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� The amorphous SnO2/graphene
aerogel were successfully
synthesized.

� The nanocomposites showed high
reversible capacity and cycling
stability.

� The study exhibited an effective
strategy for anode materials of LIBs.
g r a p h i c a l a b s t r a c t
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The Sn-based materials have been hindered from practical use for lithium ion batteries due to the inherent
volume change leading to poor cycling performance. To mitigate this challenge, in this study, amorphous
SnO2/graphene aerogel nanocomposites are fabricated via a simple hydrothermal approach. The amorphous
nature of SnO2 is clearly determined in detail by transmission electron microscopy, aberration-corrected
scanning transmission electron microscopy, and X-ray diffraction measurement. The as-prepared material
shows satisfying reversible capacity and significant cyclic stability. For instance, it delivers an excellent dis-
charge capacity of 700.1 mA h g�1 in 80th cycle at a current density of 100 mA g�1, in accordancewith a high
retention capacity of 97.6% compared to that of the sixth cycles, which is much better than crystalline
SnO2/graphene aerogel. The enhanced electrochemical performance can be ascribed to the intrinsic isotropic
nature, smaller size, and high electrochemical reaction kinetics of amorphous SnO2, together with the gra-
phene aerogelsmatrix. Therefore, this studymayprovide aneffortless, economic, and environmental friendly
strategy to fabricate high volume change electrode materials for lithium ion batteries.
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1. Introduction electrochemical performance and great potential application when
Rechargeable lithium ion batteries (LIBs) emblematize state-of-
the-art technology in the field of the electrochemical energy stor-
age systems because of high energy density and good electrochem-
ical cycling performance [1,2]. For a long time, LIBs have received
great attention for energy storage applications, such as portable
consumer electronics (smartphones, camera and tablet comput-
ers), power tools (electric vehicles and hybrid electric vehicles)
[3–5]. Unfortunately, the LIB development for these applications
is still full of challenges since the issues such as costs, safety, mate-
rials availability, and environmental friendly are addressed [6].
Especially, although graphite has been ubiquitously employed as
a commercial anode material, and it is expected to play a key role
in the coming process of manufacturing advanced LIBs due to good
cycling performance, however, its relatively low specific capacity
of 372 mA h g�1, limited rate capability, and low density obstruct
the development of LIBs [7,8]. So far, to circumvent these hurdles,
metal, metal oxides, and a number of other potential materials
with high theoretical reversible capacities, abundance, and non-
toxic have recently received increasing attention as alternative
anode materials for rechargeable LIBs, for instance, Si [9,10], Sn
[11,12], SnO2 [13], Co3O4 [14]. SnO2 is a n-type wide-bandgap
(Eg = 3.6 eV) semiconductor [15], because of relatively high theo-
retical capacity (782 mA h g�1) according to 4.4 Li per molecule
and safe lithiation potential [16,17], SnO2 has been supposed to
one of the most promising electrode materials for LIBs. However,
it suffers a severe capacity fading originating from its severe aggre-
gation, poor electrical conductivity, and volume expansion during
the processes of Li+ insertion/extraction [13].

To mitigate the aforementioned challenges, one effective strat-
egy has been proposed to conduct the SnO2 based nanocomposites.
The matrix in the composite anodes reveals high electrical conduc-
tivity as well as great tolerance of volume change [18,19]. In view
of this point, various carbon-based materials such as carbon nan-
otubes, graphene, and porous carbon are effective candidates
enhancing battery performance of SnO2 anode. Notably, due to
high surface area of over 2600 m2 g�1, conductance quantization,
remarkable structural flexibility, ultrashort pathway for Li+, and
excellent electrical conductivity [20–22], graphene have been
receiving tremendous attention recently. For instance, the synthe-
sized flexible nitrogen-doped graphene/SnO2 foams [23], the
dually fixed SnO2 nanoparticles on graphene nanosheets by
polyaniline coating [24], and the designed SnO2-reduced graphene
oxide composites [25] all show enhanced electrochemical perfor-
mance as anodes in LIBs. More strikingly, it’s generally known that
amorphous nanoparticles own intrinsic isotropic nature, which can
effectively buffer volume changes upon cycling [26,27], guarantee-
ing the integrity of the structure and excellent electrochemical per-
formance. For instance, amorphous porous TiO2@nitrogen doped
graphene nanocomposites were designed to deliver outstanding
high rate performance, e.g., 182.7 mA h g�1 (the current density
is 3.36 A g�1) in 100th cycle [28]. Furthermore, McDowell et al.
have illustrated that amorphous silicon compared to the crystalline
can resist more efficiently the large volume modifications at least
for spheres with 870 nm of diameter [29]. Based on above results,
it is expected that amorphous SnO2 based nanocomposites could
minimize the effect of volume expansion during discharge–charge
processes and improve the lithium energy storage.

