Controllable lithium storage performance of tin oxide anodes with various particle sizes

Haoze Song a, Xifei Li a,* , Yanhua Cui b, Dongbin Xiong a, Yufen Wang a, Jiesheng Zeng a, Litian Dong a, Dejun Li a,* , Xueliang Sun a

a Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
b Institute of Electronic Engineering, CAEP, Mianyang 621900, China
c Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9, Canada

ABSTRACT
The SnO2 anode materials with various nanoparticle sizes were successfully synthesized to study their size effects on lithium storage performance. The compositions, structures, particle sizes and morphologies of the as-prepared samples were characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. It was confirmed that the obtained nanomaterials via a facile reflux approach show smaller size than that of hydrothermal method. Using cyclic voltammograms, electrochemical impedance spectroscopy, and galvanostatical charge/discharge testing, the SnO2 anodes with different nanoparticle sizes exhibit various electrochemical performance with lithium, originating from the enormous volume changes associated with the alloying and de-alloying processes. It was demonstrated that the anode material with smaller nanoparticle size performs much better lithium storage performance.

COPYRIGHT © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction
The increased lack of energy and the severe changes in the earth’s ecological environment have gradually been proven to be two obstacles hindering the development of the human civilization. With the huge consumption of fossil fuels and the drying up of resources, the greenhouse effect and air pollution has posed a serious threat on earth environment. The research and development of low or free pollution energy storage and conversion has become the urgent challenges. Among various energy storage and conversion, a lithium ion battery, as an ideal energy system in the 21st century, arouses the attractive attention in the world.

In a commercial lithium ion battery, graphite anode better solves the battery stability problem. However, the graphite anode itself does not overcome an obvious disadvantage of low specific capacity of 372 mAh g−1 corresponding to LiC6 [1]. To address this problem, many researchers have been pursuing some potential carbon-free anodes with high specific...
capacities, such as Si, Sn, and SnO₂, etc. In comparison to commercial graphite, the SnO₂ anode shows obvious advantages of low cost and high reversible discharge capacity (782 mAh g⁻¹) attracting much attention [2]. In one mol SnO₂ anode, up to 4.4 mol Li-ions can be stored (Li₂₂Sn₅) with increased energy capacity [3,4], which results in huge volume change of around 259% occurred upon cycling [5-8]. As a result, some cracks occur in the SnO₂ anode, accompanied by an electrical contact loss of active material with the current collectors and/or the conductive agent, thereby causing the poor cycling performance [9].

It was reported that to reduce the particle size of SnO₂ will increase the surface to volume ratio, and decrease the absolute volume changes during lithium insertion and extraction [10]. For example, Kim et al. employed the hydrothermal method to obtain SnO₂ ultrafine nanoparticles with size of 3 nm, 4 nm, and 8 nm. They reported that SnO₂ particles with 3 nm size showed the best electrochemical performance among three anode materials. However, the obtained anodes were with very similar size less than 10 nm, which showed some limitation to highlight the effects of SnO₂ particle size on lithium storage performance. Moreover, the synthesis approach they used exhibits some possible difficulties in scale-up.

In this study, the SnO₂ anodes with different particle sizes (say 15 nm, 30 nm, and 70 nm) were successfully obtained, moreover, the particle size effects of SnO₂ anodes on battery performance were studied in detail. It is expected that the SnO₂ nanoparticles with smaller size could well buffer volume change of the anodes upon cycles, and result in better electrochemical performance.

**Experimental**

**Synthesis of SnO₂ nanoparticles**

Nanocrystalline SnO₂-I was synthesized by a facile reflux method as follows: (1) 2.256 g of SnCl₂·2H₂O (98%, Aladdin) was dissolved in 50 mL ethanol (Tianjin Jiangtian Chemical Co. Ltd), which was stirred for 30 min. (2) 50 mL distilled water was added into the 150 ml of three flask. (3) Solution (1) was mixed with Solution (2) drop by drop, and stirred at 100 °C for 12 h with the reflux. The resultant gel was cleaned by deionized water and ethanol for three times in a centrifuge, respectively. The final product was dried at 80 °C for 12 h, and calcined at 500 °C for 3 h in a muffle furnace.

