pore volume.  All the 

spent catalysts (after SCWG for 30 mins at 500 °C and 28 MPa) also showed lower 

surface area, pore volume, and pore diameter than the fresh catalysts. Increasing the 

metallic crystallize size by agglomeration during SCWG is mainly responsible for 

decreased surface area of the spent catalysts, as further analyzed later. Deposition of 

intermediate products (mainly carbon) during the gasification reaction on the catalyst 

pores is another reason for the reduced pore volume and surface area of the spent 

catalysts, (further analyzed later).  

Contrary to Ni loading, it is interesting to see that after La2O3 loading on alumina the 

surface area was slightly increased (catalyst E compared unloaded alumina A) indicating 

that La2O3 was primarily deposited on the outer surface of the alumina support. The large 

diameter of the La3+ ions hinders diffusion into the alumina pores and is subsequently 

dispersed as a monolayer on the top of the θ-alumina surface94. However, increasing the 

amount of lanthanum to 7wt% onto Al2O3 (catalyst F) also decreased the surface area and 

pore volume attributed to blockage of inter-crystalline pores. 

When depositing the same amount (3.5 wt%) of La on alumina before Ni loading 

(catalyst G), a higher surface area, pore diameter and pore volume were found compared 

to La loaded after Ni loading (catalyst H). This can be attributed to La being deposited on 

Ni (catalyst H) hides some active nickel i.e. decreases some available Ni on top of the 

catalyst surface, as further confirmed by subsequent temperature programmed analysis. 
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Exposing nano catalysts to SCW reduced the surface areas and pore volumes drastically. 

This may be due to agglomeration, collapse of the nano porous structures, as further 

confirmed later. 

5.3.2 Temperature Programmed Reduction  

In a supported nickel catalyst, the nickel sites are active in their metallic form. Hence, for 

optimum catalyst performance, the catalyst must be reduced, i.e. activated before 

exposing to the actual reaction conditions. Therefore, the most important characteristic of 

a nickel catalyst that should be first investigated is its reducibility. In this study, TPR 

analysis was carried out in order to determine the reduction temperature, and the amount 

of reducible species for the prepared catalysts. TPR characterization also provides 

information to help understand the metal-support interactions and the different species 

present on the surface of the support. Figure 5.1 displays the TPR profiles of the 

investigated catalysts and for the La-Al2O3 reference material synthesized in this study. 

Although the synthesized catalysts were oxidized to 750°C, they were found to be 

reduced completely below 675 °C. It has been previously reported that high temperature 

calcination increases resistance to nickel reduction, and calcination of Ni on Al2O3 in air 

at 750 °C requires above 800 °C for reduction100. These excellent reduction 

characteristics of our catalysts are attributed to the procedure which includes ammoniacal 

treatment, being different from the reported synthesis100. 

The reduction profile (Figure 5.1) of both the La modified and plain nickel on alumina 

catalysts show two overlapping peaks between 350 ºC and 700 ºC.  For all the catalysts, 

the maxima of the first peak appeared between 450 ºC and 500 ºC while the second 
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maxima occurred between 600 ºC and 650 ºC, suggesting that two major species of Ni 

oxide exist. In the case of a supported nickel catalyst, the  species reduced above 600 °C 

is attributed to NiAl2O4 
101. Therefore, the peaks below 600 °C are ascribed to NiO, 

whereas the peaks 600 °C to 650 °C are due to NiO incorporated with NiAl2O4.  

High temperature oxidation/reduction reinforces any chemical interactions with the 

support, changes the NiO crystallite size, and incorporates mobile Al3+  into the NiO 

crystallites, resulting in the formation of nickel aluminate 100.  
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 Figure 5.1: TPR profile of a)3.5wt% La2O3/ θ-Al 2O3 b) 3.5wt% La2O3-18% Ni/ θ-
Al 2O3 ( La loaded after Ni loading) c) 3.5wt% La2O3-18% Ni/ θ-Al 2O3 ( La loaded 

before Ni loading), d) 18wt% Ni/ θ-Al 2O3. 

 

c 

d 

b 

a 



 

 

 

117

It was previously suggested that small NiO crystallites with high dispersion on the 

support are reduced at comparatively high temperatures indicating that most of the nickel 

species are NiO100. Therefore, reduction of the 650 °C species may be NiO strongly 

attached to the support with formation of some NiAl2O4. 

The TPR profile clearly shows that lanthanum has negligible reducibility even when the 

catalysts reached 750 °C under hydrogen flow (Figure 5.1a).  When comparing the 

effects of the sequence of La2O3 loading, the results indicate that La2O3 blocked some 

nickel species when lanthanum was loaded after nickel on the alumina support. As a 

result, the amount of reducible nickel species significantly decreased (Figure 5.1b). On 

the other hand, when La2O3 was loaded before Ni, hydrogen consumption for reduction 

of Ni was affected significantly less compared to 18wt%Ni loading on alumina (Figure 

5.1d). Another important aspect of La2O3 adsorption is shifting the reduction temperature, 

as La2O3 helps reduce the nickel species by shifting the peak to higher temperatures by 

lowering the hydrogen consumption. This phenomenon can be attributed to better 

dispersion of Ni and enhanced interactions between Ni and La2O3 to form La2NiO4 that 

may not be fully reduced. It was previously shown that nickel reacts with lanthanum at 

high temperature (>700 °C) to form La2NiO4 
102.  

Figure 5.2 shows the TPR spectra of spent catalysts after SCWG which shows two 

distinct peaks. It should be noted that spent catalysts were not oxidized before TPR 

analysis. As the TPR peaks appear, it can be concluded that the catalysts were oxidized 

during SCWG. The low temperature peak is assigned to NiO phase reduction while the 

high temperature peak is due to NiAl2O4 reduction. When comparing between Figures 5.1 

and 5.2, it is noticed that complete reduction shifts from 675 °C (Figure 5.1) to above 800 
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°C (Figure 5.2) and the size of the low temperature peak was significantly decreased after 

exposing the catalyst to the SCW reaction environment. This observation indicates that a 

significant amount of nickel reacted with the alumina support during SCW conditions 

forming nickel aluminates101. The La doped Ni/Al2O3 catalyst (Fig 5.2c) consumed a 

higher amount of hydrogen for reduction and the low peak of aluminate indicates that a 

higher amount of nickel oxide remains on the catalyst which in turn shows better 

stability. Low hydrogen consumption can also be attributed to some dissolution or 

erosion of metal in the harsh SCW environment103.     
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Figure 5.2: TPR profile of spent catalysts: a) 18wt% Ni b) 3.5wt% La 2O3-18wt% Ni 
(La loaded after Ni loading) c) 18wt% Ni -3.5wt% La2O3 (La loaded before Ni 

loading). 

 

Figure 5.3 shows the TPR spectra of fresh nano catalysts. Contrary to the pelletized 

catalysts, metals impregnated on nanofibers (Figure 5.3 a) showed peaks at 480 °C and 
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595°C (below 600 °C) ascribed to deposited NiO (as discussed earlier). The shoulder at 

595°C is attributed to NiO strongly attached to the support alumina. On the other hand 

sol-gel derived nano catalyst (Figure 5.3 b) showed one small peak at 428°C ascribed to 

bulk NiO on the catalyst surface. The small peak attributed to most of the metals doped 

by the direct sol-gel method could not be reduced ascribed to formation of Ni-La-Al-O 

alloy structure. In impregnation method, metals were deposited on catalyst support which 

could be reduced easily by using temperature program method.  
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Figure 5.3: TPR profile of fresh nano catalysts: a) 18wt% Ni-3.5wt% La2O3/ θ-
Al 2O3 nanofiber b) Sol-gel derived Ni-La-Al-O catalyst. 

 

Figure 5.4 shows the TPR spectra of the spent nano catalysts without pre-treatment by 

oxygen flow. Like impregnated catalysts, nano catalysts were also oxidized during 
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SCWG. It should be noted that no oxidant was used during SCWG with these nano 

catalysts. It is seen that use in SCW shifted the reduction temperatures towards higher 

temperatures. For the nanofiber catalysts (Figure 5.4 a), the first broader peak at 567°C is 

attributed to a major portion of deposited nickel remained as NiO even after SCW 

exposure, however the peak at 773°C is ascribed to a significant amount of nickel 

interacted with the support alumina forming NiAl2O4. On the other hand a small peak at 

500 °C with the sol-gel derived catalyst indicates that some impurities from SCWG or 

metallic NiO may be present on the catalyst surface that are not bonded with the catalysts 

main structure.   
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Figure 5.4: TPR profile of spent nano catalysts: a) 18wt% Ni-3.5wt% La2O3/ θ-
Al 2O3 nanofiber b) Sol-gel derived Ni-La-Al-O catalyst. 
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Using Equations (5.2 and 5.3); Figure 5.5 displays the percent of nickel reduction of fresh 

and spent catalyst during TPR analysis.  It is clear from this figure that except for the sol-

gel derived catalysts, the reducibility of both the fresh and spent catalyst is very high 

(above 90 %). It can be concluded that nickel present in the catalyst, can be regenerated 

by simple reduction. Very low reducibility of sol-gel derived catalyst further confirms 

that most of the metals loaded during synthesis formed Ni-La-Al-O structural bonds, 

which are relatively stable.  
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Figure 5.5: Metal percent reduction:  a-b) 18wt% Ni θ-Al 2O3, c-d) 3.5wt%La2O3-
18wt%Ni/θ-Al 2O3 , e-f) 3.5wt%La2O3-18wt%Ni /θ-Al 2O3 fibers, g-h) Direct sol-gel 

derived Ni-La-Al-O; a-c-e-g) Fresh catalysts, b-d-f-h) Spent catalysts. 

Interestingly, the % reduction was found greater than 100% when La2O3 was loaded after 

Ni. This can be explained by the formation of NiAl2O4 and the partial reduction of La2O3 

104. If non-stoichiometric reduction occurs due to the presence of NiAl2O4, the amount of 
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hydrogen needed may be greater than the amount of hydrogen required for the available 

NiO, which  has been shown to over estimate the % reduction 104. 

5.3.3 H2 Pulse Chemisorption 

Pulse chemisorption experiments were performed in order to determine the active metal 

surface area, the % metal dispersion and the active particle size of the nickel crystals on 

the alumina support. No peak was found for lanthanum on alumina as lanthanum has 

negligible reducibility. A decrease in the active surface area and the number of active 

sites is also an indication of agglomeration.  

Table 5.2 shows the pulse chemisorption results obtained for the nickel based catalysts 

synthesized in this investigation.  

Table 5.2: Hydrogen chemisorption results for reduced catalysts. 

Catalysts 

Metal 
dispersion 

(%) 

Active metal surface area Active particle 
diameter 

(nm) 
(m2/gm 
sample) 

(m2/gm 
metal) 

B 2.86 1.62 19.05 35.4 

C 2.49 1.82 16.55 40.73 

D 
Fresh 2.27 2.72 15.13 44.55 

Spent 0.53 0.63 3.50 192.65 

G 
Fresh 1.31 1.39 8.71 77.37 

Spent 0.62 0.66 4.10 164.32 

H 
Fresh 1.50 1.80 10.02 67.28 

Spent 0.84 1.00 5.57 120.95 

J 
Fresh 5.28 3.87 35.16 19.17 

Spent 1.23 0.90 8.15 82.62 

K 
Fresh 0.13 0.093 0.85 793.60 

Spent 0.10 0.073 0.66 1020.68 
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It is important to mention that no hydrogen chemisorption was detected when only La2O3 

was loaded on the alumina support. This confirms that for the La2O3 doped nickel 

catalyst samples, hydrogen chemisorption occurred on the nickel sites.  

As can be seen in Table 5.2, with an increased metal loading (catalysts B to C to D), the 

metal dispersion decreased, and the active particle diameter increased due to the 

formation of larger metal crystallites. The surface area of nickel sites gives information 

on the active metal area measured by chemisorption. An increase in the active metal 

(nickel) surface area per gram of catalyst and a decrease in the active metal surface area 

per gram metal are other indications of the formation of larger crystallites. Although it 

has been reported that lanthanum oxide helps to disperse metallic crystallites105, the metal 

dispersion and surface area were significantly decreased when 18wt%Ni was loaded on 

3.5wt% La2O3 modified alumina support (catalyst G) or 3.5wt% La2O3 on the 18wt% 

Ni/Al 2O3.  This may be due to the formation of La2NiO4 in the catalyst preparation stage. 

During the calcination step, at elevated temperature (750 °C in this case) in the presence 

of oxygen, La reacts with Ni to form La2NiO4
102 that causes blocking of nickel 

crystallites106. Strong metal–support interactions may also have  influenced the amount of 

H2 adsorbed106. Another possibility that can cause the same effect is the presence of 

strongly chemisorbed hydrogen on the metal particles, formed during the reduction step, 

which inhibits any further hydrogen chemisorption106.  

