Pd on carbon nanotubes–supported Ag for formate oxidation: The effect of Ag on anti-poisoning performance

Jianshe Wang, Changhai Liu, Andrew Lushington, Niancai Cheng, Mohammad Norouzi Banis, Adam Riese, Xueliang Sun

A R T I C L E I N F O

Article history:
Received 21 November 2015
Received in revised form 9 May 2016
Accepted 9 May 2016
Available online 25 May 2016

Keywords:
Formate oxidation
Pd-on-Ag
atomic layer deposition
anti-poisoning performance

A B S T R A C T

For improving the utilization and anti-poisoning performance of Pd catalysts for formate oxidation, atomic layer deposition (ALD) method was used to deposit Pd on carbon nanotubes (CNTs) and CNTs-supported Ag (Ag/CNTs). The structures of the as-prepared Pd/CNTs and Pd-on-Ag/CNTs catalysts were characterized using X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Electrochemical characterization and high-angle annular dark-field scanning TEM (HADDF-STEM) confirmed the Pd-on-Ag structure. Pd utilization, activity, and anti-poisoning performance for Pd/CNTs and Pd-on-Ag/CNTs catalysts were compared, indicating that the overall performances of the Pd-on-Ag catalysts are superior to those of Pd on CNTs without Ag. Particularly, the mass specific chronoamperometric current (\(I_{\text{Ca}}\)) of the Pd-on-Ag/CNTs (171.8 mA mg\(^{-1}\)) is two times greater compared to that of Pd/CNTs (70.0 mA mg\(^{-1}\)). X-ray photoelectron spectroscopy (XPS) was used to explain the improved anti-poisoning performance from the aspect of electronic Pd–Ag interaction. The results in this paper demonstrated the need for rationally engineered supports for improving the anti-poisoning performance of Pd-based anode catalysts.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, direct formate fuel cells (DFFCs) [1–6] have drawn increasing research interest due to the following advantages: (i) lower anode overpotential for formate oxidation in comparison with methanol or ethanol oxidation [5]; (ii) formate fuel can be obtained from CO\(_2\) electro-reduction, making DFFCs renewable power sources [7,8]; (iii) cheap, non-Pt materials can be used as cathode catalysts [9–11]. Till now, researches pertaining to formate oxidation catalysis are limited, and the main catalysts are still Pt- and Pd-based ones [4,5]. To lower the usage of noble metals (Pt and Pd) in practical applications, it is necessary to design catalysts with higher Pt and/or Pd utilization, for example, by employing core/shell [12–14] structure or other advanced architectures (like Pt-on-Au) [15–17]. In designing such low-noble-metal catalysts, the catalytic performance might be simultaneously improved. For example, Pt-on-Au catalysts have demonstrated extremely high activity for methanol [16] and formic acid oxidation [15,17] with ultra-low Pt content. Since Au in Pt-on-Au catalysts is still relatively expensive, replacing Au by Ag is economically reasonable. Moreover, because Ag bears similar electronic features to Au, Pt-on-Ag and Pd-on-Ag might also exhibit excellent anti-poisoning performance arising from the weakened CO adsorption by Ag [10,18,19]. To date there has been no report on such a catalyst design for formate oxidation. Further, since Ag is usually formed as particles on carbonaceous supports, depositing Pt or Pd predominantly on the Ag rather than onto the carbonaceous support is still challenging and has not been reported.

Atomic layer deposition (ALD) technique, with its unique capabilities for facile and controllable atomic–level manipulation, has been successfully employed in Pt-based electrocatalyst fabrication [20–24]. The Pt amount, particle size, and deposition site can all be well controlled. In contrast, Pd-based electrocatalysts prepared using ALD technique have been seldom reported [25], especially for formate oxidation. Considering that (i) Pd is similar to Pt in catalytic property but superior to Pt in terms of cost and abundance [26], and that (ii) the Pd-on-Ag structure
might exhibit excellent performance in terms of Pd utilization and anti-poisoning performance, we herein employed ALD method to deposit Pd on CNTs (carbon nanotubes) and on Ag/CNTs (CNTs-supported Ag), and successfully obtain Pd/CNTs and Pd-on-Ag/CNTs catalysts, respectively (see Scheme 1). The Pd-on-Ag/CNTs catalysts showed superior anti-poisoning performance and higher Pd utilization in contrast with Pd/CNTs, demonstrating that Ag is an excellent substrate for Pd catalysts for formate oxidation. Besides, by changing the ALD cycle number the Pd particles size can be changed. The effect of particle size has also been analyzed.