SnO₂-II was synthesized via a hydrothermal method, and the process was similar to that of SnO₂-I. The difference is that after Solution (1) was mixed with Solution (2) drop by drop, the mixture solution was transferred to a 50 mL Teflon-lined autoclave. The reaction was still maintained at 100 °C for 12 h in a Teflon-lined autoclave. The post-treatment is the same as SnO₂-I.

For comparison, the commercial SnO₂ nanoparticles with a size of 70 nm were purchased from Aladdin, marked as SnO₂-III.

The microstructure of the as-prepared SnO₂ was characterized by X-ray diffraction (XRD), Raman spectroscopy (LabRAM HR800), and X-ray photoelectron spectroscopy (Bruker D8). The obtained morphology was examined by scanning electron microscopy (SEM) which was performed on a Hitachi SU8010 and high resolution transmission electron microscopy (HRTEM) conducted on JEOL JEM-3000F.

![Fig. 1](image.png)

Fig. 1 – (a) XRD patterns of (i) SnO₂-I, (ii) SnO₂-II, (iii) SnO₂-III; (b) Raman spectra of (i) SnO₂-I, (ii) SnO₂-II, (iii) SnO₂-III at room temperature; Sn 3d (c) and O1s (d) XPS spectra of the SnO₂-I.
The working electrodes were prepared by slurry-casting on 25 µm-thick Cu foils served as current collectors. The slurry contained 80 wt% anode material, 10 wt% carbon black and 10 wt% polyvinylidene fluoride binder in the N-methylpyrrolidinone (NMP) solvent. The obtained electrodes were dried in a vacuum at 80 °C overnight. The SnO₂ electrodes and the lithium foils were used as the working electrodes and the counter electrodes, respectively. The electrolyte was composed of 1 M LiPF₆ salt dissolved in a 1:1 mass ratio of ethylene carbonate (EC) and dimethyl carbonate (DMC). The electrochemical performance of the anode materials was studied using 2032 type coin cells. The coin cells were assembled in an argon-filled glove box (both moisture and oxygen level are less than 1.0 ppm). The assembled cells were aged for 12 h before the electrochemical performance measurements. Charge-discharge characteristics were galvanostatically tested between 0.01 and 3.0 V (vs. Li/Li⁺) at room temperature using LANHE CT2001A. Cyclic voltammograms (the scan rate of 0.1 mV s⁻¹ and a potential range of 0.01−3.0 V (vs. Li/Li⁺)) and electrochemical impedance spectra (the frequency was varied from 0.1 MHz to 0.01 Hz with potential amplitude of 5 mV) were performed on Princeton Applied Research VersaSTAT 4.

Results and discussion

The powder X-ray diffraction was performed to examine the sample phases with various particle sizes. Fig. 1a shows the XRD patterns of the SnO₂ nanoparticles with three particle sizes. It can be seen that all XRD patterns samples well match the pure phase of SnO₂ (JCPDS No. 41−1445). But some difference was found that SnO₂-I shows broader peaks in comparison to SnO₂-II and SnO₂-III, which indicated that this sample exhibits the smallest particle size [13]. Based on the Scherrer's equation:

\[ D = \frac{K \lambda}{B \cos \theta} \]  

(\(k = 0.89\))

