Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries

Yongliang Li, Jiajun Wang, Xifei Li, Jian Liu, Dongsheng Geng, Jinli Yang, Ruying Li, Xueliang Sun*

Department of Mechanical and Materials Engineering, University of Western Ontario, 1151 Richmond Street N., London, Ontario, Canada N6A 5B9

A R T I C L E I N F O

Article history:
Received 20 March 2011
Accepted 5 April 2011
Available online 12 April 2011

Keywords:
Lithium–air batteries
Nitrogen-doped carbon nanotubes
Electrocatalytic activity

A B S T R A C T

Nitrogen-doped carbon nanotubes (N-CNTs) were synthesized by a floating catalyst chemical vapor deposition (FCCVD) method. Various techniques including X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy revealed the morphology and structure of CNTs and N-CNTs as well confirmed the existence of incorporated nitrogen (10.2 at.%) in N-CNTs. N-CNTs were investigated as cathode material for lithium–air batteries and exhibited a specific discharge capacity of 866 mAh g⁻¹, which was about 1.5 times as that of CNTs. Our results indicated that the N-CNTs electrode showed high electrocatalytic activities for the cathode reaction thus improving the lithium–air battery performance.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Lithium–air batteries have been attracting much attention due to its extremely high theoretical specific energy [1]. The cathode active material, oxygen, is not stored in the batteries, but can be absorbed from the environment during discharge, making these systems serious contenders to meet the rapid growing requirements of the hybrid electric vehicles (HEVs) and electric vehicles (EVs) [2]. Many work indicated that the battery performance strongly depended on the carbon cathode [3–5]. For example, Xiao et al. found that the surface area and mesopore volume of carbon powder significantly affected the discharge capacity [6]. Mirozaean et al. found that the battery performance depended on the morphology of the carbon as well [7]. Therefore it is important to develop new carbon-based electrodes to improve the kinetics of the air cathode and to enhance the battery performance.

Recently, nitrogen-doped carbon powder as cathode material in lithium–air batteries showed improvement to the discharge capacity because of the high surface area, porosity and electrocatalytic activity [8]. The doped heteroatoms are available to tailor the chemical and electronic nature of carbon-based materials [9–11]. Recent work has shown that the N-CNTs exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR) in aqueous electrolyte [12–15]. Zhang et al. reported that the battery made with carbon nanotube/nanofiber mixed buckpapers cathode delivered a high discharge capacity [16]. However, to our best knowledge, no research on N-CNTs as cathode for lithium–air batteries was reported.

In this work, for the first time, we employed N-CNTs as cathode for lithium–air batteries. It was demonstrated that nitrogen doping into carbon nanotubes not only increased the discharge capacity but also enhanced the reversibility in the charge/discharge process. This finding is opening a rational and promising direction in developing carbon electrode for lithium–air batteries.

2. Experimental

2.1. Materials synthesis

CNTs with diameters of 40–60 nm were purchased from Shenzhen Nanotech., China. N-CNTs were prepared in our group by a floating catalyst chemical vapor deposition (FCCVD) method, as described before [11]. Imidazole was used as carbon and nitrogen source, and ferrocene as catalyst precursor. At 850 °C, ferrocene decomposed into iron as the catalyst for carbon nanotube growth and the nitrogen atoms incorporated into the graphite layers to yield N-CNTs.

2.2. Physical characterizations

The morphologies and structures of CNTs and N-CNTs were characterized by a Hitachi S-4800 field emission scanning electron microscopy (FESEM) and a Hitachi H-7000 transmission electron microscopy (TEM). Powder X-ray diffraction (XRD) patterns were recorded by a Rigaku RU-200BV diffractometer employing a Co-Kα source (λ = 1.7892 Å). Raman scattering (RS) spectra were recorded on a HORIBA Scientific LabRAM HR Raman spectrometer system equipped with a 532.4 nm laser. N₂ adsorption/desorption isotherms were obtained using a Folia Micromeritics TriStar II Surface Area and Pore...
Fig. 1. SEM and TEM images of CNTs (a, and b) and N-CNTs (c, and d).

Fig. 2. (a) XRD patterns of the CNTs and N-CNTs, (b) Raman spectra of the CNTs and N-CNTs, (c) XPS survey spectrum of the N-CNTs, and (d) N\textsubscript{2} adsorption–desorption isotherms for the CNTs and N-CNTs. The inset of a is the XRD patterns in the range between 28° and 34°.
Size Analyser. The nitrogen content in N-CNTs was determined by a Kratos Axis Ultra X-ray photoelectron spectrometer with Al Kα as the X-ray source.