2. Experimental

2.1. Chemicals

Multi-walled carbon nanotubes (CNTs) were obtained from Shenzhen Nanotech Port Co., Ltd. and the average diameter of CNTs are 40 ~ 60 nm. Sodium oleate, potassium formate (HCOOK) and other reagents were of analytical purity and used without further purification.

2.2. Preparation of Ag particles supported on CNTs (Ag/CNTs)

The as-received CNTs (300 mg) were first ultrasonicated in HCl (1 M, 50 mL) for 1 h to dissolve possible metal residues, then filtered, washed, and dried to obtain purified CNTs. For deposition of Ag particles on CNTs, 210 mg of purified CNTs were dispersed in a beaker containing 253 mg sodium oleate and ultrasonicated for 30 min, and then aqueous solution containing 141 mg AgNO₃ was added dropwise under magnetic stirring to form silver oleate on CNTs. After filtration and aqueous washing, the as-obtained sample of ~510 mg was collected and dried at 100 °C. Then 300 mg as-prepared samples were heated in a tube at 550 °C for 5 min under N₂ protection to decompose the silver oleate. Finally 160 mg of Ag/CNTs was obtained with a theoretical Ag content of 30 wt. %.

2.3. Preparation of Pdₓ/CNTs and Pdₓ-on-Ag/CNTs through ALD

ALD was performed using an Arradiance (Gemstar-8) system. Palladium was deposited using alternating exposure of Pd(II) hexafluoroacetylacetonate (Pd(hfac)₂) and formalin, both obtained from Sigma Aldrich. Formalin consists of a 37% solution of formaldehyde in water containing 10–15% methanol to inhibit the formation of paraformaldehyde. Pd(hfac)₂ was held in a stainless steel bubbler maintained at 85 °C. Manifolds in the ALD reactor were held at 130 °C to prevent readsoption of Pd(hfac)₂ while the chamber was held at 200 °C. Ultrahigh purity nitrogen (99.999%) was used as a carrier gas at a mass flow rate of 30 sccm. The ALD timing sequences used for deposition was 1 s–25 s–0.5 s–25 s.

The thus prepared catalysts were denoted as Pdₓ/CNTs and Pdₓ-on-Ag/CNTs, where the x represents the number of ALD cycles. The Pd contents in Pdₓ/CNTs, Pdₓ/on CNTs, Pdₓ/CNTs, Pdₓ-on-Ag/CNTs, Pdₓ-on-Ag/CNTs and Pdₓ-on-Ag/CNTs were determined using inductively coupled plasma (ICP) emission spectrometer to be 0.12 wt. %, 0.44 wt. %, 2.45 wt. %, 0.24 wt. %, 0.67 wt. % and 2.94 wt. %, respectively.

2.4. Physical characterization of Pdₓ/CNTs and Pdₓ-on-Ag/CNTs

The X-ray diffraction (XRD) patterns of CNTs, Ag/CNTs, Pdₓ/CNTs and Pdₓ-on-Ag/GNs were recorded on a Bruker D8 Advance X-ray diffractometer using Cu-Kα as the radiation source.

The morphology of the catalysts was examined with transmission electron microscopy (TEM, FEI Quanta 200F) at 200 kV and high-angle annular dark-field scanning TEM (HADDF-STEM).

The electronic structures of the catalysts were characterized with the X-ray photoelectron spectroscopy (XPS, Kratos Axis Yltra DLD, monochromatic Al Kα) in ultrahigh vacuum.