One can calculate that the particle sizes of SnO₂-I, SnO₂-II, and SnO₂-III are about 11.7 nm, 26.8 nm, and 78.4 nm, respectively. Derived from the group theory of rutile structure vibration mode, G (Gibbs free energy) = \(A_{1g} + A_{2g} + A_{2u} + B_{1g} + B_{2g} + 2B_u + E_g + 3E_u\). In the equation, \(A_{1g}, B_{1g}, B_{2g}\) and \(E_g\) are Raman active. \(A_{2u}\) and \(E_u\) are related to transverse optical vibration mode (TO) and longitudinal optical vibration mode (LO).
vibration modes (TO), respectively [12]. Fig. 1b shows room-
temperature Raman spectra of the SnO2 nanomaterials. The
fundamental Raman scattering peaks of SnO2 were
observed at 477, 635, and 775 cm⁻¹, which correspond to the E_g,
A1g, and B2g vibration modes, respectively [13]. The similar
vibration modes were discovered in the other two samples.
However, the peak intensity of the B2g vibration mode reduced
as order: SnO2-III > SnO2-II > SnO2-I. It is well known that the
Raman spectra are highly dependent on excitations from the
resonance behavior as well as structural factors or the wave-
length of laser [14]. Thus, it is believed that the various vi-
bration mode of SnO2 results from the different particle size
[13].

Fig. 1c shows the Sn 3d5/2 and Sn 3d3/2 peaks located at 486.5 eV and 495 eV in the fine spectrum of Sn 3d, which also
confirm the SnO2 formation [15]. The gap between the two
peaks is 8.5 eV, close to Sn 3d peak in the standard SnO2 XPS
spectrum. The O (1s) spectrum (Fig. 1d) shows a maximum
close to 530 eV, which can be attributed to the existence of O2⁻
species in the SnO2. The Sn 3d spectrum and the O 1s spectrum
can prove the presence of SnO2 in the obtained product.

Cassiterite belongs to space group P42/mnm with 
\[ a = 4.738 \text{ Å} \] and \[ c = 3.187 \text{ Å} \] [16–20]. XRD and Raman results
indicate that SnO2 nanoparticles reveal the main character-
istics of rutile structure, as shown in Fig. 2a. In this study,
three SnO2 nanoparticles with different size were compared
for lithium ion batteries, and the particle sizes of SnO2-I, 
SnO2-II, and SnO2-III are tested by SEM in Fig. 2b–d. It can be
observed that the particle sizes of SnO2-I, SnO2-II, and SnO2-
III are 15 nm, 30 nm and 70 nm, respectively. The Sn and
oxygen element mappings of the anode materials are shown in
Fig. 2e and f and Fig. S3 and 4, confirm the uniform distribu-
tion of Sn and O in the anode material.

Transmission electron microscopy (TEM) observations
were employed to further characterize the SnO2-I morphol-
ogy. Fig. 3a displays the typical TEM micrographs of the
SnO2-I. The as-synthesized SnO2 sample shows average
particle size of 15 nm, which is in good agreement with the
SEM observation. The EDX spectrum of the SnO2-I is
embedded in Fig. 3a. The EDX spectrum confirms that the
product is composed of Sn and O elements. Fig. S1a, b show
the EDX spectra of the other two samples, respectively. No
other elements were detected, which indicates that as-
prepared SnO2 exhibits high purity. As marked in the
HRTEM micrographs (Fig. 3b), interplanar spacing of 0.333 and
0.264 nm can be clearly observed, which corresponds to the
(110) and (101) planes of rutile SnO2, respectively. The ring-like
selected-area electron diffraction (SAED) pattern in Fig. 3c
indicates that the nanoparticles exhibit a polycrystalline
structure, and the diffraction rings from inside to outside can
be indexed to the (110), (101), (211), and (220) planes of rutile
SnO2, respectively. Fig. 3d is Fourier transform of Fig. 3b, and
these indexed patterns are consistent with the XRD
reflections.