Nanofiber catalysts (Cat. J) showed the best metal dispersion, and active metal surface 

areas among the catalysts evaluated. This finding is ascribed to the formation of small 

metallic crystals (smallest among catalysts evaluated) on the support. Like the other 

catalysts, agglomeration of active metal on the spent nanofiber catalyst resulted in the 



 

 

 

124

formation larger metallic crystallites on the surface. On the contrary, the direct sol gel 

derived catalyst showed extremely low metal dispersion, active metal surface area with 

very large metallic crystal diameter. This result further confirms that a small amount of 

bulk metal remained on the catalyst surface while most of the active metals were 

integrated within the main Ni-La-Al-O structure.  

A decrease in metal dispersion and an increase in the active particle diameter of spent 

catalysts from SCWG indicate that some agglomeration of metals occurred. As well, a 

decrease in the surface area may also be due to dissolution or erosion of metal occurring 

under SCW conditions103. 

5.3.4 Temperature Programmed Desorption 

Since CO2 is one of the major products of supercritical water biomass gasification, the 

CO2 adsorption properties of the experimental catalysts was studied by TPD in which the 

amount of CO2 adsorbed on the catalyst surface at 500 °C for 30 min is measured by 

desorption analysis. Figure 5.6 shows the TPD profile of CO2 by the catalysts in which 

two major peaks are observed. This result can be attributed to the different bonding 

modes of CO2 with the active sites during adsorption on the surface. Cox107 showed that 

coordination of CO2 onto metal oxides has different energies which leads to different 

desorption profiles. The lower temperature peak (180 to 250 °C) is due to desorption of 

CO2 with the weakest bonding mode on the catalyst active sites. On the other hand, 

strong bonds of CO2 with catalyst require higher temperatures to produce more energy 

for desorption of CO2.  
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Figure 5.6: Temperature programmed desorption.  (a) 3.5wt%La2O3, (b) 18wt%Ni, 
(c) 3.5wt%La2O3-18wt%Ni. 

 

From Figure 5.6 it is seen that most CO2 on the Ni surface is adsorbed weakly and 

desorbed at 185°C. Both weak and strong bonding of CO2 on La2O3 is observed which 

desorb at 225°C and 600 °C, respectively. Interestingly on the Ni-La2O3 catalyst surface, 

mostly strong bonding of CO2 was observed that needed 600 °C to be desorbed. As our 

reaction temperature is 500 °C, the strong bonding portion of CO2 coordination remains 

adsorbed on the Ni-La2O3 surface. 

5.3.5 TGA Analysis 

Following the SCWG reaction, the spent catalyst samples were collected and further 

analyzed using TGA to characterize the effect of the SCW environment on the catalyst 
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structure and stability. TGA is also of interest as it is useful in determining possible 

carbon deposition on the solid catalyst during the reaction. Figure 5.7 shows the weight 

loss curves of the different catalysts as a function of temperature in air. Figure 5.7a is the 

TGA curve of fresh 18wt% Ni/θ-Al 2O3 catalyst, where 1.5% weight reduction before 200 

°C is observed due to loss of adsorbed water during reduction or gases adsorbed from the 

environment. The weight gain after 200 °C exceeds 100% due to the oxidation of Ni to 

NiO. After 600 °C, non-stoichiometry formation of nickel aluminate forms active 

metal101. The weight gain of lanthanum modified reduced nickel on alumina (Figure 5.7b) 

is comparatively low, indicating that a stronger interaction of nickel with lanthanum 

prohibits oxidation of nickel. The weight loss of spent catalyst (Figure 5.7c-f) is due to 

the removal of adsorbed water, gases and deposited carboneous species. No net weight 

gain of the spent catalysts was observed, indicating that reduced catalysts were already 

oxidized during SCWG process (confirmed by TPR analysis). The initial weight loss up 

to 200 °C is ascribed to adsorbed water during the reaction and any easily oxidizable 

carboneous species108. The oxidation of coke (carbon deposit) to CO and CO2 mainly 

occurred at 360 °C, consistent with the results of others.109. The weight loss was least for 

the spent 18wt%Ni on alumina (Fig 5.7c) compared to the other La2O3 modified catalysts 

(Figure 5.7d-f). This may be due to formation of graphitic carbon on the nickel catalysts. 

Pinherio et al. 110 found that the larger the amount of graphite like carbon deposition on a 

catalyst surface, the lower the weight loss. They reported that for Ni catalysts, graphite 

like carbon forms in higher amounts than with Pt catalysts110. The formation of graphite 

like carbon on Ni and inhibition of this type of coke formation by La modified catalysts 

was further confirmed by XRD, and Raman analysis as discussed below. In addition, the 
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amorphous carbon encapsulating the agglomerated Ni particles of spent catalysts was 

found difficult to gasify, similar to that found by Matsukata et al.111. The other reason for 

high weight loss by spent La2O3 is that strongly bonded CO2 on La2O3 requires higher 

temperatures to desorb than used in the reaction as shown by CO2-TPD analysis. 
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Figure 5.7: TGA Analysis a)18wt%Ni/θ-Al 2O3 (Fresh) , b) 18wt%Ni-
3.5wt%La2O3/θ-Al 2O3 (Fresh, La2O3 loaded before Ni loading), c) 18wt%Ni/θ-Al 2O3 
(Spent), d) 18wt%Ni-3.5wt%La2O3/θ-Al 2O3 (Spent, La2O3 loaded before Ni loading), 

e) 18wt%Ni-3.5wt%La2O3/θ-Al 2O3(Spent, La2O3 loaded after Ni loading),  f) 
3.5wt%La2O3/θ-Al 2O3(Spent). 

 
 

Adsorbed CO2 by lanthanum modified spent catalysts lost weight in two ways: i) 

dissociation of lanthanum oxycarbonate formed during reaction (confirmed by XRD 

analysis) and ii) reaction of oxycarbonate with surface carbon to produce carbon oxides.  

Impregnation of lanthanum before and after nickel impregnation also affects the weight 
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loss significantly. As discussed earlier, if lanthanum is impregnated after nickel (Fig 

5.7e), there is a layer of lanthanum oxide over nickel which helps to form extra 

carboneous complex.  On the other hand, if lanthanum oxide is loaded before nickel (Fig 

5.7d), the weight loss is due to coke formation and some carbonated lanthanum complex. 

Lanthanum oxide is known to have a high ability to adsorb water and carbon dioxide92 

(as shown in Figure 5.6) that results in a higher weight loss. 

 

5.3.6 Raman Spectroscopy Analysis 

To probe the structure and crystallite size of coke on spent reforming catalysts, Raman 

spectroscopy has been extensively used. Figure 5.8 shows a typical Raman spectrum of 

spent catalysts without any sample pre-treatment. The peak around 1581cm-1
, which is 

more prominent on the Ni/Al2O3 catalyst, confirms the presence of graphitic coke112. 

However on the La modified catalyst, this peak is less intense showing the inhibition of 

graphitic coke. The peaks around 1300cm-1 are due to carbon nano particles, amorphous 

carbon, or defective filamentous carbon112, which also shows that the La modified 

catalyst helps to inhibit formation of carbon. Further characterization of the coke on spent 

catalysts was performed using XRD and temperature programmed oxidation analysis. 
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Figure 5.8: Raman spectra of the coke of spent catalysts. (a) 18wt% Ni/θ-Al 2O3 (b) 
18wt% Ni- 3.5wt%La 2O3/θ-Al 2O3 

 

5.3.7 XRD Analysis 

XRD measurements were conducted for the investigated catalysts before and after 

SCWG to investigate any changes, as shown in Figure 5.9.  

The peaks at 52.26° and 61.3 on the fresh reduced Ni catalysts (Fig 5.9 a,e) are due to 

metallic nickel113, which subsequently disappears on the spent catalysts. Nickel oxides 

(50.86°) and nickel aluminates (78.26°) appear on the spent catalyst. The peaks at 43.52° 

and 67.94° of nickel loaded spent catalyst (Figure 5.9 b,f) intensified due to the formation 

of nickel aluminate113, 114 and at 41.06° from the formation of NiO114. The peak at 73.2° 
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appears only on the nickel-lanthanum-alumina spent catalyst (Figure 5.9f) and can be 

attributed to the formation of La2NiO4
102. 
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Figure 5.9: XRD patterns of a-c-e) Fresh Catalysts, b-d-f)Spent catalysts; a-b) 
18wt% Ni/θ-Al 2O3, c-d) 3.5wt% La2O3/θ-Al2O3, e-f) 18wt%Ni-3.5wt%La2O3/θ-
Al 2O3. ♦- Graphite; ●-Al 2O3;▼-Ni; ◙-NiAlO 4; ■-NiO; ◘-La2O2CO3; ◊- coke; ○-

La2NiO4;  □-La2O3 

 

The peaks at 29.84° and 61.92° on the spent catalyst can be attributed to different types 

of coke that formed on the catalyst surface. The peak at 61.92°, only on the spent 

catalysts, can be attributed to the formation of carboneous products or coke during 

SCWG while the peak at 29.84° appears on spent Ni/Al2O3(Fig 5.9b), indicating the 

formation of graphite type coke113. A very tiny peak forms on lanthanum-loaded spent 
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catalysts at 56.24° and 74.04° which can be ascribed to the formation of lanthanum 

oxycarbonate115.  

Figure 5.10 shows the XRD peaks of fresh and spent catalysts at different reaction time. 

It is seen that conversion of Ni to NiO and NiAlO4 happened mainly in the first five 

minutes.  
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Figure 5.10: Reaction time effect on XRD patterns of Ni-La 2O3/Al2O3 a) Fresh 

catalyst, Spent catalysts at: b) 5 min c) 20 min, d) 30 , e) 60 min ;▼-Ni; ◙-NiAlO 4; ■-
NiO; ●-Al 2O3; ○-La2NiO4;  ◊- coke. 

 

The size of Ni (dxrd ) was found to be approximately 86 nm while the size of NiO was a 

little larger and ranged from 92 nm to 93.5 nm. A similar effect is seen for the other 

crystallites. Therefore the effect of catalysts’ surface change after initial conversion (5 

minutes in batch reactor) can be considered negligible. 
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Figure 5.11 shows the XRD peaks of fresh and spent nano catalysts to verify the 

crystallinity change in nano structure.  
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Figure 5.11: XRD patterns of a-b) 18wt% Ni/θ-Al 2O3 (nanofiber), c-d) Ni La-Al sol-
gel derived; a-c) Fresh Catalysts, b-d)Spent catalysts;  ●-Al 2O3;▼-Ni; ◙-NiAlO 4; ■-

NiO  

 

The nanofiber catalyst showed similar characteristics as shown with pellet size catalysts 

due to the same impregnation procedure (Figure 5.11 a-b). However, the direct metals 

loading by sol-gel method showed that fresh catalyst was mostly amorphous (Figure 

5.11c). A tiny peak for Ni at 52.26° further confirmed that a small amount of bulk Ni was 

attached on the surface while most of the metals were integrated with the support. 

Exposure to SCW transformed the catalysts to formation of NiAlO4.  
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5.3.8 Temperature Programmed Oxidation of Spent Catalysts 

Temperature programmed oxidation (TPO) of the spent catalysts was performed to 

further examine the characteristics of deposited carboneous products on the catalysts 

during reaction, as shown in Figure 5.12. There are three types of coke or carboneous 

products present as indicated from the figure. The low temperature peak is more reactive 

to oxygen, and has been assigned to coke deposited on metallic centers116. The second 

peak type is attributed to coke deposited near the metal-support interphase, 117 while the 

third type is less reactive, appearing at higher temperature, and corresponds to coke 

deposition on the support116. This coke type is far from the active metallic centers, which 

catalyze the carbon gasification117.  
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Figure 5.12: Temperature programmed oxidation profile of a) 18wt%Ni/θ-
Al 2O3(Spent) b) 18wt%Ni-3.5wt%La2O3/θ-Al 2O3(Spent),  c) 3.5wt%La2O3/θ-

Al 2O3(Spent) 
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The oxidation of coke (carbon deposit) to CO and CO2 mainly occurred at 360 °C109. The 

oxygen consumption is low on the spent 18wt%Ni//θ-Al 2O3 (Figure 5.12a) compared to 

lanthanum and lanthanum modified catalysts. The literature shows that coke formation is 

higher on Ni/La2O3 than Ni/Al2O3 
118. Lanthanum oxide not only adsorbs carbon dioxides 

easily but also may form lanthanum oxycarbonate (La2O2CO3), similar to reforming type 

reactions29, 92. As discussed earlier, this oxycarbonate reacts with deposited coke and acts 

as a self cleaner by producing carbon monoxide which later reacts with oxygen or water 

to form carbon dioxide. 