2.5. Electrochemical characterization of Pdₓ/CNTs and Pdₓ-on-Ag/CNTs

Catalyst inks were first prepared for coating on a glassy carbon (GC, Φ = 5 mm) electrode. Specifically, 2 mg Pd/CNTs (or Pd-on-Ag/CNTs) was mixed with 600 ul ethanol containing 0.4 mg Naftion and ultrasonicated for 30 min to form homogeneous ink, then 15 µL ink was pipetted onto the GC electrode and dried using an infrared lamp. The theoretical mass loading of each catalyst is 0.05 mg on GC electrode.

A three-electrode cell coupled with an Autolab potentiostat/galvanostat (Model PGSTAT-30, Ecochemie, Brinkman Instrument) was used. A GC electrode, a Pt wire electrode and a Hg/HgO electrode were used as working electrode, counter electrode and reference electrode, respectively. All potentials herein were referred to Hg/HgO electrode, and all the electrochemical experiments were conducted at 25 °C in a N₂-saturated solution.

For each catalyst characterization, cyclic voltammetry (CV) was first conducted at 50 mV s⁻¹ in 1 M KOH solution until stable cyclic voltammograms (CVs) were obtained. Then CVs for formate oxidation were recorded in 1 M KOH + 1 M HCOOK solution.
followed by corresponding chronoamperometry (CA) tests conducted at −0.4 V for 3000 s.

For CO stripping experiments, gaseous CO was bubbled into the electrolyte (1 M KOH) for 30 min to allow CO adsorption onto the electro-catalysts while maintaining a constant voltage of −0.8 V. Excess CO was purged out with N₂ for 20 min. Then two successive CVs for CO stripping were recorded at a scan rate of 20 mV s⁻¹.

3. Results and Discussion

3.1. Structural characterization for Pd/CNTs and Pdₓ-on-Ag/CNTs

Fig. 1 outlines the XRD patterns obtained for Pdₓ/CNTs and Pdₓ-on-Ag/GNs as well as CNTs and Ag/CNTs as reference. The peak at 26.4° for all the XRD patterns can be ascribed to carbon (002) plane, indicating the graphitic structure of CNTs. When comparing the XRD patterns of Pdₓ/CNTs and CNTs, we notice a new peak at ~40° that can be ascribed to Pd(111) [10]. This peak is weak with a broad width indicating that the Pd content is low and the grain size is small. In contrast, no peak for Pd can be discerned for the XRD patterns of Pd₁₀/CNTs, indicating that the Pd content is too low. For the XRD patterns of Ag/CNTs, four peaks at 38.1°, 44.2°, 64.4° and 77.4° can be ascribed to Ag(111), Ag(200), Ag(220) and Ag(311) [10,27], respectively, confirming the presence of metallic Ag in Ag/CNTs. As for the XRD patterns of Pdₓ-on-Ag/CNTs, no Pd signal can be determined even though the Pd content of Pdₓ-on-Ag/CNTs is slightly higher than that of Pdₓ/CNTs (see the ICP results). This indicates that the Pd grain size in Pdₓ-on-Ag/CNTs is too small (see the following analysis) to show detectible signal.

To confirm the existence of Pd moieties in Pdₓ-on-Ag/CNTs, CVs were recorded for Pdₓ-on-Ag/CNTs in 1 M KOH solution (see Fig. 2).

Fig. 2. CVs for Pdₓ-on-Ag/CNTs recorded in 1 M KOH solution.

Fig. 3. (a) HRTEM image and (b) magnified micrographs of Ag/CNTs. (c) HRTEM image and (d) magnified micrographs of Pdₓ-on-Ag/CNTs. (e) HRTEM image of Pdₓ/CNTs. (f) HRTEM image of Pd/CNTs. (g) STEM image and corresponding EDS mapping of Pdₓ-on-Ag/CNTs.
The cathodic peaks at ~0.2 V can be ascribed to the reduction of Ag oxide and the peaks at ~−0.24 V can be ascribed to the reduction of Pd oxide. It can be seen that, with increasing number of Pd ALD cycles, the peak intensity for Ag oxide reduction continually decreases while that for Pd oxide reduction repetitively increases, indicating that the Ag surface is gradually covered by Pd moieties to form the Pd-on-Ag structure.