Hence, in this study, we rationally proposed a facile strategy for
the fabrication of amorphous SnO2/graphene aerogel nanocompos-
ites via a hydrothermal approach. Intriguingly, benefiting from the
synergistic effects of intrinsic isotropic nature of amorphous SnO2

as well as good matrix of graphene aerogels, the resultant amor-
phous SnO2/graphene aerogel nanocomposites exhibit excellent
employed as anode materials for LIBs. For instance, it maintains a
high energy capacity of 700.1 mA h g�1 in the 80th discharge cycle,
which corresponds to 97.6% of the 6th discharge capacity. To the
best of our knowledge, this value is amongst the better published
in the literature, and the synthetic strategy can be an effective
access for the synthesis of carbon-based metal oxides with con-
trolled amorphous structure.

2. Experiments

2.1. Synthesis of the amorphous and crystalline SnO2/graphene aerogel
nanocomposites

Graphene oxide (marked GO) was first synthesized using the
Hummers method, as previously reported by our group [30].
SnO2/graphene aerogel (SnO2/GA) nanocomposites were synthe-
sized by a facile hydrothermal method using SnCl2�2H2O (Tianjin
Fengchuan Chemical Reagent Science And Technology Co., Ltd.
P98.0%) as a precursor and GAs as a carrier. Specifically, 39 mg
GO in 60 ml ethylene glycol (EG, Tianjin Jiangtian Chemical Tech-
nology Co., Ltd.) was dissolved in a beaker, followed by 30 min
intense ultrasonication. After that, 60 mg SnCl2�2H2O dispersed in
60 ml EG was mixed with the GO contained-solution using peri-
staltic pump to form a uniform mixture. Then, the resulting solu-
tion was transferred to three 50 mL Teflon-lined stainless steel
autoclaves and kept at 160 �C for 1.5 h. The products were obtained
via centrifuging and sequentially washing with deionized water
and ethanol for several times, and then freeze-dried. Finally, amor-
phous SnO2/GA (a-SnO2/GA) nanocomposites were obtained, while,
crystalline SnO2/GA (c-SnO2/GA) nanocomposites were synthe-
sized by calcination at 400 �C for 4 h under Ar atmosphere. Pristine
GAs were produced via the same process as for a-SnO2/GA except
that no SnCl2�2H2O was added. Additionally, for comparison, the
bare SnO2 was synthesized by a facile reflux method. SnCl2�2H2O
was dissolved in 50 mL ethanol, followed stirring for 30 min. Sub-
sequently, the mixed solution was transferred to the three flask
filled with distilled water drop by drop, and stirred at 100 �C for
12 h with the reflux. The resultant gel was rinsed by ethanol and
deionized water using a centrifuge. The final product was dried
at 80 �C for 12 h, and the products were synthesized by subsequent
calcination at 500 �C for 3 h in a muffle furnace.

2.2. Physical characterization

The X-ray diffraction patterns (XRD, DX-2700) of the products
were obtained with CuKa radiation in a coupled 2h mode at room
temperature. The results were recorded at the range of 10–80�. The
morphology and structure of products were characterized with
scanning electron microscope (SEM, SU8010, Hitachi), transmis-
sion electron microscope (TEM, JEOL JEM-3000F), and aberration-
corrected scanning transmission electron microscopy (STEM, JEOL
ARM200F, Tokyo, Japan). The microscope was equipped with a
CEOS probe aberration corrector (CEOS, Heidelberg, Germany).
The binding characteristics of the materials were conducted via
X-ray photoelectron spectroscopy (XPS, VG ESCALAB MK II) analy-
sis. The graphene contents in the composites were performed via
thermogravimetric analysis (TGA, Pyris Diamond6000 TG/DTA,
PerkinElmer Co, America) at air ranging from room temperature
to 800 �C. Raman spectra were recorded on LabRAM HR800.