2.3. Electrochemical measurements

Cathode was prepared by casting a mixture of CNTs (or N-CNTs), and PVDF (Alfa Aesar) with a weight ratio of 9:1 onto a separator (Celgard 3500). The electrode is 3/8 in in diameter and the carbon loadings were 0.5 ±0.1 mg. The electrolyte was 1 mol LiPF₆ (Sigma Aldrich, 99.99%) dissolved in propylene carbonate (PC) (Sigma Aldrich, anhydrous, 99.7%)/ethylene carbonate (EC) (Alfa Aesar, anhydrous, 99%) (1:1 weight ratio).

Swagelok cells composed of lithium foil, Celgard 3500 separator, different cathodes and stainless steel (SS) mesh as current collector were assembled in an argon-filled glove box (MBrain Inc.) with the
moisture and oxygen concentration <1 ppm. The cells were gastight except for the SS mesh window which exposed to a 1 atm O₂ atmosphere. The discharge/charge characteristics were performed by using an Arbin BT-2000 battery station in a voltage range of 2.0–4.5 V. Cyclic voltammetry measurements were carried out by using a CHI 600c electrochemical work station at a scan rate of 0.2 mV s⁻¹ in a voltage range of 2.0–4.5 V at room temperature.

To study the catalytic activity of N-CNTs and N-CNTs on the charge decomposition of Li₂O₂, the cathode was constructed by using the method previously reported [17]. The cathode was made by casting a mixture of CNTs or N-CNTs, Li₂O₂ (Alfa Aesar), and PVDF at a weight ratio of 7:2:1 onto a Celgard separator. The electrodes were incorporated into Swagelok cells and charged at a current density of 75 mA g⁻¹ (of carbon) at room temperature.

3. Results and discussion

Fig. 1 shows SEM and TEM images of CNTs and N-CNTs. Both samples have uniform distributions in diameters (Fig. 1a,c). As shown in Fig. 1b and d, the diameter of CNTs is about 40–50 nm, while for N-CNTs is about 50–60 nm. The typical bamboo-like structure in N-CNTs indicates that nitrogen atoms were introduced into the carbon network [11].

XRD patterns of CNTs and N-CNTs are shown in Fig. 2a. The diffraction peaks at around 30° and 52° correspond to the (002) and (100) facets of hexagonal graphitic carbon, respectively. However, the diffraction peaks of N-CNTs slightly shifted to lower 2θ values than those of CNTs, which is due to the distortion in the graphene layers resulting from the incorporation of nitrogen [18].

Fig. 2b shows the Raman spectra of CNTs and N-CNTs. Both samples exhibit two obvious peaks at ~1345 and ~1570 cm⁻¹, corresponding to the D and G bands, respectively. The D band denotes the disordered graphite structure, whereas the G band indicates the presence of crystalline graphite carbon. The intensity ratio of D and G bands (I_D/I_G) is used to evaluate the disorder in the materials [19]. The I_D/I_G ratios of CNTs and N-CNTs are 0.53 and 0.85, respectively. The higher I_D/I_G ratio implies more defects in N-CNTs.

The XPS survey spectrum is shown in Fig. 2c. Three strong peaks at 282, 398, and 529 eV are attributed to C1s, N1s and O1s, respectively. The aromatic C-C bonds (100) and (200) are attributed to C₁s, N1s, and O1s bands, respectively. The intensity ratio of D and G bands is used to evaluate the disorder in the materials [19]. The ID/IG ratios of CNTs and N-CNTs are 0.53 and 0.85, respectively. The higher ID/IG ratio implies more defects in N-CNTs.

In Fig. 3a and b, the N-CNTs deliver an initial discharge capacity of 866 mAh g⁻¹, which is about 1.5 times as that of CNTs. It was demonstrated that N-CNTs have much better electrocatalytic activity for Li₂O₂ decomposition, therefore, improving the reversibility for lithium-air batteries. The performance improvement of N-CNTs results from the heteroatom nitrogen doping. The detailed fundamental mechanism is under study.

4. Conclusions

The electrochemical performance of CNTs and N-CNTs electrodes was studied in lithium-air batteries. The N-CNTs electrode has a specific discharge capacity of 866 mAh g⁻¹, which is about 1.5 times as that of CNTs. It was demonstrated that N-CNTs have much better electrocatalytic activity for Li₂O₂ decomposition, therefore, improving the reversibility for lithium-air batteries. The performance improvement of N-CNTs results from the heteroatom nitrogen doping. The detailed fundamental mechanism is under study.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chair Program, the Canada Foundation for Innovation, Ontario Early Researcher Award and the University of Western Ontario.

References