To further confirm the fine structure of Pdx-on-Ag/CNTs, high resolution TEM (HRTEM) were employed. The HRTEM images of Ag/CNTs are shown in Fig. 3(a) and (b) for reference. The HRTEM images of Pd25-on-Ag/CNTs are shown in Fig. 3(c) and 3(d) while those of Pd2/CNTs and Pd2/CNTs are shown in Fig. 3(e) and (f), respectively. From Fig. 3(a) we can statistically determine the Ag particles size to be in the range of 5~11 nm. The magnified observation of a selected Ag particle confirmed a lattice distance of 0.239 nm corresponding to Ag(111) [28]. For Pd25-on-Ag/CNTs in Fig. 3(c), the particle size distribution is similar to that in Fig. 3(a). The calculation of lattice distance in Fig. 3(d) confirmed the existence of metallic Ag, meaning that the Pd moieties cannot be clearly observed. This may be due to the super-small grain size of Pd moieties since the existence of Pd-on-Ag structure has been confirmed by the electrochemical results in Fig. 2. For the HRTEM image of Pd25/CNTs in Fig. 3(e), a Pd particle of ~3 nm was observed to calculate the lattice distance (~0.230 nm). Bearing in mind that the Pd content of Pd25/CNTs is similar to that of Pd25-on-Ag/CNTs but the Pd existence in Pd25-on-Ag/CNTs cannot be observed by HRTEM, we further assume that the Pd grains be smaller in the Pd25-on-Ag structure. The HRTEM image of Pd2/CNTs in 3(f) demonstrated that the average size of Pd particles in Pd2/CNTs is evidently smaller than that for Pd25/CNTs, and the distribution of

![Figure 4](image-url)
Pd particles on CNTs was fairly inhomogeneous, as indicated by the red rectangles. This size difference can bring about noticeable effects on catalytic performance of Pd particles (see Section 3.2). Additionally, we used energy dispersive X-ray spectroscopy (EDS) coupled to STEM to verify the Pd-on-Ag structure of Pd25-on-Ag/CNTs, as shown in Fig. 3(g). It can be seen that the signal of Pd moieties overlaps consistently with the Ag signal, indicating that most of Pd moieties deposit on the surface of Ag particles to form the Pd-on-Ag structure.

3.2. Electrocatalytic performance of Pdₓ/CNTs and Pdₓ-on-Ag/CNTs

To compare the electrochemical performance of Pdₓ/CNTs and Pdₓ-on-Ag/CNTs, stable CVs were obtained in 1 M KOH and 1 M KOH + 1 M HCOOK solution, respectively, as shown in Fig. 4. The CVs recorded in 1 M KOH were used to obtain the net forward scanning current (Iₚ) and backward scanning current (Iₛ) of formate oxidation by comparing with CVs in 1 M KOH + 1 M HCOOK solution, as exemplified in Fig. 4(a). From Fig. 4(a) we can see that the Pd oxide reduction peak (see the solid black arrows) appears at a potential (-0.19 V) similar to that for the backward scanning peak in 1 M KOH + 1 M HCOOK solution. Herein this backward scanning peak might be ascribed to the oxidation of formate, rather than that of the poisoning species (like CO₃ads) because there is no possibility of CO₃ads formation when the Pd surface is composed of oxide within the high potential range [29]. Considering this assumption, the backward scanning current (Iₛ) can be accepted as a reflection of the true activity of Pdₓ/CNTs for formate oxidation without the suppression of CO₃ads. Furthermore, the Iₛ can also be used to calculate the mass activity (Iₛm) and area activity (IₛA). Before calculating the Iₛ, the peak area for Pd oxide reduction was first integrated to obtain the electrochemical active surface (EAS) area using a coefficient of 375 μC cm⁻² [30]. Following this procedure, the EAS (cm²), mass specific EAS (cm² mg⁻¹ Pd), Iₛ (mA), Iₛm (mA mg⁻¹ Pd), IₛA (mA cm⁻²) for the six catalysts were collected in Table 1.