5.3.9 TEM analysis  

To observe any structural change in the catalysts, TEM analysis was performed. Figure 

5.13 shows the TEM images of fresh and spent catalysts. It is clearly seen that structural 

changes occurred after using in SCWG. Comparing Figure 5.13a with 5.13b it is further 

confirmed that metals impregnated on the supports agglomerated when exposed to SCW. 

 The fibrous structure of the nanofiber catalysts was distorted by reaction in the SCW 

environment (Figure 5.13 c-d). The severe transformation occurred with the sol-gel 

derived catalysts. The porous aerogel structure of direct sol-gel derived catalysts 

transformed to non-uniform nano structures (such as nano sheet, rod, sphere, cube etc.). 
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Figure 5.13: TEM images of a-b) 18wt%Ni-3.5wt%La2O3/θ-Al 2O3(pellet), c-d) 

18wt%Ni-3.5wt%La 2O3/θ-Al 2O3 (fiber),  e-f) Ni-La-Al-O (direct sol gel derived);  
a-c-e) Fresh catalysts, b-d-f) Spent catalysts 
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5.3.10 Reaction mechanism  

Carbon dioxide adsorption, comparatively low coke formation and the formation of 

lanthanum oxicarbonate using the La modified catalysts can described as follows:  

Formation of lanthanum oxycarbonate by adsorbing carbon dioxide  

La2O3+CO2 � La2O2CO3                     (5.7) 

Lanthanum oxycarbonate species reacts with surface carbon (scavenging coke) formed by 

glucose or intermediate product decomposition (confirmed by XRD and Raman analysis) 

at the periphery to form carbon monoxide and lanthanum oxide 

La2O2CO3+C→La2O3+2CO        (5.8) 

By adsorbing carbon dioxide and releasing carbon monoxide, lanthanum helps to resist 

the methanation reaction of CO2 and further enhances the water gas shift (WGS) reaction.  

2CO + 2H2O � 2CO2 + 2H2                         (5.9) 

From our previous study (chapter 4) it is seen that although La adsorb CO2; production of 

CO2 increased with time. From equations 5.7 and 5.8, one can see that two mol of CO is 

released if one mol of CO2 is adsorbed scavenging one mol of coke by La. From the 

WGS reaction, these two mol of CO produce two mol of CO2. Therefore, the net CO2 

production is positive. 

This mechanism can help to explain the higher yield of hydrogen, lower yield of methane 

and high yield of carbon dioxide by lanthanum and lanthanum modified catalysts 

compared to plain nickel catalyst. 
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The water gas shift reaction and carbon dioxide methanation reaction on the catalyst 

surface can be described as follows:  

Water gas shift reaction: 

i) Carbon monoxide adsorbs reversibly on nickel 

CO + Ni � CO-Ni 

ii)  Water adsorbs dissociatively on lanthanum oxide  

iii)  H2O + O-La � OH-La-OH  

iv) Carboxyl formation takes place via the reaction of adsorbed  CO with 

hydroxyl group on the lanthanum 

CO-Ni + OH-La-OH � COOH-Ni + La-OH 

v) The carboxyl species and second hydroxyl group on lanthanum react to 

form adsorbed hydrogen and carbon dioxide 

Ni-COOH + La-OH + Ni � 2H-Ni + La-O-CO2 

vi) Once an adjacent nickel site becomes free this carboxyl complex 

decomposes into the reaction products. Hydrogen competes with carbon 

monoxide for nickel adsorption sites. Similarly carbon dioxide is adsorbed 

strongly on lanthanum 

2H-Ni � H2 + 2Ni 

La-O-CO2 � CO2 + La-O 

Methanation reaction of carbon dioxide over Ni: 

vii)  Adsorption of hydrogen and carbon dioxides 

2Ni + H2 � 2H-Ni 

CO2 + Ni � CO2-Ni 
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viii)  Formation of carboxyl 

CO2-Ni + H-Ni � COOH-Ni + Ni 

ix) Reaction with adsorbed hydrogen 

COOH-Ni + H-Ni � COH-Ni + OH-Ni 

COH-Ni + H-Ni � CH-Ni + OH-Ni 

CH-Ni + H-Ni � CH2-Ni + Ni 

CH2-Ni + H-Ni � CH3-Ni + Ni 

CH3-Ni + H-Ni � CH4 + 2Ni 

x) Releasing the adsorbed hydroxyl group 

OH-Ni + H-Ni � H2O + 2 Ni 

As mentioned in chapter 4, lanthanum and cerium have similar chemical properties. 

Germani and Schuurman reported a similar mechanism for water gas shift reaction over 

Pt/CeO2/Al2O3.
119 The reaction mechanism for the methantion of carbon dioxide is 

similar to that reported by Vandervella and Bowkera.120 As carbon dioxide is produced 

from the WGS reaction, the total production of carbon dioxide remained high. As a result 

of the WGS reaction, carbon monoxide is consumed while increasing the hydrogen yield. 

This also helps to reduce the catalyst deactivation by coke formation. Reduction of 

methane formation is attributed to the produced carbon dioxide or carbon monoxide 

which did not undergo the methanation reaction even in the presence of a high amount of 

nickel doped with La. 
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5.4 Conclusions 

Synthesized catalysts by impregnation method were found to have excellent reduction 

characteristics and can be regenerated by simple reduction. However, agglomeration of 

impregnated metals by exposure in SCW was found to reduce the active metal surface 

area. Lanthanum modified catalysts was found to reduce graphitic coke formation and 

adsorption of carbon dioxide that can contribute to retard methanation of carbon dioxide 

in the presence of hydrogen. Adsorption of carbon dioxide, one of the main gaseous 

product, can shift equilibrium to the product direction and thus increase desired product, 

hydrogen. Formation of lanthanum oxycarbonate by adsorbing carbon dioxide to 

lanthanum also scavenges deposited carbon and thus helps to minimize catalyst 

deactivation. Reacting with carbon, lanthanum oxycarbonate produces more carbon 

monoxide which in turn may enhance the water gas shift reaction and thus increase the 

hydrogen yield. The reaction mechanism of adsorption of carbon dioxide, WGS reaction, 

and methanation reaction on nickel sites were discussed. 

Nanofiber catalysts were found to have high dispersion of active metals due to the high 

aspect ratio compared to the other synthesized catalysts. High dispersion of active metal 

can increase the catalyst activity. Sol-gel derived catalysts were found to have high 

surface area with mainly amorphous nano network structure of Ni-La-Al-O. However, 

the high surface areas of nano catalysts were abruptly reduced after SCWG due to 

structural changes. 

Although lanthanum modified catalysts were found to be very active in SCWG (chapter 

4), exposure of catalysts in SCW severely affects their physical and chemical structure. 
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Metal-support interaction of all catalysts was found to be prominent in SCW. Nano 

network of sol-gel derived catalysts was transformed to non uniform nano particles.  
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Chapter 6 

Development of kinetic model for TOC destruction from supercritical 

water gasification of glucose 

In this chapter, a global kinetic model of supercritical water gasification of glucose was 

developed for the utilized batch reactor. To reduce the complexity of the model, no 

oxidant was used for TOC destruction. Crushed La modified Ni/Al2O3 catalysts were 

used for evaluation. A MATLAB program was developed to solve the non-linear 

regression analysis of differential model equation.  This chapter is mostly a reproduction 

from the article by the author submitted to Industrial Engineering and Chemistry 

Research121: Development of kinetic model for TOC destruction from supercritical water 

gasification of glucose. 

 

6.1 Introduction  

Supercritical water gasification is an economically viable and ecologically safe 

destruction technology for treating wet biomass waste from agricultural or industrial 

residues into combustible gases without requiring a feedstock drying procedure. Under 

supercritical conditions, water exhibits gas-like diffusion rates along with high liquid like 

collision rates, with the reaction taking place in the homogeneous phase. On the other 

hand, the solubility of inorganic compounds decreases dramatically in supercritical water, 

facilitating separation of valuable products such as phosphtes. Moreover, supercritical 
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water is not only a solvent for organic materials but also a reactant which can help to 

produce fuel gas from organic resources. One important property of SCW is that there 

exists almost no mass transfer limitation. Generally catalytic reactions are mass-transfer 

limited due to the high reaction rates, low diffusion rates, and poor fluid flow 

characteristics. A high effective diffusion coefficient for supercritical water (about 100 

times higher than ambient water) diminishes the chance of mass-transfer gradients 

developing in the catalyst internal surface area9. The Thiele modulus, which represents 

the degree of internal or pore diffusion limitation, is much less than unity for supercritical 

water, which indicates that pore-diffusion limitations do not exist in the catalyst9.  

Because of the high moisture content, conventional gasification processes for gasification 

of sewage sludge, agricultural wastes, and food processing wastes are not considered 

promising. The conversion efficiency of supercritical water gasification is always higher 

than for other conventional processes when the moisture content is above 31% 5. 

Cellulose is known as one of the most difficult components for dissolving in hot water35. 

The complete conversion of cellulose to glucose and its oligomers can be achieved at 

temperatures as high as 400 °C in supercritical water conditions36. Therefore gasification 

of glucose in supercritical water can be considered as a good model for gasification of 

more complex cellulosic biomasses.  

Heterogeneous catalysts are preferable over homogeneous alkali catalysts to avoid reactor 

corrosion problems while being relatively easy to recover122, 123. During the study of 

catalytic phenol oxidation in supercritical water, Oshima et al.96 showed that external 

mass transfer resistance was negligible for small size catalysts (size 0.18-0.25 mm), 
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however larger size catalysts posed some mass transfer resistance. In this respect we have 

introduced crushed (0.1-0.3 mm) catalysts to observe the effect on the products.  

Total organic carbon (TOC) is the amount of carbon bound in an organic compound and 

is often used as a non-specific indicator of water quality. TOC detection is an important 

measurement because of the effects it may have on the environment, human health, and 

manufacturing processes. TOC is a highly sensitive, non-specific measurement of all 

organics present in a sample. It can be used to regulate the organic chemical discharge to 

the environment in an agriculture or manufacturing plant. In addition, low TOC can 

confirm the absence of potentially harmful organic chemicals in water used to 

manufacture pharmaceutical products. In this respect, for this study we investigated the 

destruction and rate of TOC during SCWG. 

A kinetic analysis of the decomposition rate in SCWG is important to design the required 

reactor system. However, kinetic information describing SCWG is limited especially for 

longer residence times. Depending on the feed type, gasification increases with increased 

residence time14, 124. Jesus et al.60 correlated results of gasification of corn silage at 700 

°C and 25 MPa in SCW with time and developed a linear relationship between carbon 

conversion (YC) and residence time(τ): 

YC =Kτ =0.11τ (R2=1)                  (6.1) 

They also proposed a model for corn silage using mathematical approximation based on 

zero-order kinetics as follows:  

])[101.6exp(10)(min)
][

][9.47
exp(10 38.21-2 KT

KRT

KJ
Y −− ×+= τ   (6.2) 
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Lee et al.125 also found that below 600 °C, the hydrogen yield increases with increased 

residence time when gasifying glucose in supercritical water. They conducted a kinetic 

analysis assuming pseudo first order reaction during the gasification of glucose in 

supercritical water. Their kinetic investigation leads to the following first order reaction 

rate for COD (chemical oxygen demand) degradation as a function of the corresponding 

concentration Cc: 

cc C
RT

r )
9.3

0.71exp(10 23.095.2 ±−=− ±       (6.3) 

Although they assumed zero order for water, they agreed that non-first order kinetics 

would have given a better correlation of the experimental data.  

For higher destruction of TOC or COD, some researchers have introduced oxidant and 

studied the kinetics for supercritical water oxidation assuming zero order for oxidant and 

water. Jin et al.56 studied the TOC kinetics for oxidation of food wastes. They found the 

reaction to be fast at the early stage of reaction (within 50 seconds) and slow afterwards. 

They assumed the oxidation reaction as first order and simplified the TOC conversion as: 

ln(1-X)=-kt         (6.4) 

where X is the conversion of TOC, t is time, and k is reaction rate constant (function of 

temperature). To determine the value of k from the slope they plotted ln(1-X) vs t. As the 

straight line did not go the origin as required by equation 6.4, the reaction kinetics were 

not entirely first order.  

Due to the complex reaction mechanism of SCWG that involves multi-component 

reactants (feed and other reactants formed as intermediate products) and products, Goto 

et al.76 performed a kinetic analysis of TOC for the destruction of municipal sewage 



 

 

 

145

sludge and alcohol distillery wastewater. They simplified the kinetic study by assuming 

zero order for oxygen and unity for the reaction order. Portela et al.126 performed a 

generalized kinetic model based on acetic acid and carbon monoxide as the main 

refractory intermediates for supercritical water oxidation of cutting oil wastes. 

Oshima et al.96 oxidized phenol in supercritical water using manganese oxide as the 

catalyst. They showed that the mass transfer limitation for small size catalysts is 

negligible. Assuming first order reaction for phenol oxidation they proposed two models 

which could not be discriminated due to a lack of data.  