Cyclic voltammetry was carried out in the voltage range of
0.1–3.0 V (vs. Li⁺/Li) at a scan rate of 0.1 mV s⁻¹ to identify the
electrochemical reactions of the anode materials with
lithium, as presented in Fig. 4a–c. These CV profiles show a
typical SnO2 electrochemical behavior with lithium. The
cathodic sweep process exhibits two characteristic peaks. One
peak is located at 0.9 V originating from the decomposition of
SnO2 into Sn combined with the formation of Li2O:

\[ \text{SnO}_2 + 4\text{Li}^+ + 4\text{e}^- \rightarrow \text{Sn} + 2\text{Li}_2\text{O}, \]

solid electrolyte
interphase (SEI) formation [11]. The other characteristic peak is positioned at 0.2 V, which results from alloying of Sn with Li as described: Sn + xLi\(^+\) + xe\(^-\) → Li\(_x\)Sn (0 ≤ x ≤ 4.4) [21–23]. The oxidation process also shows two peaks. In the anodic sweep process, one peak at 0.5 V represents the dealloying of Li\(_x\)Sn as described: Li\(_x\)Sn → Sn + xLi\(^+\) + xe\(^-\) (0 ≤ x ≤ 4.4) [24,25]. It was confirmed that the SnO\(_2\) size does not show an obvious effect on the redox reactions. However, the reduction and oxidation areas show some difference in various cycles. With the increase of particle size, this phenomenon is more obvious, which indicates that SnO\(_2\) with decreased particle size exhibits better electrochemical stability.

Fig. 4d–f show the typical voltage profiles of three SnO\(_2\) nanoparticles. It is observed that there exists a large difference between discharge and charge capacities with an irreversible capacity loss in the first cycle. The first discharge capacities of SnO\(_2\)-I, SnO\(_2\)-II, and SnO\(_2\)-III are 1800, 1250, and 1520 mA h g\(^{-1}\), respectively. It is worth to note that the initial irreversible capacities of the SnO\(_2\)-I (900 mA h g\(^{-1}\)), the SnO\(_2\)-II (620 mA h g\(^{-1}\)), and the SnO\(_2\)-III (690 mA h g\(^{-1}\)) are related to SEI formation and irreversible reaction of SnO\(_2\) + 4Li\(^+\) + 4e\(^-\) → Sn + 2Li\(_2\)O [26–31]. In the first discharge step, the initial small plateau in the potential range of 1.5 to 0.8 V is observed for three materials, corresponding to the irreversible reduction and SEI formation, similar to the SnO\(_2\) results previously reported [32–39]. However, this plateau almost disappears in the following cycles.

Fig. 5a and b compare the discharge capacity and coulombic efficiency versus cycle numbers of SnO\(_2\)-I, SnO\(_2\)-II and SnO\(_2\)-III. The discharge capacities of SnO\(_2\)-I, SnO\(_2\)-II, and SnO\(_2\)-III after 30 cycles are about 460, 280 and 180 mA h g\(^{-1}\), respectively. Compared with the second discharge capacity, the capacity retention of SnO\(_2\)-I, SnO\(_2\)-II, and SnO\(_2\)-III is around 58.2%, 40.7% and 21.9%, respectively. By contrast, the enhanced lithium storage performance of SnO\(_2\)-I can be attributed to the reduction of particle size, which can alleviate the volume variation of SnO\(_2\) [36]. It is well known that the main hindrance against commercialization of Sn based anode materials in LIBs is the large volume variation during charge/discharge processes which leads to poor cyclability [16]. The nature of fast attenuation capacity is due to volume change, which causes a so-called pulverization problem hindering the electrical connection in the electrode. It was reported that SnO2 shows increased performance with the decrease of the anode nanoparticle size [40]. Our study confirms this important point. The initial coulombic efficiency of the three types SnO\(_2\) electrodes were around 50%, which is due to the SEI layer formation of generated by an irreversible insertion/desertion of Li\(^+\) into the host structures and the irreversible reaction of SnO\(_2\) with lithium [41]. The coulombic efficiencies of all
samples reach more than 90% after two cycles. In addition, the relevant coulombic efficiency of SnO$_2$–I maintains around 100% after several cycles, indicating the good electrochemical reversibility. The results may be related to higher crystal degree and larger specific surface area [40].