From Table 1 we can see that the mass specific EAS (EASₚ) decreases with increasing ALD cycle number for Pdₓ/CNTs or Pdₓ-on-Ag/CNTs. This is because the size of Pd particles increases with ALD cycle number, as reflected from Fig. 3(e) and (f). It can also be seen that the EASₚ of Pdₓ-on-Ag/CNTs are all larger than those of Pdₓ/CNTs, indicating the higher dispersion and smaller grain size of Pd moieties for the former. Remarkably, we can see that the EASₚ of Pd25-on-Ag/CNTs is even higher than that of Pdₓ/CNTs, confirming the very small size and high dispersion of Pd moieties in Pd-on-Ag structure and explaining the failure to observe the Pd existence using HRTEM in Fig. 3(d).

From Table 1 we can also see that the Iₛ for Pdₓ/CNTs (or Pdₓ-on-Ag/CNTs) increases with increasing the ALD cycle number, as indicated by the red and blue arrows. This might be due to the size effect [31,32], namely, variation of specific activity resulting from the size increase of the Pd particle (or Pd grains). In fact, this size increase is also reflected in the variation in peak potential for Pd oxide reduction (see Fig. 4). In Fig. 4 the formate oxidation during the backward scanning happens on pure Pd surface obtained from the Pd oxide reduction. Accordingly, the peak potential for formate oxidation (Eₒ) on Pdₓ/CNTs or Pdₓ-on-Ag/CNTs and the peak potential for Pd oxide reduction (Eₚ₀) should show similar changing trend due to the size increase. So the values of Eₒ and Eₚ₀ were both collected to reflect this size effect, as shown in Fig. 5. From Fig. 5 we can see that the values of Eₒ and Eₚ₀ for Pdₓ/CNTs or Pdₓ-on-Ag/CNTs simultaneously increase with increasing the ALD cycle number. This trend indicates that with increasing the ALD cycle number and Pd particles size, the binding of oxygen-containing species with Pd get weaker, and correspondingly, the potential for Pd oxide reduction shifts to higher potential [31,32], confirming the existence of size effect.

As analyzed above, the backward scanning current (Iₛ) in Fig. 4 can be viewed as a reflection of the true activity for formate oxidation without the suppression of CO₃ads. In comparison with Iₛ, the forward scanning currents (Iₚ) for formate oxidation on Pdₓ/CNTs are smaller. One reason for this is that the adsorption of CO₃ads onto the Pd surface during forward scanning, which could suppress formate oxidation. Therefore, the ratio of Iₛ to Iₚ (Iₛ/Iₚ) can be used to reflect the anti-poisoning performance of Pdₓ/CNTs and Pdₓ-on-Ag/CNTs, as listed in Table 2. It can be seen that the Iₛ/Iₚ ratio increases with increasing ALD cycle number for Pdₓ/CNTs and Pdₓ-on-Ag/CNTs, indicating enhanced anti-poisoning performance due to the increased size of Pd particles (or grains). To verify this judgment, we also measured the corresponding chronocoulometry currents (Iₚ₋) at -0.4 V for Pd₁₀/CNTs, Pd₁₅/CNTs, Pd₂₅-on-Ag/CNTs and Pd₃₅-on-Ag/CNTs (see Fig. 6) and calculated the ratio of Iₚ₋ to Iₚ for this condition, where the Iₚ₋ presents the dynamic currents obtained from the CVs at -0.4 V, as exemplified in Fig. 4(c). The results are
shown in Table 2. Comparing the values of I_{CA}/I_{CV} for Pd$_{10}$/CNTs versus Pd$_{25}$/CNTs (or Pd$_{10}$/on-Ag/CNTs versus Pd$_{25}$/on-Ag/CNTs), we can see that they all increase with increasing the ALD cycle number, confirming the better anti-poisoning performance for larger Pd particles (or grains) due to the size effect. The size effect can be explained from the aspect of the increasing adsorption strength of various species like CO and oxygen-containing species on surface of smaller Pd entities.