Kinetic studies on supercritical water gasification have been much less studied than 

supercritical water oxidation. One major shortcoming of these studies is the assumption 

of a first order reaction rate. The assumption of zero order for other reactants, such as 

oxygen and water may also be misleading for a proper understanding of reaction 

behavior. Using excess oxygen Hernandez et al.127 and Lee et al.128 found that the order 

of oxygen concentration was not zero. However, they simplified their model applying an 

initial rate method. All of the researchers assumed no effect of water concentration i.e. 

zero order on TOC destruction since it is used in excess over the stoichiometric 

requirement. However our previous study (chapter 4) showed that the lower the feed 

concentration (i.e. higher water: feed ratio) the higher is the TOC conversion.  

Most of the lab based SCWG reactors use a volume of only a few milliliters while no 

kinetic data available in the literature at longer residence times, which may be required 

for industrial implementation in a tubular reactor. More than thirty intermediate products 

were detected by Hologate et al.53 (425-600 C and 246 bar) and by Williams and 
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Onwudili54, development of a rigorous kinetic model is difficult and has less practical 

importance. For engineering purposes, it often is sufficient to develop a global rate model 

to express the reduction of components in SCWG of organic wastes. Decomposition of 

carbon containing components expressed as total organic carbon (TOC) by SCWG 

increases the gaseous yields. In our previous study (chapter 4), we showed that the higher 

the TOC destruction, the higher the hydrogen and other gaseous product yields.  

Therefore, in this study a global kinetic model for TOC destruction without using oxidant 

has been developed with time and temperature dependency. The pressure effect was not 

studied due to reactor limitations; moreover, conducting over 200 experiments Kersten et 

al.63 found the pressure dependence range of 13.8 to 41.8 MPa on reaction products to be 

insignificant. Hao et al.14 also observed no great effect on gasification efficiency and the 

fraction of gas product from 25MPa to 30 MPa at 500 °C and 650 °C.  

6.2 Experimental method 

In the experiments, the model compound glucose was obtained from Sigma-Aldrich 

(Mississauga, Ontario) and used as received. De-ionized water, 18.2 M-cm, was obtained 

from an ultrapure water system (EASY pure LF, Mandel Scientific co, model BDI-

D7381) to prepare the solutions.  

Supercritical water gasification experiments were conducted using a 600 ml autoclave 

batch reactor made of Hastelloy C-276 equipped with 1.5 kW electric furnace for heating 

(Autoclave Engineers, Erie, Penn., USA). The schematic diagram and experimental 

procedure was described in detail elsewhere93. Briefly, in a typical experiment 70 ml of 

deionized water with 1 gram of catalyst was loaded into the reactor, then evacuated 
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followed by purging with He gas for 10 minutes. The reactor was then pressurized to 2.5 

MPa with helium in order to prevent water evaporation and pressurized to 24 MPa by 

heating to 400 °C. The concentrated glucose solution (0.25 M) was then pumped into the 

pressurized reactor using a syringe pump (Isco Model 100 DX, Lincoln NE, USA); 

providing a final reactor pressure of 28MPa. The initial reaction time (t) was started as 

soon as the feed was injected into the reactor. After the required reaction time, the 

products were cooled to ambient temperature using a double pipe heat exchanger and 

separated by a sudden expansion gas-liquid separator (both heat exchangers and gas-

liquid separator are designed by the author and manufactured at the UWO machine shop). 

The product gas was then passed through a 2 micron filter to remove any remaining 

moisture and passed through an OMEGA mass flow meter (FMA 1700/1800 series 0-2 

L/min, Laval, Quebec, Canada). The product gases were then collected in a 3L volume 

Tedlar gas sampling bag for subsequent GC analysis.  

To analyze the percent of gasification and hydrogen yield, the product gases were 

analyzed by gas chromatography (Shimadzu, GC-2014) using 120/80 D Hayesep 

stainless steel Nickel packed column (Grace Davidson) with dimensions of 6.2 m x 3.18 

mm, a thermal conductivity detector (TCD) and helium as the carrier gas. To measure the 

total carbon content in the liquid effluent that did not gasify, Total Organic Carbon 

(TOC) was analyzed with a TOC-VCPH (Shimadzu Instruments). This is an analytical 

method that determines the amount of organics through measurement of content 

generated during organic matter oxidation. The TOC decomposition X was used to 

evaluate the extent of oxidative decomposition, and defined as: 
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TOC decomposition, 
0][

][
1

TOC

TOC
X −=      (6.5) 

where [TOC]0 is the initial TOC and [TOC]  is the residual after reaction. 

Gas yield, and carbon gasification efficiency (CGE), were calculated as shown in 

equation 5.7 and 5.8 as defined by Yu et al61.   

feedinegluofmol

producedgasofmol
yield

cos
=       (6.6) 

feedincarbonmol

gasproducedincarbonmol
CGE =       (6.7) 

6.3 Results and Discussion 

6.3.1 Effect of Reaction Time and Temperature 

Here we examine the effect of reaction time and temperature on the TOC destruction with 

crushed Ni on La-alumina catalysts. Reaction time and temperature have a large effect on 

the gaseous and liquid products as shown in chapter 4.      

Figure 6.1 shows that increasing reaction time and temperature leads to the TOC 

conversion and CGE increasing i.e. the gaseous products increases due to a higher 

conversion of the liquid intermediates.  
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Figure 6.1: Effect of time and temperature on TOC conversion and CGE. a) TOC 
conversion, b) CGE. Catalyst size: 0.1-0.3 mm, amount =1 gm, P=28MPa, Feed= 

0.25M Glucose.  

 

To further study the effect of reaction time, the temperature was fixed at 500 °C, and 

reaction time was increased to 60 and 120 minutes. From Figure 6.2 it is also seen that 

both the TOC conversion and CGE increases with reaction time. The TOC conversion 

reached almost 90% while CGE reached over 96% due to increased gasification.  
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Figure 6.2: Effect of time on TOC conversion and CGE. Catalyst size: 0.1-0.3 mm, 
amount =1 gm, T=500 °C, P=28MPa, Feed= 0.25M Glucose.  
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6.3.2 Effect of Concentration 

Figure 6.3 shows the effect of feed concentration on the TOC conversion and carbon 

gasification efficiency. The TOC conversion and carbon gasification efficiency being 

reduced with increased concentration is attributed to a lower gasification of organic 

compounds occurring.  
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Figure 6.3: Effect of feed concentration on TOC conversion and CGE. Catalyst size: 

0.1-0.3 mm, amount =1 gm, reaction time = 30 min, T=500 °C, P=28MPa.  

 

From the above observations it is clear that low concentration with increased time and 

temperature is favorable for the TOC destruction and higher gasification yields. 



 

 

 

151

6.4 Reaction Kinetics of TOC destruction 

The reaction kinetics of glucose decomposition in supercritical water was studied 

previously in small tubular reactors with residence times shorter than 35 seconds 125, 129. 

As summarized by  Lu et al.130
 under supercritical water conditions the reaction proceeds 

by a free radical reaction mechanism. Intermediate liquid products need longer residence 

times for further gasification as shown by the preview experimental results. The gaseous 

products also undergo internal reactions (e.g. WGS, carbonation etc.) with longer 

residence times which can also contribute to the observed changes.  

From the earlier study of XRD analysis (chapter 4) and literature survey 9, 96, we assumed 

that the catalyst structure change (i.e oxidized crystallites) happened in the beginning of 

the reaction.  Therefore it is assumed that after initial change, the structure and catalytic 

effect on gasification remains steady with time (from 5 minutes to 120 minutes in our 

study). The activity of the catalyst for TOC destruction and gasification efficiency was 

evaluated for the kinetic model development for the time range of 5 minute to 120 

minutes. It has also been shown that in supercritical water, mass transfer limitations on 

the catalyst surface is negligible9, especially with particles less than 0.5 mm96. In our 

study we crushed catalysts to a 0.1-0.3 mm size. Therefore the catalyst surface 

concentration is assumed approximately equal to the bulk concentration. Therefore the 

global rate equation for the overall hydrolysis reaction may follow a power-law rate 

expression and can be written as: 

qp
n

n OHCk
dt

Cd
r ][][

][
2=−=                     (6.8) 
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where [ nC ] and [H2O] indicate the concentration of reactants and water, respectively. p is 

the order of the reaction with respect to reactant, and q is the order of the reaction with 

respect to water.  

6.4.1 Model one 

As discussed in the introduction, for simplification, most of the researchers have assumed 

first order reaction during decomposition in supercritical water gasification and ignored 

the effect of water. Since water is used in excess and exists with reactants in a single 

homogemeous phase in SCWG, the reaction order can be assumed zero for water. 

Equation (5.24) then becomes  

p
n

n Ck
dt

Cd
][

][
=−        (6.9) 

From an environmental point of view, COD or TOC concentration is the common 

parameter to measure the pollution in waste waters. Substituting Cn with [TOC] the 

equation (6.9) will become, 

  pTOCk
dt

TOCd
][

][ =−       (6.10) 

If the reaction is assumed to be a first order reaction, integration of equation (6.10) will 

become, 

 kt
TOC

TOC =−
0][

][
ln         (6.11) 

The experimental data of TOC at different temperatures are plotted as –ln[TOC]/[TOC]0 

vs time in Figure 6.4.  
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Figure 6.4: Plot –ln([TOC]/[TOC] 0) against residence time for TOC decomposition 
in SCWG. 

 

Figure 6.4 clearly shows a linear relationship with a slow reaction and the assumption of 

pseudo first order being applied. The slope can be attributed to the reaction rate constant 

k which has a dependency on temperatures, normally expressed using the Arrhenious 

equation, 

 
)(

)(
exp

RT

E
Ak

−=         (6.12) 

where A is the pre-exponential factor, E the activation energy, R the universal gas 

constant, and T is the temperature in Kelvin. To calculate the activation energy, equation 

(6.12) was transformed into the logarithmic form, which is plotted in Figure 6.5. 

RT

E
Ak −= lnln         (6.13) 
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Figure 6.5: Assumed first order Arrhenious plot for TOC decomposition in SCWG 

 

From the intercept of Figure 6.5 the value of the pre-exponential factor is approximately 

9.71x10-2 and from the slope, the activation energy E is calculated to be 10.75KJ/mol and 

corresponding k400 °C =1.42x10-2/ min, k450 °C =1.63x10-2/ min, k500 °C =1.82x10-2/ min. 

The model equation can be written as, 

])[
)(

)/(10750
exp(1071.9

][ 2 TOC
KRT

molJ

dt

TOCd −×=− −    (6.18) 

The parity plot of this model is shown in Figure 6.6. 
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Figure 6.6: Comparison of the TOC conversion between experimental data and 
predicted values by model one. 

 

From the parity plot (Figure 6.6) a large difference in the experimental and predicted 

model is observed, which we attribute to invalid assumptions. As shown earlier in Figure 

6.4, it is evident that the straight lines drawn for the experimental data do not go through 

the origin according to equation (6.11). Therefore the experimental reaction does not 

obey the model predicted, i.e. first order kinetics. Furthermore, as discussed in section 

6.3.2, the concentration of feed i.e. feed to water ratio has a large effect on TOC 

decomposition. Therefore the effect of water cannot be ignored.  
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6.4.2 Model two 

Since supercritical water has negligible mass transfer limitation with small size catalysts 

particles (0.1-0.3 mm) and water is used in large excess of the stoichiometric 

requirement, the changes of the concentration due to reaction on the catalyst surface can 

be considered negligible, i.e. the concentration of water at the catalyst surface can be 

regarded to be the same as that in the bulk fluid. Therefore, assuming the surface reaction 

obeys a power rate law model and substituting Cn with [TOC], the equation (6.8) can be 

re-written as, 

  qp OHTOCk
dt

TOCd
][][

][
2=−                   (6.19) 

Let’s assume at time t,  

Total organic carbon concentration, [TOC] = [TOC] 0 (1-X)    (6.20) 

where [TOC]0 is the initial concentration, X is conversion factor of TOC. 

Water concentration, [H 2O]= [H 2O]0(1-Y)                   (6.21) 

where [H 2O]0 is initial concentration, Y is conversion factor of H2O. 

The relation of Y and X can be written as follows: 

 Y=aX 

where ‘a’ is a constant. 

Therefore, the water concentration can be written as,  

[H 2O]= [H 2O]0(1-aX).            (6.22) 

The overall reaction rate can be written as follows: 
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          (6.23) 

 Partial differentiation of the left hand side and rearranging gives equation 6.24: 

           (6.24) 

The reaction rate constant k has an Arrhenius temperature dependency described by 

equation 6.12. To minimize cross-correlation between parameters the Arrhenius equation 

can be rewritten as: 

 )]
11

(
)(

exp[0
m

app

TTR

E
kk −

−
=        (6.25) 

where, Eapp is the activation energy and k0 the pre-exponential factor and Tm being the 

centering temperature to minimize cross-correlation between parameters. 