2.3. Electrochemical performance

Electrochemical testing was evaluated with the coin cells
(CR2032), they were assembled in a glove box filled argon, where
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Fig. 1. (a) XRD patterns of (i) a-SnO2/GA and (ii) c-SnO2/GA; XPS analysis: C 1s spectra of (b) a-SnO2/GA and (c) c-SnO2/GA (the inset is the survey spectrum), (d) Sn 3d spectra
of (i) a-SnO2/GA and (ii) c-SnO2/GA; (e) Raman spectra of (i) pristine GAs, (ii) a-SnO2/GA, and (iii) c-SnO2/GA; (f) TGA curves of (i) c-SnO2/GA and (ii) a-SnO2/GA.

Table 1
The C species area% of the samples based on XPS results.

CAC CAO C@O OAC@O
284.7 eV (%) 286.4 eV (%) 287.8 eV (%) 289.0 eV (%)

a-SnO2/GA 65 22 8 5
c-SnO2/GA 81 11 5 3
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the oxygen and moisture contents were kept below 0.1 ppm. To
obtain working electrodes, typically, active materials (80%),
polyvinylidene fluoride (10%), and conductive carbon black (10%)
were mixed in N-methyl-2-pyrrolidinone (NMP) solvent to form
an uniform slurry and pasted onto Cu foil. Afterwards, they were
dried at 80 �C for 12 h via a vacuum oven. Then, the electrodes
were punched into 12 mm disks in diameter, and the typical elec-
trode loading was about 0.65 mg cm�2. All the cells were galvano-
statically discharged and charged ranging from 0.01 V to 3.0 V
using the multi-channel Land battery test system (LANHE
CT2001A). Cyclic voltammetry (CV) testing data were recorded
by the Princeton Applied Research VersaSTAT4 at a scan rate of
0.1 mV s�1 in the voltage range of 0.01–3.0 V. The electrochemical
impedance spectra (EIS) were measured in a frequency range from
100 kHz to 0.01 Hz with ac signal amplitude of 5 mV. All electro-
chemical characterizations were performed at room temperature.
3. Results and discussion

The phase structures of a-SnO2/GA and c-SnO2/GA are inspected
by XRD. It can be seen from Fig. 1(a) that all the diffraction peaks of
c-SnO2/GA are in good accordance with the standard diffraction
data of rutile structure of SnO2 (cassiterite, JCPDS No. 41-1445).
Notably, there is no characteristic peak in a-SnO2/GA except for
the broad peak around 29–31�, confirming a typical nature of
amorphous SnO2 successfully designed onto GAs. X-ray photoelec-
tron spectroscopy (XPS) provides the chemical composition of a-
SnO2/GA in comparison to c-SnO2/GA. One can see from the insets
in Fig. 1(b) and (c), C, O and Sn are clearly detected, and no other
elements exist in both nanocomposites. The high resolution C 1 s
XPS spectra of a-SnO2/GA and c-SnO2/GA can be deconvolved into
four peaks: 284.7 eV for graphitic carbon, 286.4 eV for carbon in
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Fig. 2. Typical SEM images, HRTEM images (the inset is the SAED pattern), and high-resolution HAADF-STEM images of (a–c) a-SnO2/GA and (d–f) c-SnO2/GA, respectively.
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epoxide groups (including CAOAC and CAOH), 287.9 eV for car-
bonyl carbon, 289.0 eV for carboxylate carbon [31]. Meanwhile,
we quantify the peak area% in the C 1 s spectra of a-SnO2/GA and
c-SnO2/GA, the values are presented in Table 1. Clearly, one can
see that the total area% of oxygen-containing functional groups
in a-SnO2/GA and c-SnO2/GA are estimated to be 35% and 19%,
respectively, confirming that the GAs in c-SnO2/GA are further
reduced after annealing process [32,33]. In Fig. 1(d), a pair of peaks
of Sn 3d spectra appear at 495.8 and 487.0 eV associated with Sn
3d 3/2 and Sn 3d 5/2 spinorbit peaks of SnO2, demonstrating the
formation of SnO2 nanoparticles in the composites [34]. As seen
in Fig. 1(e), the Raman spectra of pristine GAs, a-SnO2/GA, and c-
SnO2/GA show two peaks at 1348 cm�1 and 1602 cm�1, which
are in good agreement with D band causing by defects attributed
to grain boundaries, amorphous carbon species, and vacancies as
well as G band caused by the presence of graphitic carbon, respec-
tively [35–37]. Compared to the pristine GAs, both SnO2/GA exhibit
an increased intensity ratio (ID/IG), originating from a decrease of
the size of sp2 domains and the defects generated by the insertion
of SnO2 nanoparticles into GAs [38,39]. Thermogravimetric analy-
sis (TGA) is employed to measure the SnO2 contents in a-SnO2/
GA and c-SnO2/GA (Fig. 1(f)). The initial weight loss is associated
with the desorption of moisture. According to the weight loss of
GAs, the contents of SnO2 in a-SnO2/GA and c-SnO2/GA are calcu-
lated to be 51% and 55%, respectively.