From the EAS$_m$ in Table 1, we know that the dispersion of Pd moieties on Ag substrate is higher than Pd on CNTs. From the results in Table 2, we know that Pd particles (or grains) with higher dispersion exhibit inferior anti-poisoning performance for Pd$_4$/CNTs or Pd$_{x}$/on-Ag/CNTs. However, for Pd$_x$/on-Ag/CNTs with higher Pd dispersion in comparison with Pd$_x$/CNTs (see EAS$_m$ in Table 1), the corresponding anti-poisoning performances are all superior (see Table 2). The values of I_{CA}/I_{CV} and I_{CA}/I_{CV} for Pd$_{x}$/on-Ag/CNTs are all higher than the values for Pd$_{x}$/CNTs, indicating that the Ag substrate plays a positive role in improving the anti-poisoning performance of Pd catalysts. In fact, the superior anti-poison performance of Pd$_{x}$/on-Ag/CNTs to Pd$_{x}$/CNTs can be directly demonstrated from Fig. 6. Comparing Pd$_{x}$/on-Ag/CNTs with Pd$_{10}$/on-Ag/CNTs or Pd$_{25}$/on-Ag/CNTs with Pd$_{10}$/CNTs, the final currents for the catalyst supported by Ag/CNT are all higher than those supported by CNTs alone, although the initial currents are evidently higher for the latter.

Based upon the CA currents (I_{CA}) obtained from Fig. 6, the mass specific I_{CA} were further calculated for Pd$_{10}$/CNTs (21.5 mA mg$^{-1}$), Pd$_{25}$/CNTs (70.0 mA mg$^{-1}$), Pd$_{10}$/on-Ag/CNTs (81.3 mA mg$^{-1}$) and Pd$_{25}$/on-Ag/CNTs (171.8 mA mg$^{-1}$). The results indicate that the Pd$_{x}$/on-Ag/CNTs are superior to Pd$_x$/CNTs, confirming the important role of Ag substrate in upgrading the anti-poisoning performance of Pd. On the other hand, judging from the mass specific CV currents (I_m) (see Table 1), Pd$_{x}$/CNTs seems superior to the counterpart of Pd$_x$/on-Ag/CNTs. This can be explained from the aspect of size effect. Namely, the Pd in Pd$_x$/on-Ag/CNTs is far more dispersed, resulting in lower specific activity. It is noteworthy that, when comparing Pd$_{25}$/on-Ag/CNTs with Pd$_{10}$/CNTs, we found that the I_m of the former is nearly 2.2 times that of the latter, although the EAS$_m$ of the former is nearly 1.4 times that of the latter and thus the size effect is unfavorable for the former. This result indicated that the Ag substrate undoubtedly posed a positive effect on the activity of Pd moieties. Considering above results, it is advisable to use the CA currents (I_{CA}), rather than CV currents as the evaluation index of catalysts performance because the CA currents are more representative of the operation for a real DFFC.