Since the initial concentrations are fixed, therefore,  

Let          (6.26) 

Differentiating and rearranging with equation 6.25 and 6.26, the rate equation becomes 

          (6.27) 

This is a differential equation with 5 unknowns: k’, E, p, q, a. As a non-linear regression 

is required to fit the rate of reaction, a Matlab program was developed  to solve this 

differential equation by estimating the unknown parameter values (see Appendix A3). 

Confidence values can be calculated by minimizing the sum of square differences of the 

experimental and predicted conversions for all data points using the following 

equation131: 

           (6.28) 
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 The estimated pre-exponential factor k’ and the activation energy are 2.7±0.2 x 10-4 and 

85.57 ± 7.5 kJ/mol respectively. Putting the value of initial concentration in equation 

(6.26), the value of k is found to be 1.04±0.09x10-5 s-1ppm-2.75. The experimental data led 

to reaction orders of p=2.25 for TOC, q=1.5 for water respectively. The value of constant 

‘a’ is found to be 1.25. The uncertainties reported here are 95% confidence intervals. The 

corresponding co-relation co-efficient (R2) is 0.96. Finally the values of the established 

kinetic parameters were introduced into the power rate-law model equation. The 

differential equation was solved to predict the TOC conversion at different reaction times 

and temperatures.  

Figure 6.7 shows a parity plot of the TOC conversion predicted from the global power 

rate law using the parameters from experimental data against the rate obtained 

experimentally.  
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Figure 6.7: Comparison of the TOC conversion between experimental data and 
predicted values by the power-law rate expression of the surface reaction (model 

two). 

 

6.5 Conclusions 

Temperature and concentration have a large effect on TOC destruction and carbon 

gasification efficiency. Assumption of a first order reaction for TOC destruction of 

SCWG of glucose and ignoring water concentration due to the large excess led to an 

erroneous kinetic model development. A global kinetic model for TOC destruction was 

developed using non-liner regression, which convincingly fit the experimental results. 
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Chapter 7 

One-pot procedure to synthesis of high surface area alumina nanofibers 

in supercritical carbon dioxide  

This chapter includes the synthesis of high surface area alumina nanofiber as a catalyst 

support in supercritical carbon dioxide without using any extra water, organic solvent, 

surfactant, chelating agent, or other additives. Detailed characterization, morphology, and 

mechanism are described forming the nanostructures. This chapter is mainly reproduced 

from the article by the author published in Langmuir31: One-Pot Procedure to Synthesize 

High Surface Area Alumina Nanofibers Using Supercritical Carbon Dioxide.  

 

7.1 Introduction 

High surface area alumina, i.e. Al2O3, has found a diversity of applications due to its high 

thermal, chemical and mechanical stability.132 These applications include catalysis, 

catalyst supports, and adsorptive materials for various separation processes.  In the form 

of fibers, alumina can be also used for reinforcing plastics as a grinding or polishing 

material,133 tissue engineering,134 or filtration of viral aerosols.135  

As with many other metal oxide materials, researchers are exploring a variety of 

techniques on how to prepare nanofibrous alumina materials with high surface areas for 

the many emerging applications. Successful efforts to obtain nanowires, nanofibers, and 

nanorods of alumina have been reported over the past decade.136-147 The most common 
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strategy for synthesizing such materials is using surfactant-templates, hydrothermal or the 

solvothermal process. In the templating approach, the templates play a crucial role in the 

formation and growth of the fibers, however, must be removed after synthesis.148  The 

hydrothermal process requires temperatures above 100 °C and often forms lamellar 

hydrated hydroxides due to the fast hydrolysis of aluminum precursors in aqueous media, 

even in the presence of surfactant molecules.149 Lee et al. 140 reported synthesizing a 

series of alumina nanotubes, nanofibers, and nanorods by the hydrothermal method by 

varying the type of ionic or non-ionic surfactant. Zhu et al. obtained 30-60 nm long γ-

alumina nanofibers with 3 nm dia. from inorganic aluminum salt aluminum hydrates 

using poly(ethylene oxide) as the surfactant at 100 °C.147 Another three step synthesis 

pathway was reported by Zhang et al to synthesize porous lathlike nanoparticles using 

non-ionic triblock surfactants.139 Although it was proposed that the surfactant directs the 

fibrils growth by forming rodlike micelles,150 recently Wang et al. 141 reported a non-

surfactant route for synthesizing fibrous δ-alumina   using hexamethylenetramine as an 

additive for homogeneous hydrolysis of inorganic salt aluminum nitrate and ethanol-

water as solvent. Using the solvothermal approach, γ-alumina rod was obtained by 

thermal decomposition of boehmite precursor which was prepared using the solvothermal 

method with inorganic hydrated alumina salt, sodium hydroxide and sodium dodecyl 

benzene sulfonate surfactant in a mixed solvent of water and dimethylbenzene.138  

From the various literature studied, it is noticed that the synthesis of nanostructured 

materials is generally conducted in aqueous or aqueous-organic solvents to disperse 

reactants where water is used for hydrolysis. To control the hydrolysis and condensation 

rates of alumina precursors by direct use of water, complex solvent mixtures or chelating 
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agents are required.   However, using organic solvents and additives are considered as 

environmentally hazardous. Moreover, the surfactant removal process requires heat 

treatment, which may lead to collapse of the nanostructure.  

Recently, direct sol-gel reactions in supercritical carbon dioxide (scCO2) have attracted 

much attention for synthesizing oxide nanomaterials. As examples, SiO2 monolithic 

aerogels and nanoparticles have been synthesized by reacting of silicon alkoxides with 

formic/acetic acid;151-153 TiO2 and ZrO2 nanofibers, nanospheres and mesoporous 

monoliths have been produced by polycondensation of metal alkoxides with either acetic 

acid or water droplets with the aid of surfactants.154-159 Supercritical CO2 (scCO2) is an 

attractive alternative to conventional organic solvents due to its unique features of tunable 

physical properties and environmental benignness.160 Carbon dioxide is inexpensive, 

environmentally benign and non-flammable with low viscosity, “zero” surface tension 

and high diffusivity in supercritical condition, that is  favorable for synthesizing superior 

ultrafine and uniform nanomaterials.32 Moreover, complete removal of excess acetic acid 

with scCO2 by venting is easy, no drying process is required, the porous nanostructure 

can be maintained, and potentially polymer nancomposites can be synthesized in the 

same pot.161 Following a similar procedure in this work, no surfactant or additives were 

used making this a novel one pot synthesis route to fabricate high surface area alumina 

nanofibers.  
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7.2 Experimental 

7.2.1 Materials 

All the chemicals used in this work were reagent grade. 98% Al(III) isopropxide, 99.7% 

acetic acid from Sigma-Aldrich Chemical Co., were used without further purification. 

Instrument grade carbon dioxide (99.99%) was obtained from Praxair, Canada. 

7.2.2 Preparation of Al2O3 

 

Figure 7.1: Experimental set up; A-CO2 tank, B- Pump, C- View cell, D- 
Temperature controller, E- Pressure indicator. 

 

Figure 7.1 provides the experimental setup which is also provided elsewhere.33 In a 

typical synthesis, aluminum isopropoxide was mixed with excess acetic acid (1:10 

mmol:mmol basis) and then placed in a 10 mL view-cell reactor pre-heated to the desired 

temperature, followed by stirring and addition of CO2 to the desired pressure.  The 

concentration of aluminum isopropoxide ranged from 0.2 – 0.5 mmol/ml scCO2 while the 
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temperature and pressure were varied from 40 °C to 80 °C, and 4000 psi to 7500 psi 

respectively. Excess acetic acid was used for complete hydrolysis of alkoxide. For 

comparison purposes, a lower ratio of alumina isopropoxide to acetic acid (1:5, 

mmol:mmol basis) was also examined. When solid alumina alkoxide and acetic acid were 

mixed in the view cell using a magnetic Teflon stir-bar, a non-transparent white phase 

was formed after several hours stirring under supercritical conditions. After continuous 

stirring of the mixture for 24 hrs, the view cell was kept at rest for 10 days for aging at 

synthesis conditions for complete reaction and self-assembly. To ensure complete 

reaction, no precipitation was observed by venting a few drops of reaction mixture into 

water ensuring complete condensation of the precursor. To remove unreacted acetic acid 

and byproduct, i.e. alcohol etc. from the gel formed in the view cell, a supercritical 

carbon dioxide washing step was conducted under the same synthesis conditions until no 

smell of acetic acid was detected. To prevent collapse of the nanostructure morphology, 

CO2 was used to wash the aerogel at ≈0.25ml/min. The as prepared alumina was then 

calcined at 1.5°C/min to the desired temperature (600°C /800°C /1050°C) using a 

Thermolyne 1500 furnace (NY, USA).  

7.2.3 Characterization 

The BET (Brunauer-Emmett-Teller) surface area, pore size and distribution, and pore 

volume were determined from nitrogen adsorption and desorption isotherm data obtained 

at 77 K with a constant-volume adsorption apparatus (Micromeritics ASAP 2010) using 

N2 gas (99.995% pure; obtained from Praxair,Canada). The prepared samples were 

degassed at 150°C for 5h before measurements. The pore size distributions of as-prepared 
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samples were determined by a BJH (Barett-Joyner-Halenda) model.162 The 

nanostructured morphologies of the sample were obtained from Scanning Electron 

Microscopy (SEM) micrographs (Model LEO 1530) and Transmission Electron 

Microscopy (TEM) images (Model JEOL 2010F). Before TEM analysis, the powdered 

samples were dispersed in methanol by sonication and then placed and dried by normal 

evaporation on a copper grid covered with holey carbon film. Thermogravimetric 

Analysis (TGA) and Differential Thermal Analysis (DTA) were performed to measure 

the weight loss, the rate of weight loss, the heat effects associated with drying, 

decomposition, and phase changes as a function of temperature. TGA/DTA analysis was 

performed using a TGA/SDT A851 instrument at a heating rate of 10°C/min in air. 

Fourier transmission infrared (FTIR) was used to identify the chemical groups present in 

the synthesized samples. For FTIR analysis powdered samples were mixed with 

potassium bromide (KBr) powder and pressed into disks. The FTIR spectrum was 

recorded using a Bruker Tensor 27 Spectrometer with a resolution of 4 cm-1 scanning 

from 4,000 to 400 cm-1 at room temperature. Powder X-ray diffraction (XRD) patterns 

were collected to estimate crystallinities and the structural changes of the synthesized 

material. A Rigaku rotating-anode XRD was used employing CuKα radiation, with 

monochromation achieved using a curved crystal, diffracted beam, graphite 

monochrometer. The instrument was operated at 45kV and 160mA, using the normal 

scan rate of 10° per minute (equivalent to 0.5° two-theta on conventional diffractometers) 

in the 2θ range from 2° to 82°. X-rays were collimated using 1° divergent and scatter 

slits, and a 0.15mm receiving slit. The surface composition of the nanomaterials was 

determined by XPS, using a Kratos Axis Ultra spectrometer using a monochromatic Al 
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K(alpha) source (15mA, 14kV).  Survey and high-resolution spectra were obtained using 

an analysis area of ~300x700 microns and pass energies of 160 eV and 20 eV, 

respectively.  Spectra were charge corrected to the main line of the carbon 1s spectrum 

(C-C, C-H) set to 285.0 eV. 

7.3 Results and discussion 

7.3.1 Synthesis of Nanofibers 

The experimental conditions utilized for synthesizing fibers, presenting the resulting 

morphology of the samples synthesized under various concentrations, temperatures, and 

pressures in scCO2, are summarized in Table 7.1. The surface area, adsorption average 

pore diameter, and single-point adsorption total pore volume per gram are presented. 

The morphology of the synthesized alumina aerogels using scCO2 as both the synthesis 

and drying agent was assessed by electron microscopy (SEM and TEM). Initial 

experiments utilized a low concentration of AIP (0.2 mmol/ml scCO2) with excess HAc 

(AIP to HAc 1:10 in molar ratio) to facilitate complete hydrolysis. Low concentration 

was also found to facilitate easy dispersion and avoid initial agglomeration of reactants. 

The effects of the synthesis temperature on the nanostructure were investigated as shown 

in Figure 7.2. 
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Table 7.1: Physiochemical properties of the synthesized alumina nanostructures at 
different conditions. 
 

Experimental Parameters 
Tcal 

(°C) 

SBET 

(m2/ 
gm) 

Dpore 
( A) 

Vpore 
(cm3/ 
gm) 

Nanostructure AIP:H
Ac 

AIP conc. 
(mmol/ml 

ScCO2) 

Syn. 
Temp. 
(°C) 

Syn. 
Pres. 
(psi) 

1:10 0.2 

40 6000 

As-
prep. 