Figs. 2 and S1 show the morphology characteristics of the syn-
thesized a-SnO2/GA and c-SnO2/GA by SEM, TEM, and high-
resolution HAADF-STEM images. Obviously, in Fig. 2(a), the amor-
phous SnO2 particles are homogeneously and firmly anchored on
GAs matrix. Meanwhile, one can observe that the size of amor-
phous SnO2 particles is small. In addition, it can be seen from
Fig. 2(b) and (c) that no lattice fringings are found, consistent with
the amorphous state of the SnO2 nanoparticles. By contrast, the
particle size of crystalline SnO2 increases to 10–15 nm, and they
are uniformly deposited on GAs matrix, as shown in Fig. 2(d).
TEM and high-resolution HAADF-STEM images (see Fig. 2
(e) and (f)) clearly exhibit the crystalline character of the SnO2

nanoparticles. For instance, the lattice fringes with d-spacings of
0.336 nm and 0.264 nm assign to the (110) and (101) planes of
SnO2. Similarly, the absence of diffraction rings of SAED (see the
inset of Fig. 2(b)) and the obvious concentric rings of SAED (see
the inset of Fig. 2(e)) well agree with our design of a-SnO2/GA
and c-SnO2/GA. As a result, the intrinsic isotropic nature and the
small particle size of amorphous SnO2 guarantee increased electro-
chemical performance. For comparison, the bare SnO2 nanoparti-
cles are synthesized, and the morphology and structure are
confirmed by SEM, XRD, and XPS, as shown in Figs. S2–S4.

Fig. 3(a) and (b) exhibit typical CV characteristics corresponding
to the lithiation/delithiation of the a-SnO2/GA and c-SnO2/GA,
tested in the voltage range of 0.01–3.0 V (vs. Li+/Li) with a scan rate
of 0.1 mV s�1. Obviously, both nanocomposites show similar CV
profiles. In the initial cycle, one can see a reduction peak around
0.85 V in both samples, which is consistent with the formation of
the solid electrolyte interface (SEI), as well as the conversion from
SnO2 to Sn [33,40]. The characteristic pair of cathodic peak (at
0.05 V) and anodic peak (at 0.55 V) are assigned to reversible
lithium alloying with Sn and dealloying of LixSn reactions, respec-
tively [25]. Additionally, another one oxidation peak at 1.31 V is
observed, which is ascribed to partially reversible reactions of
Li2O and Sn [41]. The CV curves almost overlap together from the
second cycle, suggesting that the electrochemical reactions are
reversible well. Fig. 3(c) and (d) depict the discharge and charge
profiles of a-SnO2/GA and c-SnO2/GA in the 1st, 2nd, 20th, and
80th cycles, which are measured at a current density of 100 mA g�1

from 0.01 V to 3.0 V at room temperature. As can be seen, the dis-
charge capacity of first cycle reduces rapidly compared to the sec-
ond cycle. In other words, a part of initial discharge capacity can be
irreversible originating from electrolyte decomposition, the forma-
tion of SEI, and the irreversible conversion from SnO2 and Li to Li2O
and Sn in lithiation process [42]. Fortunately, in the following dis-
charge/charge cycles, a-SnO2/GA maintain a higher reversible
capacity and better cyclic stability compared to c-SnO2/GA.

The cycling performances of pristine GAs, bare SnO2, a-SnO2/GA,
and c-SnO2/GA electrodes under a current density of 100 mA g�1