Electrochemical impedance spectroscopy (EIS) was conducted to determine the Li$^+$ transfer behavior in the SnO$_2$–I, SnO$_2$–II and SnO$_2$–III, as shown in Fig. 5c. It is well known that the high frequency semicircle is related to the charge-transfer resistance at the interface between the electrolyte and the electrode material. The inclined line corresponds to the Li$^+$ diffusion into the electrode material [28]. The semicircle diameters of SnO$_2$–I are smaller than that of the other two samples, indicating that reduction of particle size increases electron and lithium ion transfer rates [38]. The equivalent circuit diagram in Fig. 5d was employed to simulate the EIS curves. It was reported that the EIS of the porous powder electrodes tend to deviate from the ideal smooth electrodes due to the dispersion effect [32]. Thus, the introduction of constant-phase element (CPE) in the equivalent circuit of Fig. 5d fits the influence of dispersion effect on the impedance spectrum [33]. It was found that the charge transfer resistance ($R_{ct}$) of SnO$_2$–I, SnO$_2$–II, and SnO$_2$–III is 104.1, 130.4, and 178.2 $\Omega$, respectively. Clearly, SnO$_2$ with smaller particle size facilitates the electrochemical reaction of the anode with lithium, which results in the decreased $R_{ct}$ value. The quick charge transfer in SnO$_2$ leads to their superior electrochemical performances. Therefore, SnO$_2$–I exhibits the best performance among these anode materials.

The schematic illustration of morphological evolution of as-prepared SnO$_2$ nanoparticles is shown in Scheme 1. The SnO$_2$ anode with the biggest particle size (say SnO$_2$–III) suffers from the huge volume change, resulting in the serious pulverization upon cycling (Scheme 1a), which is the main reason why SnO$_2$–III exhibits the poorest performance in Fig. 5a. When the particle size of SnO$_2$ decreases, the resultant absolute volume change decreases as well. It shows some improvement of the anode pulverization in Scheme 1b. Furthermore, the particle size of the anode decreases down to 15 nm (say SnO$_2$–I), and in Scheme 1c, the pulverization improvement shows the best positive effect originating from the smallest volume change among these three anode materials. Therefore, as shown Fig. 5a, SnO$_2$–I with the smallest particle size reveals the best anode performance for lithium ion batteries.

Conclusions

In summary, a facile reflux method was developed to synthesize SnO$_2$–I nanoparticles with smaller particle size than SnO$_2$–II synthesized via the hydrothermal approach. XRD, SEM and HRTEM results revealed that the particle sizes of SnO$_2$–I, SnO$_2$–II, and SnO$_2$–III are around 10 nm, 30 nm and 70 nm, respectively. These three SnO$_2$ nanomaterials were studied as the anodes for lithium ion batteries. The obtained electrochemical results confirm that SnO$_2$–I exhibits better cycling performance than the other two materials. Moreover, the coulombic efficiency of SnO$_2$–I maintains close to 100% after several cycles, which is higher than those of SnO$_2$–II and SnO$_2$–III. It was found that the increased performance of SnO$_2$–I results from smaller particle size with lower absolute volume change during charge/discharge processes. Therefore, the significant impact of SnO$_2$ particle size on battery performance was clearly demonstrated, which opens a potential
door to further increase SnO₂ performance for possible commercialization in high performance lithium ion batteries.

**Acknowledgements**

This research was supported by Key Project of Tianjin Municipal Natural Science Foundation of China (13JCZDJC33900 and 14JCZDJC32200), Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, LPMT, CAEP (KF14006 and ZZ13007), Project 2013A030214 supported by CAEP, Science & Technology Department of Sichuan Province (2013GZX0145-3), Academic Innovation Funding of Tianjin Normal University (52XC1404), Scientific Research Foundation of Tianjin Normal University (SRL131), Training Plan of Leader Talent of University in Tianjin, Scientific Research Foundation for Returned Overseas Chinese Scholars of State Education Ministry, and the program of Thousand Youth Talents in Tianjin of China.

**Appendix A. Supplementary data**

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ijhydene.2015.03.168

**References**