115 61.2 0.176 Mixture of 
nano- spheres, 

pentagons, 
rods, fibers, etc. 

600 77 69.6 0.134 

50 6000 
As-

prep. 
481 113.7 1.37 Floppy porous 

structure 600 263 122.2 0.804 

60 6000 
As-

prep. 
579 70.6 1.021 Very porous  

structure with 
some nanofibers 600 272 136.2 0.927 

80 6000 
As-

prep. 
436 104.9 1.142 Nano fibrous 

network 600 263 160.2 1.053 

1:10 0.3 80 6000 

As-
prep. 

355 106.8 0.949 Nanofibers 
ranging from 

500 nm to over 
1000 nm. 

600 268 138.2 0.924 
800 242 124.4 0.752 
1050 108 145.8 0.395 

1:10 0.5 80 6000 
As-

prep. 
330 141.5 1.171 Fibers less than 

50 nm. 600 279 181.5 1.267 

1:10 0.3 80 

4000 
As-

prep. 
382 70.3 0.672 Nanofibers 

connected with 
trunks 600 297 99.1 0.736 

7500 
As-

prep. 
403 71.7 0.723 Nanofibers 

connected with 
trunks 600 287 102.5 0.735 

1:5 0.3 80 6000 600 31 36.2 0.278 
Micro and nano 

bars 
Other synthesis parameters: Degassing temperature is 150 °C, AIP:HAc= Aluminum 

Isopropoxide:Acetic acid mmol ratio; AIP Conc.= Aluminum isopropoxide concentration; Syn Temp.= 
Synthesis temperature; Syn Pres.= Synthesis pressure; Tcal= Calcination temperature; As-prep= As 
prepared; SBET = BET surface area; Dpore= Adsoption average pore diameter (4V/A); Vpore= Single-point 
adsorption total pore volume per gram. 

 

At a synthesis temperature of 40 °C and 6000 psi, mixed nanostructures (rod, 

sphere,fibers, pentagon etc.) were formed with a very low BET surface area (115m2/gm) 
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as shown in Figure 7.2-a,b. This low surface area is attributed to agglomeration of these 

irregular shaped alumina nanostructures. When the synthesis temperature was increased 

to 60 °C, a porous structure with some nanofiber formation developed, as shown by the 

SEM and TEM micrographs in Figure 7.2-c and d, respectively.  The surface area 

increased significantly to 579m2/gm, along with an observed morphology change from 

irregular shaped nanostructures to floppy porous structure. This morphology change is 

attributed to the higher synthesis temperature providing more thermal energy favoring the 

formation of an expanded structure of unfolded bohemite particles.163 

The surface area of the fibers synthesized in scCO2 is much higher than conventional 

alumina and reported alumina fibers  of 376m2/gm prepared using a PEO surfactant.147
  A 

further increase of synthesis temperature to 80 °C resulted in a more fibrous 

nanostructure being formed (Figure 7.2-e,f).  The surface area of these samples decreased 

slightly from 579cm2/gm to 496cm2/gm. The morphology changes may also be due to the 

decreased density of scCO2 with temperature i.e. 0.96 gm/ml at 40 °C/6000 psi 

decreasing to 0.83 gm/ml at 80 °C /6000 psi. 
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Figure 7.2: SEM (a,c,e) and TEM (b,d,f) images of nanoscale alumina particles with 
varying synthesis temperatures:  a-b) 40 °C; c-d) 60 °C, e-f) 80 °C. Concentration of 

AIP to ScCO2 0.2mmol/ml, synthesis pressure 6000 psi, calcination temperature 
600 °C, AIP:HAc 1:10 mmol ratio. 

 

Figure 7.3 provides the N2 adsorption/desorption isotherms and pore-size distributions for 

the nanostructured alumina obtained using synthesis temperatures from 40 to 80 °C in 

scCO2. As shown in Figure 7.3a, the shapes of the nitrogen adsorption−desorption 
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isotherms and their hysteresis loops are those of typical “type IV” isotherms with H3 and 

H4 loops164. The sample synthesized at 40 °C shows H4 loops164 due to the irregular 

shapes and broad size distribution, supporting the SEM images, which showed irregular 

shape nanoparticles. For the samples prepared at 60 and 80 °C, type IV, H3 loops were 

formed, confirming mesopores with platelike materials with slitlike pores164.  
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Figure 7.3: N2 adsorption/desorption isotherms (a,c) and pore-size distributions 
(b,d) of nanostructured alumina: a, b- as prepared; c,d Calcined at 600 °C: ○- 40 °C,  

□- 60 °C, �- 80 °C.  

 

The pore size distributions calculated from the isotherms are presented in Figure 7.3b, 

which shows that unimodal mesopores are formed at each temperature. The sample 

prepared at 60 °C shows a narrow distribution with high peak intensity. In contrast, the 
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pore size distribution is relatively broader in the sample synthesized at 80 °C. The 

broader distribution of pore sizes is attributed to the interparticle spaces of stacked 

nanofibers. Figure 7.3-c and d shows similar behavior when the alumina samples were 

calcined at 600 °C, with the effect of calcination described in detail later. 

After observing nanofiber formation, the effects of concentration, pressure and alkoxide 

to acid ratio were investigated maintaining the reaction temperature at 80 °C. Figure 7.4 a 

shows from the SEM micrograph that longer fibers were formed when the concentration 

was increased to 0.3 mmol alumina isopropoxide/ml ScCO2  maintaining the pressure at 

6000 psi and alkoxide to acid ratio at 1:10. Further increasing of concentration (0.5 mmol 

alumina isopropoxide/ml scCO2) resulted in agglomeration with some short nanofibers 

being formed (Figure 7.4b). When decreasing the alkoxide to acid ratio from 1:10 to 1:5 

at 80 °C and 6000 psi, much larger structures were formed with some fiber-like sheets as 

shown in Figure 7.4c. These gave a low surface area of 31m2/gm.  

The pressure effect (4000 psi and 7500 psi) on alumina nanostructures was examined 

keeping the synthesis temperature (80 °C) and alkoxide to acid ratio (1:10) at the 

optimized conditions. At 7500 psi (scCO2 density 0.88gm/ml) nanofibers connected with 

a porous trunk structure was formed (Figure 7.4d) with lower BET surface area (287 

m2/g). 
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Figure 7.4: SEM images of nanoscale alumina particles at varying  synthesis 
conditions in scCO2 at 80 °C a) AIP 0.3mmol/ml, AIP: HAc 1:10, 6000 psig  b) AIP 

0.5mmol/ml, AIP: HAc 1:10, 6000 psig, c) AIP 0.3mmol/ml, AIP: HAc 1:5, 6000 psig, 
d) AIP 0.3mmol/ml, AIP: HAc 1:10, 7500 psig, e-f) AIP 0.3mmol/ml, AIP: HAc 1:10, 

4000 psig.   

 

Interestingly, a similar structure was also observed at lower pressure of 4000 psi with 

BET surface area 297 m2/g.(Figure 7.4-e,f). The lower pressure likely provides less 

penetration of CO2 in the drying state leading to the observed microstructure of these 
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nanofibers as shown in Figure 7.4f. The low resolution SEM pictures of Figure 7.4a-d are 

provided in Figure 7.5. 

 

Figure 7.5: SEM images of calcined (600 °C) nanoscale alumina particles at varying  
synthesis conditions in scCO2 at 80 °C a) AIP:scCO2 0.3 mmol/ml, AIP: HAc 1:10, 
6000 psi;  b) AIP:scCO2 0.5 mmol/ml, AIP: HAc 1:10, 6000 psi; c) AIP:scCO2 0.3 

mmol/ml, AIP: HAc 1:5, 6000 psig; d) AIP:scCO2 0.3 mmol/ml, AIP: HAc 1:10, 7500 
psi. 

 

7.3.1.1 Effects of Calcination on Nanostructure 

To examine the thermal stability of the synthesized long fibers (synthesized at 80 °C with 

concentration of AIP in scCO2 = 0.3 mmol/mL, AIP to HAc = 1:10, pressure = 6000 psi), 

the samples were calcined at varying temperatures up to 1050 °C and then examined by 

electron microscopy as shown in Figure 7.6. The nanofibers shown in Figure 7.4a 

(calcined at 600 °C) were further calcined to 800 and 1050 °C and examined by SEM, as 
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shown in Figure 7.6-a and b. Maintaining the fibrous structure at these high temperature 

conditions illustrates the thermal stability of the nanofibers.  

 

Figure 7.6: SEM (a,b) and TEM (c,d) images of alumina nanofibers calcined at 
varying temperatures a) 800 °C, b) 1050 °C, c) 600 °C, d) 1050 °C. AIP 

concentration 0.06gm/ml ScCO2; AIP:HAc 1:10; 6000 psig. 

 

From the TEM images of the samples calcined at 600 and 1050 °C (Figure 7.6c, d), it is 

seen that at 600 °C the nanofibers are uniform while at 1050 °C nanocrystallites are 

formed that are linearly attached to one another forming fibers. The crystallinity is further 

confirmed by XRD analysis in subsequent characterization. Heat stable high aspect ratio 

nanofibers were formed with diameters 11−29 nm and 500−1000 nm length. The fibers 

are stable and crystalline at 1050 °C (Figure 7.6d). The formation of −Al−O−Al− bridges 
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(further corroborated by FTIR analysis) may be the reason for the heat stabilization effect 

because their formation allows the disappearance of the cationic vacancies from the 

surface. Beguin et al. stabilized alumina toward thermal sintering by making −Al−O−Si− 

bridges which resulted in the disappearance of cationic vacancies165. 

The effect of calcination on N2 adsorption/desorption isotherms and pore-size 

distributions of alumina nanofibers are provided in the (Figure 7.7). These show that a 

lower volume of N2 gas adsorption per relative pressure, compared to the as-prepared 

sample, attributed to the lower surface area. Type IV, H3 loops confirm mesopores with 

platelike materials with slitlike pores even after being calcined at 1050 °C. 

 

 

 

 

 

 

 

 

 
Figure 7.7: Calcination effect on N2 adsorption/desorption isotherms (left) and pore-

size distributions (right) of alumina nanofibers. Synthesis condition is AIP:scCO2 
0.3 mmol/ml; AIP:HAc 1:10; 6000 psi, 80 °C. 

 

The reason for the increment of average pore sizes after calcination of the as-prepared 

sample (synthesized at 80 °C with concentration of AIP in scCO2 0.3 mmol/mL, AIP to 

HAc 1:10, pressure 6000 psi) to 600 °C (Table 7.1) is due to the evolution of gas (CO2 

and water vapor) during heat treatment166. At the same time, pore volumes were 

decreased due to the formation of denser materials. However, after 600 °C, when the 
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same sample was further heated to 800 °C, the BET surface area, pore size, and pore 

volume all decreased (Table 7.1) due to collapse of some micropores, intercrystalline 

spaces of stacked nanofibers, and agglomeration. 

The TGA/DTA curves were measured for the as-prepared alumina fibers (synthesized at 

80 °C with concentration of AIP in scCO2 = 0.3 mmol/mL, AIP to HAc = 1:10, pressure 

= 6000 psi) as shown in Figure 6.8. The TGA curve in Figure 6.8a shows 4% weight loss 

in the range of 25−215 °C, attributed to physically bound adsorbed organic molecules 

and water produced during synthesis142. A 63% weight loss in the region of 215−600 °C 

is attributed to the removal of organic groups (the bridging acetate coordinated to Al 

atoms) which agrees with the IR and XPS analysis results as described later. About 2.5% 

weight loss is due to formation of other phases at higher temperatures167.  
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Figure 7.8: TGA-DTA analysis of alumina nanofibers. a) TGA-DTA, b) Derivative 
of TGA-DTA; Solid line: Weight change (TGA); Broken line: Heat Flow (DTA).  
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The exothermic peak at 875 °C in Figure 8a from the DTA heat flow trace is attributed to 

the phase change to δ-alumina, while the very small exothermic peak at 1172 °C is 

attributed to transformation to α-alumina168. Figure 6.8b shows a plot of the derivative of 

the TGA and DTA heat flows, which more clearly shows removal of loosely bound and 

coordinated bidendate materials, and the phase transformations to δ- and α-alumina. 

Although increasing calcination temperatures did not destroy the nanostructure, the BET 

surface area and pore volume were decreased gradually, as described in Table 6.1. A 

decrease of surface area from 355 m2/g (as-prepared) to 268 m2/g calcined at 600 °C is 

due to the removal of adsorbed species and dehydration of the alumina. A further 

reduction in surface area to 242 m2/g and pore volume at 800 °C is attributed to pore 

collapse and phase changes, as further confirmed by TGA/DTA analysis. The BET 

surface area of 108 m2/g after calcining at 1050 °C is still higher than that found by Ji et 

al. (55.4 m2/g at 1000 °C)168. This result shows promise for high surface area application 

at elevated temperatures, such as catalyst supports for emerging high temperature 

processes such as H2 generation from biomass gasification. The sintering propensity of 

the alumina nanofibers is low due to very large porosity and small contact area between 

fibers147, which accounts for the high surface area of the synthesized alumina at high 

temperature141. 