are compared in Fig. 3(e). As expected, GAs matrix deliver low
reversible capacity and cycliability. Meanwhile, it can be seen that
the bare SnO2 exhibits poor cycliability, and the specific capacity
falls to 420 mA h g�1 upon 40 cycles, which originates from large
volume change of anode materials. With the help of GAs matrix,
a-SnO2/GA and c-SnO2/GA reveal increased performance. Interest-
ingly, one can see that the anode crystallinity significantly affects
lithium storage performance of the SnO2 material. Due to the sev-
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ere volume expansion, c-SnO2/GA exhibit high capacity fade. Its
discharge capacity only remains 571.6 mA h g�1 in 80th cycle,
and capacity retention is about 84% compared to that of the 6th
cycle. By contrast, a-SnO2/GA show enhanced cycling performance.
For instance, the discharge capacity decreases to 716.6 mA h g�1 in
the first six cycles. After that, it remains stable at around
700.1 mA h g�1 when the test is prolonged to 80 cycles, in accor-
dance with a high retention rate of 97.6%. These results illustrate
that the amorphous SnO2 particles with the smaller size and isotro-
pic nature demonstrate better function to relieve the volume
expansion/shrinkage and make less active material lose electrical
contact with the matrix, guaranteeing the excellent lithium energy
storage. In order to further highlight the advantages of a-SnO2/GA,
the rate capability of the nanocomposites is tested using different
current densities between 100 and 1600 mA g�1. Clearly, we can
see from Fig. 3(f) that the a-SnO2/GA exhibit high reversible capac-
ities of 689.7, 512.4, 424.5, 353.1 and 269 mA h g�1 at the different
current densities of 100, 200, 400, 800 and 1600 mA g�1, respec-
tively. However, the specific capacities of a-SnO2/GA at low current
densities (such as 100 and 200 mA g�1) are comparable to that of c-
SnO2/GA electrode. With increased current densities at 400, 800,
1600 mA g�1, a-SnO2/GAs deliver higher reversible capacities than
c-SnO2/GA (see Fig. S5). These results clearly demonstrate the sig-
nificant advantages of designed a-SnO2/GA used as anode material
for LIBs.

Fig. 4(a) and (b) display the electrochemical impedance spec-
troscopy of a-SnO2/GA and c-SnO2/GA in the 1 st, 5th, and 10th
cycles. The equivalent circuit in Fig. 4(c) is employed to simulate
the obtained EIS results. Note that both SnO2/GA exhibit a
depressed semicircle and an angled straight line corresponding to
the high frequency and low frequency range. These features are
characteristic of charge transfer resistance (Rct) and Warburg
impedance (ZW) of Li ions [43]. Additionally, the Rct values of a-
SnO2/GA and c-SnO2/GA in the 1st, 5th, 10th cycles are compared
in Fig. 4(d). On one side, a-SnO2/GA reveal lower Rct than c-SnO2/
GA, suggesting high electrochemical reaction kinetics, which
attributed to the Li ions insertion/extraction into the composites
anodes [44]. On the other side, the Rct values of both SnO2/GA con-
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tinually decrease upon cycling, which confirms the enhanced elec-
trochemical activity with increasing cycles [32,45]. Since the
lithium insertion and extraction reaction rates are governed by
Li+ diffusion and electron conductivity, therefore, the increased
electronic conductivity, that is to say, the high electrochemical
reaction kinetics suggest enhanced lithium energy storage.

Based on the aforementioned discussion, we further study the
morphology of a-SnO2/GA after 80 charge/discharge cycles (see
Fig. S6). Clearly, the a-SnO2/GA structure shows some changes after
repeated charge–discharge cycles to some degree. Compared to
Fig. 2(b), some nanoparticles showing clear lattice fringes are
observed, indicating that the resultant nanoparticles are substan-
tially crystalline. Note that the distribution on GAs and particle size
of SnO2 have no obvious change, suggesting the intrinsic isotropic
nature and smaller size of SnO2, along with the GAs matrix can
effectively relieve SnO2 volume changes during charge/discharge
cycles, guaranteeing the structure integrity between SnO2 particles
and GAs matrix. It exhibits a convincing evidence that a-SnO2/GA
are potential anode materials for LIBs.
4. Conclusions

In summary, LIBs have had remarkable success as power
sources for portable electronic devices, on the basis of traditional
graphite electrode. In our study, the designed electrode material
with excellent performance is expected to be a good anode candi-
date. More strikingly, as more demand emerges for electrical vehi-
cles and hybrid electric vehicles, and as emphasis shifts to the
power grid and other large scale applications, exploring potential
materials with high reversible capacity and high stability as alter-
native anode materials is eager. However, these materials show
poor performance resulting from large volume change. Our results
demonstrate that the amorphous nature of electrode materials can
efficiently overcome this challenge, and enhance cycling perfor-
mance. Hence, this study opens an excellent approach to improve
electrochemical performance of electrode materials with large vol-
ume change for energy storage systems.
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