3.3. Mechanism analysis for the improved anti-poisoning performance of Pd$_x$/on-Ag/CNTs

To understand the role of Ag in upgrading the anti-poisoning performance of Pd moieties, CO stripping tests were conducted on Pd$_{25}$/CNTs and Pd$_{10}$/on-Ag/CNTs, as shown in Fig. 7. It can be seen that the onset potential (or peak potential) for CO stripping on Pd$_{10}$/on-Ag/CNTs is lower than those for Pd$_{25}$/CNTs, indicating that the CO species adsorb more weakly on Pd$_{10}$/on-Ag/CNTs than on Pd/CNTs. More interestingly, although the peak area of Pd oxide reduction for Pd$_{10}$/on-Ag/CNTs and Pd$_{25}$/CNTs is not largely different, the corresponding H region profile for the former is quite inconspicuous in comparison with the latter. Specifically, hydrogen adsorption features can hardly be observed on Pd$_{10}$/on-Ag/CNTs, indicating weak affinity of H adsorption on Pd$_{10}$/on-Ag. Herein we noticed that the strength of CO and H adsorption on Pd$_{10}$/on-Ag are simultaneously weaker in comparison with the case on Pd/CNTs. The reason might be ascribed to the electronic effect modulated by Ag substrate (see the XPS analysis). In fact, besides weakening the CO and H adsorption, Ag substrate also affects the
Pd oxide reduction behavior (see Fig. 5). As above analyzed for E_{PdOx} in Fig. 5, the binding of oxygen-containing species with Pd get stronger with increasing Pd dispersion in Pd$_{25}$/CNTs or Pd$_{33}$/Ag/CNTs (size effect). Because the Pd dispersion in Pd$_{25}$/Ag/CNTs is higher in comparison with Pd$_{33}$/CNTs (judging from the EAS$_{\text{m}}$ in Table 1), the adsorption of oxygen-containing species on Pd surface of Pd$_{25}$/Ag/CNTs should be stronger, and correspondingly the E_{PdOx} values for Pd$_{25}$/Ag/CNTs should be lower than that for Pd$_{33}$/CNTs. However, the E_{PdOx} values for Pd$_{33}$/Ag/CNTs are all higher than that for Pd$_{25}$/CNTs (~0.274 V, see Fig. 5), indicating that the binding of the oxygen-containing species with Pd in Pd$_{33}$/Ag/CNTs is weakened, which can be ascribed to the Ag substrate.

To understand the possible reason for the weakened adsorption of CO, H, and oxygen-containing species on Pd surface due to Ag substrate, XPS data was collected on Pd$_{25}$/CNTs and Pd$_{33}$/Ag/CNTs and the Pd 3d spectra were deconvoluted into two pairs of doublets, as shown in Fig. 8. The more intense doublet (at 335.2 and 340.5 eV for Pd$_{25}$/Ag/CNTs, 335.7 and 341.1 eV for Pd$_{33}$/CNTs) could be assigned to Pd at zero valence state, while the weaker doublet with binding energies higher than those of zero valence corresponded to Pd at oxidized state. It can be seen that the binding energy of Pd 3d$_{5/2}$ and 3d$_{3/2}$ for Pd$_{33}$/Ag/CNTs shifted to lower values compared with Pd$_{25}$/CNTs. Furthermore, the proportion of oxidized Pd decreased from 47.4% for Pd$_{33}$/CNTs to 39.8% for Pd$_{33}$/Ag/CNTs, in agreement with above judgment that the adsorption of oxygen-containing species with Pd in Pd$_{33}$/Ag/CNTs is weakened. The above results can be attributed to the electronic interactions between Pd and Ag. In fact, similar phenomena of a negative shift in BE have been observed in Ag-Pd [33], Ag-Pt [34] and Au-Pd [35] catalysts. According to the study of Liu et al., Ag will donate some electrons to Pd, as can be reflected from the decreasing intensity of white-line in synchrotron radiation characterization [33]. Accordingly, the Fermi level will increase relatively, which will weaken the adsorption of certain species (including CO, H and oxygen-containing species) on Pd surface. For formate oxidation on Pd$_{33}$/Ag/CNTs versus Pd$_{25}$/CNTs, the weakened CO adsorption on the former would then translate to improved anti-poisoning performance.

4. Conclusion

Using ALD, Pd was deposited on Ag/CNTs and CNTs to form Pd$_{25}$/Ag/CNTs and Pd$_{33}$/CNTs as catalysts for formate oxidation. The anti-poisoning performances of the former catalysts were superior to those of the latter. The reason for this can be ascribed to the electronic effect of Ag substrate. On the other hand, the corresponding mass specific activities of the former, at first sight, seem lower than those of the latter due to the size effect. This superficial disagreement reflects the necessity of evaluating catalyst performance preferentially based upon the CA results. In conclusion, the present work showed that the substrate materials are critical for improving the anti-poisoning performance of Pd catalysts.

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (U1304215) and the China Scholarship Council (201308410311). This research was also supported by Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chair (CRC) Program, Canada Foundation for Innovation (CFI), and the University of Western Ontario.

References