Figure 7.9 provides the FTIR traces of both the as-prepared and calcined alumina 

nanofibers. For the as-prepared aerogel in Figure 7.9a, the peaks at 1580 cm−1 and from 

1400 to 1470 cm−1 are assigned to the asymmetric and symmetric stretching of bridging 

bidendate acetate groups, respectively, indicating that HAc formed bridging complexes 

with the alumina nanostructures169. This is an important observation, which provides us 
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with direct evidence for the reaction mechanism and self-assembly steps in scCO2, as 

described further below. The peaks below 1053 cm−1 are attributed to the Al−OH−Al 

group142, which disappears after calcination. A small peak is observed at 1710 cm−1 from 

C═O bond stretching, while the small peaks about 3000 cm−1 are due to C−H stretching. 

The sharp peak at 3700 cm−1 and the broad peak at 3500 cm−1 are attributed to the 

isolated and hydrogen-bonded Al−OH, respectively (Figure 7.9a). With elevated 

calcination temperatures, the disappearance of peaks from 1400 to 1580 cm−1 indicates 

the removal of the bidentate acetate gropus upon calcination (Figure 7.9b−d).  
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 Figure 7.9: FTIR analysis: a) As prepared, Sample calcined at b) 600 °C, c) 800 °C, 

d) 1050 °C. 
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There are more −OH groups after calcination which can be explained by the bidentate 

acetates being replaced by −OH groups. For alumina, to remove water completely 

generally requires heating to over 1100 °C to produce α-Al 2O3. In addition, from the peak 

changes in the regions of 3400−3700 cm−1 and below 1000 cm−1, it can be observed the 

gradual formation of oxo bonds. 

The crystalline phase of the as-prepared alumina nanofibers was further identified by X-

ray powder diffraction, as shown in Figure 7.10.  Here we see that many broad peaks are 

evident of as prepared sample, which are different from the known alumina materials, 

and are assigned to a material with a formula Al(OH)(COOCH3)2 as described later. 

 

Figure 7.10: XRD analysis: a) As prepared, b) Sample cancined at 600 °C, c) 
Commercial gamma alumina, d) Calcined sample at 800 °C, e) Sample calcined at 

1050 °C. 
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With elevated calcination temperatures, the aerogel peaks disappear at 600 °C, Figure 

10b, indicating the destruction of the crystalline structure due to removal of bridging 

acetate groups; γ-Al 2O3 appears at 800 °C (Figure 7.10d), while θ and α- Al2O3 appear at 

1050 °C (Figure 7.10e). This crystallization trend after calcination agrees with the 

observations by others.140, 142, 167, 170  For comparison purposes, Figure 7.10c shows the 

commercial gamma alumina. The broad and weak XRD peaks can be explained by a 

retarded phase transformation of the nanostructured aerogel.171 

7.3.1.2 Mechanism of Nanofiber Formation 

Our IR, TGA, and XRD analysis results show that a significant amount of bidentate 

acetate groups as well as OH groups were present in the as-prepared nanofibers. In order 

to study the surface functionality and elemental composition, the as-prepared aerogel was 

further examined by XPS analysis (Figure 7.11). The elemental analysis results show that 

the molar ratio of Al/C/O is ca. 1:4:5. In Figure 11b, there is a small O(1s) signal at 

532.99 eV and a large O(1s) signal at 531.85 eV. The small signal is assigned to the 

oxygen in adsorbed water or HAc, which has a higher energy level than the oxygen bond 

to aluminum atoms due to the higher electronegativity of hydrogen than aluminum. In 

Figure 7.11c, two types of carbon are dominant and their atomic ratio is about 1. The 

C(1s) signal at 288.92 eV is contributed by the carbon from −O−C−O− group, and the 

C(1s) signal at 284.80 eV is contributed by the carbon in the CH3− group. Based on the 

information provided by the IR and XPS analysis, the formula of the as-prepared aerogel 

is consistent with [Al(OH)(CH3CO2)2]n. According to this formula, the weight loss of 

Al(OH)(CH3CO2)2 upon calcinations is 63% if the formed calcination product is 

AlO(OH), which is supported by our TGA and XRD results (vide supra). 
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Figure 7.11: XPS Analysis of as prepared alumina nanofiber. 

 

Based on our experimental evidence, Figure 7.12 shows the proposed structure of the as-

prepared linear alumina polycondensate aerogel formed during the sol−gel chemistry in 

scCO2. This [Al(OH)(CH3CO2)2]n structure has the acetate group as a bidentate that 
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bridges two aluminum atoms. The linear macromolecules will form linear colloidal 

particles when the molecular weight is high enough and eventually form nanofibers, 

similar to the formation of TiO2 nanofibers that we observed previously in scCO2 
34. 

 
 

    

CH3

CH3

C

C

O

OH

OH

O

OO

C

CH3

O
Al

C

O O

CH3

Al

O O

O OH
OO

CH3

C

Al

O

CH3

C

O

Al

O

OOH

 

Figure 7.12: Schemetic diagram of the structure of the linear macromolecule with a 
repeating unit of Al(OH)(CH 3CO2)2.  

 

The evolution of the polycondensates into nanofibers or nanospheres can be explained by 

aggregation of rigid colloidal particles as described by Brinker and Scherer172. When the 

straight polycondensates grow long enough, the solubility decreases and small spherical 

concentrated regions called coacervates are formed, decreasing the interfacial energy. 

The arrangement of the polycondensates in the coacervates results in elliptical tactoids, 

in which the straight chains are organized due to intermolecular interactions. The 

polycondensates end up with a rigid nanofiber structure (crystalloid) as observed by 

electron microscopy34. 

According to previous studies by others, during the sol−gel process, HAc reacted rapidly 

with aluminum alkoxide, generating alcohol and Al-carboxylate173, 174. Production of 
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water occurs via either esterification or alcohol dehydration steps. As the esterification 

reaction is very slow relative to the dehydration reaction, and alumina can catalyze the 

dehydration reaction, it has been suggested that water is produced mainly by the 

dehydration of alcohol173. As soon as water is produced, the hydrolysis reaction occurs 

instantly, which is followed by condensation reactions168, 173, 175, 176. These basic steps are 

outlined as follows:  

i) Substitution 

     Al[CH3)2CHO]3 + nCH3COOH → Al[(CH3)2CHO]3-n(CH3COO)n + CH3-CHOH-CH3  

ii)  Dehydration 

    CH3-CHOH-CH3 → CH3-CH=CH2 + H2O 

OR  

Esterification 

CH3COOH + CH3-CHOH-CH3→ CH3-OCO-CH(CH3)2+ H2O 

iii)  Hydrolysis 

    Al[(CH3)2CHO]3 + xH2O → Al[(CH3)2CHO]3-x(OH)x + x(CH3)2CH OH 

or 

    Al[(CH3)2CHO]3-n(CH3COO)n+xH2O → Al[(CH3)2CHO]3-n-x(CH3COO)n(OH)x + x 

CH3-CHOH-CH3 

iv) Condensation polymerization 

    ─Al[(CH3)2CHO]+ HO─Al─  →  ─Al-O-Al─ + CH3-CHOH-CH3  

These sol−gel chemical reactions continue during aging after gelation, producing 

strengthening, stiffening, and shrinkage of the alumina network. This results in the 

observed changes in the structural and textural properties of the final aerogel product177. 
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If the gel is aged in the original reaction medium, small clusters continue to diffuse and 

attach to the main network, making the network both stiffer and stronger177. Ten days of 

static aging resulted in high surface areas of alumina as shown by Ji et al168. 

As aluminum alkoxide is very reactive to water and precipitates quickly, a controlled 

hydrolysis for alumina nanostructure formation is crucial for a well-defined nanostructure 

formation. As water was not added to this one-pot reaction process in scCO2, the in situ 

generated water (through the dehydration step) likely fuels the sol-gel reactions. The 

controlled hydrolysis in scCO2 is further enhanced by the low solubility of water in 

scCO2 (~0.1 wt%), which would  decrease the sol-gel reaction rate and facilitate the 

formation of well-defined nanostructure instead of precipitate.175   

In addition, acetic acid is known to slow down the hydrolysis rate of metal alkoxides in 

water. The acetate group coordinates to the metal ions, preventing precipitate 

formation.178 A significant amount of hydrogen bonding between acetic acid molecules 

has been observed in scCO2 that would similarly slow down the sol-gel process.179 These 

effects facilitate the formation of uniform nanostructures. Hence, our results in this work 

show that acetic acid was an excellent reaction agent in scCO2 for producing alumina 

nanofibers without adding water for hydrolysis or any other additives for nanostructure 

formation.  

7.4 Conclusions 

A novel method for synthesizing alumina nanofibers is reported for the first time using a 

one-pot sol-gel route in scCO2 with acetic acid as the polycondensation agent. This 

process uses no extra water, organic solvent, surfactant, chelating agent or other 
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additives. The synthesis temperature, pressure, concentration and alkoxide to acid ratio 

were found to play a key role in nanofiber formation. The acetate bidentate helps to form 

linear macromolecules, facilitating fiber formation. A high acid ratio, high temperature 

and sufficient pressure >4000 psig, facilitated fiber formation. Also, high acid ratio helps 

to increase the solubility in CO2. Although the BET surface area of mesoporous floppy 

chunk was found as high as 579gm/cm3 at 60 °C and 6000 psi with aluminum 

isopropoxide concentration 0.2mmol/ml scCO2, the best result with respect to long 

nanofibers and high aspect ratio were found at 80 °C and 6000 psi with aluminum 

isopropoxide concentration 0.3mmol/ml scCO2. Thermal treatment of these fibers at up to 

1050 °C did not change the nanostructure morphology. The BET surface area of these 

fibers remains over 100gm/cm3 even at 1050 °C. This synthesized mesoporous 

nanofibers with high surface area and porosity, high aspect ratio, and thermal stability 

make the fibers attractive for nanocatalysts or catalyst supports.   
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Chapter 8 

Conclusions and Recommendations 

8.1 Conclusions 

Gasification and destruction of total organic compounds (TOC) of a model waste biomass 

compound (glucose) was studied in detail using a 600ml batch reactor in supercritical 

water. The supercritical water gasification technique presented in this thesis can be 

applied to environment friendly waste treatment, production of hydrogen or syn gas from 

the waste. The success of the gasification and TOC destruction depends on temperature, 

types of catalysts, reaction time, concentration of feed, oxidant etc. High temperature, 

low feed concentration, longer reaction times are favorable to the selectivity of hydrogen 

production as well as TOC destruction. Oxidant is favorable to total gasification and TOC 

destruction. However, the selectivity for hydrogen depends on the catalyst rather than the 

oxidant. The reactor temperature restriction limits the experiments to be investigated up 

to 500 °C. This moderate temperature limits gasification and TOC destruction, and the 

gaseous products are mostly methane rich.  In an attempt to address this limitation, non-

noble metallic catalysts were synthesized, characterized and evaluated for gasification in 

supercritical water. Use of catalysts only can increase the gasification, TOC destruction 

and yield of hydrogen. The homogeneous and noble metal catalysts were avoided due to 

some limitations discussed in chapter 2, 3, 4, and 5. The major outcomes from this study 

include: (1) hydrogen rich gaseous products is achievable at moderate temperatures (Tc to 

500 °C) using non-nble metal catalysts like Ni-La/Al2O3; (2) the production of H2 was 

found to be significantly higher than the reported H2 by SCWG; (3) TOC destruction upto 
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98% is achievable using oxidant; (4) higher hydrogen yield was achieved by  

supercritical water gasification than supercritical water oxidation using Ni-La/Al2O3 

catalyst (5) nickel was found to crack tar and char and increase gasification; (6) reduced 

nickel was found to have a higher efficiency than oxidized nickel; but (7) metallic nickel 

oxidized in supercritical water even without using oxidant and may produce hydrogen; 

(8) beyond a certain amount of nickel loading, the methanation reaction was increased; 

(9) graphitic type coke was found to be formed on nickel catalyst; (10) lanthanum 

modified catalyst was found to inhibit the methanation reaction, along with graphitic 

coke formation and enhance the water gas shift reaction; (11) lanthanum adsorbs CO2 

that in turn increases hydrogen selectivity (12) the smaller the size of catalysts, the higher 

is the selectivity, (13) nano catalysts showed the best performance towards hydrogen 

yield and TOC destruction among all catalysts examined; (14) synthesis of high surface 

area alumina nanofibers in supercritical carbon dioxide was found to be thermally stable 

at atmospheric pressure and could be promising as a nano catalyst support. 

The physical and chemical properties of catalysts influence the selectivity, reaction 

mechanism, length of use, regeneration etc. Hence, detailed characterization of fresh and 

spent catalysts was conducted to determine the effect of supercritical water gasification 

on catalysts and possible future usage and catalyst design. The synthesized catalysts were 

found to have excellent reduction characteristics. Although the non-noble metals Ni, La 

are found to be promising in SCWG, agglomeration of metallic sites by exposing in SCW 

was found to be a major drawback.  

Loading of metals (Ni, La on alumina) by direct so-gel method resulted in integration of 

metals forming a Ni-La-Al-O nanostructure. Incorporation of metals with the main 
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support loaded by this method showed high activity towards hydrogen production or 

TOC destruction compared to conventionally metal impregnation on commercial alumina 

support. However, integration of lanthanum leads not to promoting the water gas shift 

reaction resulting less hydrogen production compared to nanofiber catalysts. Exposure of 

the sol-gel derived catalysts to SCW transformed to non uniform nano particles.  

The novel method for synthesizing alumina nanofibers for the first time using a one-pot 

sol-gel route in scCO2 with acetic acid as the polycondensation agent can be promising 

due to environment friendliness. This process uses no extra water, organic solvent, 

surfactant, chelating agent or other additives. The backbone of nano catalyst (alumina 

nanofibers) could sustain high temperature (1050 °C) at atmospheric pressure; however, 

the fibrous structure morphology was distorted when exposed to supercritical water. 

The kinetics of SCWG is important for feasibility test and to design the catalysts as well 

as reactors. The detailed reaction mechanism of SCWG was discussed and explained. The 

assumption of first order and ignoring water concentration due to high excess was found 

erroneous. A global kinetic model for destruction of TOC was developed using MATLB 

by non-linear regression analysis. This model convincingly satisfied the experimental 

results. 

8.2 Recommendations 

SCWG of glucose using non noble catalysts can lead to the potential viability of 

industrial application for biomass waste treatment and production of hydrogen. The 

following recommendation should be considered:  
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i) Catalysts should be further improved for total removal of Tar, CO and CH4 at 

lower temperatures. 

a) Trace amounts of noble metals with Ni-La/Al2O3 could be applied for 

higher hydrogen selectivity. 

b) As metals form complex with structure and the alloys were found to act 

like catalysts; high surface area Ni-Al, Ni-Ru-Al network synthesis by sol-

gel method can be applied as catalysts. 

c) Rutile titania as catalyst support can be applied as it is corrosion resistant 

and could be stable in SCW. 

ii)  Other model compounds (cellulose, lignin, hemicellulose etc.) and real life 

agricultural/industrial wastes, sewage sludge should be investigated at lower 

temperatures using catalysts.  

iii)  Detailed kinetic model for dissociation of liquid intermediate products should be 

developed. 

iv) A continuous process should be developed with a few seconds residence time for 

evaluation of real life industrial viability. 

Other than biomass waste, plastic waste can be recycled using SCW due to it’s 

environment friendliness compared to conventional processes. The reactions can be 

written as follows:  

1. Recovering Tolylene diamine (TDA) form Tolylene di-isocyanate (TDI) residue 
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for making polyurethane plastic. 

            

2. Hydrolysis of PET to PTA and ethylene glycol. 

   

Development of catalysts can improve the plastic waste recycling. 
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Appendices 

 

Appendix A1: American Chemical Society’s Policy on reprinting published 

material in Theses and Dissertations  

If your university requires a signed copy of this letter see contact information 

below:  

Thank you for your request for permission to include your paper(s) or portions of 

text from your paper(s) in your thesis. Permission is now automatically granted; please 

pay special attention to the implications paragraph below. The Copyright Subcommittee 

of the Joint Board/Council Committees on Publications approved the following:  

Copyright permission for published and submitted material from theses and dissertations 

ACS extends blanket permission to students to include in their theses and dissertations 

their own articles, or portions thereof, that have been published in ACS journals or 

submitted to ACS journals for publication, provided that the ACS copyright credit line is 

noted on the appropriate page(s).  

Publishing implications of electronic publication of theses and dissertation 

material: 

Students and their mentors should be aware that posting of theses and dissertation 

material on the Web prior to submission of material from that thesis or dissertation to an 

ACS journal may affect publication in that journal. Whether Web posting is considered 

prior publication may be evaluated on a case-by-case basis by the journal’s editor. If an 

ACS journal editor considers Web posting to be “prior publication”, the paper will not be 

accepted for publication in that journal. If you intend to submit your unpublished paper to 
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ACS for publication, check with the appropriate editor prior to posting your manuscript 

electronically.  

If your paper has not yet been published by ACS, we have no objection to your 

including the text or portions of the text in your thesis/dissertation in print and microfilm 

formats; please note, however, that electronic distribution or Web posting of the 

unpublished paper as part of your thesis in electronic formats might jeopardize 

publication of your paper by ACS. Please print the following credit line on the first page 

of your article: "Reproduced (or 'Reproduced in part') with permission from [JOURNAL 

NAME], in press (or 'submitted for publication'). Unpublished work copyright 

[CURRENT YEAR] American Chemical Society." Include appropriate information.  

If your paper has already been published by ACS and you want to include the text 

or portions of the text in your thesis/dissertation in print or microfilm formats, please 

print the ACS copyright credit line on the first page of your article: “Reproduced (or 

'Reproduced in part') with permission from [FULL REFERENCE CITATION.] 

Copyright [YEAR] American Chemical Society." Include appropriate information.  

Submission to a Dissertation Distributor: If you plan to submit your thesis to UMI 

or to another dissertation distributor, you should not include the unpublished ACS paper 

in your thesis if the thesis will be disseminated electronically, until ACS has published 

your paper. After publication of the paper by ACS, you may release the entire thesis (not 

the individual ACS article by itself) for electronic dissemination through the distributor; 

ACS’s copyright credit line should be printed on the first page of the ACS paper.  

Use on an Intranet: The inclusion of your ACS unpublished or published 

manuscript is permitted in your thesis in print and microfilm formats. If ACS has 
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published your paper you may include the manuscript in your thesis on an intranet that is 

not publicly available. Your ACS article cannot be posted electronically on a publicly 

available medium (i.e. one that is not password protected), such as but not limited to, 

electronic archives, Internet, library server, etc. The only material from your paper that 

can be posted on a public electronic medium is the article abstract, figures, and tables, 

and you may link to the article’s DOI or post the article’s author-directed URL link 

provided by ACS. This paragraph does not pertain to the dissertation distributor 

paragraph above.  

Questions? Call +1 202/872-4368/4367. Send e-mail to copyright@acs.org or fax 

to +1 202-776-8112. 10/10/03, 01/15/04, 06/07/06 

 



 

 

 

215

Appendix A2: Elsevier Policy on reprinting published material.  

Authors publishing in Elsevier journals retain wide rights to continue to use their 

works to support scientific advancement, teaching and scholarly communication. An 

author can, without asking permission, do the following after publication of the author’s 

article in an Elsevier-published journal:  

• Make copies (print or electronic) of the author’s article for personal use or the 

author’s own classroom teaching. 

• Make copies of the article and distribute them (including via email) to known 

research colleagues for their personal use but not for commercial purposes as 

described below. 

• Present the article at a meeting or conference and distribute copies of the article to 

attendees. 

• Allow the author’s employer to use the article in full or in part. 

• Retain patent and trademark rights and rights to any process or procedure 

described in the article. 

• Include the article in full or in part in a thesis or dissertation. 

• Use the article in full or in part in a printed compilation of the author’s, such as 

collected writings and lecture notes. 

• Use the article in full or in part to prepare other derivative works, including 

expanding the article to book-length form, with each such work to include full 

acknowledgment of the article’s original publication in the Elsevier journal. 



 

 

 

216

Appendix A3: Matlab Program for non-linear regression of global kinetic 

model for TOC destruction 

 
%% Main File%% 
% Calculate and Plot regression statistics from lsqcurvefit.m 
% std -standard error of each parameter 
% varresid- Variance of residuals 
% r2    - R^2 Correlation coefficient 
% cor   - Correlation matrix for Parameters 
% vcv   - Variance Covariance Matrix for Parameters 
% varinf- Variance inflation factors >10 implies Multicollinearity in x's 
% param -Least squares parameter values 
% yfit  -Response fit using param to get yfit from lsqcurvefit use yfit=residual+ydata  
% where residual is the error matrix from lsqcurvefit 
% ydata -Response data 
% jac   -Jacobian value at Least squares parameter values 
 
clear all 
clc 
global A; global cpred;  
%global cinit; global cfinal; global tspan; global T ; 
load bdata.txt; % loading experimental data 
A=bdata;  
TT=[A(:,1)]; 
temp=[A(:,2)]+273.15; 
time=[A(:,3)]; 
Xpi=[A(:,4)]; 
Xpf=[A(:,5)]; 
xdata=[time temp Xpi]; 
  
% 
Options=optimset('Display','iter','TolFun', 1e-8);  
%'MaxFunEvals',4000,'MaxIter',2000); 
% 
ko=[0.005 4000]; 
scale=[1]; 
% 
lb=[0 0]; 
ub=[]; 
[kn,resnorm,err1,exitflag,output,lambda,jac1]=lsqcurvefit('clcf2',ko,xdata,Xpf,lb,ub,Opti
ons) 
  
err2=reshape(err1,length(time),1); 
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cmodel=Xpf+err2 
Ym=reshape(cmodel,1*length(time),1); 
Yd=reshape(Xpf,1*length(time),1) 
[std,varresid,r2,cor,vcv,varinf]=arif(kn,Ym,Yd,jac1) 
lowerlimit=kn'-std; 
  
ko=kn(1) 
limitko=ko-lowerlimit(1) 
E=8.314*kn(2)/1000 
limitE=E-lowerlimit(2)*8.314/1000 
 
 
%Function% 
 
function [std,varresid,r2,cor,vcv,varinf]=regdata(param,yfit,ydata,jac) 
 
e=yfit(:)-ydata(:); %error vectorize the Y matrix for multiple ouputs 
ss=e'*e % best sum of squares 
m=length(yfit);n=length(param); 
if  (m~=n),varresid=ss./(m-n);else, var=NaN; 
end % variance of Residuals 
  
% CALC VARIANCE COV MATRIX AND CORRELATION MATRIX OF 
PARAMETERS 
%convert jac to full matrix for ver  
    jac=full(jac); 
    xtx=jac'*jac; 
      xtxinv=inv(xtx); 
       
      %calc correlation matrix cor and variance inflation varinf 
    varinf = diag(xtxinv); 
    cor = xtxinv./sqrt(varinf*varinf'); 
  
% Plot the fit vs data 
      t=1:m; 
      plot(t,ydata,'o',t,yfit,'g-') 
      title(' ydata and ymodel versus observation number') 
      xlabel(' observation number'); 
      ylabel(' ydata o and ymodel-') 
      grid; 
       
      disp(' Least Squares Estimates of Parameters') 
      disp(param') 
      disp(' correlation matrix for parameters ') 
      disp(cor) 
      vcv=xtxinv.*varresid; % mult by var of residuals~=pure error 
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      disp('Variance inflation Factors >10 ==> Multicollinearity in x"s') 
      disp(varinf') 
  
      std=sqrt(diag(vcv)) % calc std error for each param 
      disp(' 95%Confidence Interval for each parameter ') 
      lowerlimit=param'-std; 
      upperlimit=param'+std; 
      disp(' Lower Limit CI ') 
      disp(lowerlimit) 
      disp(' Upper Limit CI ') 
      disp(upperlimit) 
 
%Calculate R^2 (Ref Draper & Smith p.46) 
      r=corrcoef(ydata(:),yfit(:)); 
      r2=r(1,2).^2; 
      disp('Variance of Residuals  ' ) 
      disp(  varresid ) 
      disp( 'Correlation Coefficient R^2') 
      disp(r2) 
 
  
 
% Class 1% 

function dC = clcf1(t,X,flag,temp,param) 
global A; global num;  
T=temp; 
Xp=X(1); 
  
 a1=param(1); 
e1=param(2); 
T0=420+273.15; 
  
k1=a1.*exp(-e1*((1/T)-(1/T0))); 
  
dC(1)=k1.*((1-Xp)^2.4).*(1-1.3*Xp); % Power rate law model 
 dC = dC(:); 
 
 
 
 
% Class 2% 

function cpred = clcf2(param,xdata) 
global A; global cpred;  
time=xdata(:,1); 
temp=xdata(:,2); 
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Xpi=xdata(:,3); 
num=length(time); 
to=0.0; 
for i=1:num 
   T=temp(i); 
   tf=time(i); 
   tspan=[to tf]; 
   Xp0=Xpi(i); 
   [t,Xp]=ode45('clcf1',tspan,Xp0,[],T,param); 
   for j=1 
   cpred(i,j)=Xp(length(Xp),j); 
   end 
end 
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