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Abstract—High availability (HA) is a main key performance
indicator for cloud deployed services. Cloud providers offer dif-
ferent availability zones possibly located in different geographical
regions. To protect cloud services against failures and natural
disasters, it is recommended to deploy the applications on redun-
dant resources across multiple zones and distribute the workload
through a load-balancer. Different cloud infrastructure, located
in different geographical zones with different energy source
powering, hardware quality, etc., may have different reliability
levels. Scheduling a cloud service on different zones while meeting
the service level agreement availability requirements necessitate a
solution to assess the expected availability of a given deployment.
To quantify the expected availability offered by an application
deployment, a formal stochastic model is required to capture the
stochastic behavior of failures. This paper proposes a stochastic
Petri Net approach that captures the stochastic characteristics of
cloud services and translates them into elements of an availability
model. This approach evaluates the availability of cloud services
and their deployments in geographically distributed data centers
(DCs). The results are useful to generate guidelines for an HA-
aware scheduling.

Index Terms—High availability, cloud applications, software
components, stochastic failures, stochastic Petri Nets, recovery.

I. INTRODUCTION

With the proliferation of on-demand cloud services that

are expected to be available anywhere and anytime, service

availability is an important requirement. Availability is defined

as the percentage of time where these services are available

in a given duration. It is important to assess the expected

availability of a given deployment for both the cloud tenants

and providers that are bound by a service level agreement.

Different types of hardware and software failures can happen

and cause service outage. These failures have a stochastic

nature. Cloud users cannot prevent these failures’ happenings.

Some of the cloud users have their own proprietary High

Availability (HA) solution to mitigate the service downtime

[1]. An HA evaluation model is required to identify failures,

their underlying causes, and attenuate associated risks and ser-

vice outages. Stochastic Petri Nets (SPNs) and Markov chains

are the approaches already used in the reliability/availability

analysis of many complicated information technology (IT)

systems [2] [3]. A comprehensive and analytical model for

availability analysis is still required to capture the application

behavior in a cloud setting.

The cloud model typically consists of multiple data centers

each having a set of servers and a set of applications with

multiple components. Using the appropriate scheduling solu-

tion, the applications are hosted on the servers that best fit the

application requirements using VM (or containers) mapping.

Consequently, any DC/server’s failure mode can bring the

hosted application down whether it is a planned or unplanned

outage. Unplanned downtime can be defined as the time where

a system enters a failure mode and becomes unavailable.

Such downtime is a result of unexpected failure event and

consequently neither the cloud provider nor the users are

notified of it in advance. Therefore, it is necessary to have

a model that takes into account the actual effect of failures on

the system’s availability. There are different forms of failures:

1) Hardware/Infrastructure failures [2] [3]: happening at

the data center and server layers, they can be the results

of faulty server’s, storage’s, and network’s elements

(e.g., faults in memory chips) and can be captured by

the failure rates of the servers as well as the entire DC.

2) Application failures [4]: Such defects occur at the ap-

plications’ and VMs’ levels. They might be generated

from the hypervisor malfunctioning, unresponsiveness

of the operating system, files corruption, or viruses and

software bugs, such as Heisenbugs, Bohrbugs, Schroed-

inbugs, or Mandelbugs [5]. Such failures are captured

by the failure rate of the components and VMs.

3) Force majeure failures [6]: generated from power loss,

storms, floods, and other natural disasters, these failures

affect both the cloud provider infrastructure and the

cloud applications. Due to their scale, we capture such

failures by including them in the failure rate of the DC.

4) Cascading failures: being the results of an accumulated

impact of hardware or software failure, can cease the

functionality of DCs and the corresponding servers,

VMs or applications (e.g., a dynamic host configuration

protocol (DHCP) server malfunctioning can flood the

network with DHCP requests causing a DC failure,

followed by failure of the servers, and their hosted

applications/VMs. Due to their propagation impact, we

capture such failures by the failure rate of the DC.

Each of the previous failure states is associated with a failure
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Fig. 1: Simplified UML model for a cloud deployment

rate or mean time to failure (MTTF) and mean time to

repair or recover (MTTR) determined by the used repair or

recovery policy. Due to the stochastic nature of the failures,

we use probabilistic distribution functions such as exponential,

Weibull, normal, or any other stochastic model to generate the

failures. We consider a deterministic or a stochastic recovery

depending on the used recovery or repair policy.

II. APPROACH

A typical cloud deployment is composed of multiple soft-

ware components running on an execution environment (e.g.,

VM or container). The VM is hosted on a server, and the

server in turn is hosted on a data center. Fig. 1 illustrates

our simplified Unified Modeling Language (UML) model that

captures such cloud deployment. To address the challenges of

HA-aware scheduling discussed earlier, we need a behavioral

model that can capture the stochastic behavior of the system

(e.g., different failures) as well as its deterministic behavior

(e.g., recovery actions). Stochastic Petri Nets are high level

formal models to perform stochastic analysis and simulate

the behavior of systems with stochastic behavior. To model

the behavior of an application running on cloud, we have

used Stochastic Colored Petri Nets (SCPN) [7], that captures

both stochastic and deterministic events. In SCPN, the tokens

can have different colors (types). Our approach is based on

mapping an instance of the UML model describing a given

deployment of the application in the cloud to the correspond-

ing SCPN model. The model is simulated and analyzed using

a simulator tool TimeNet to quantify the expected availability

of the application [8].

Creating the SCPN model manually can be a tedious, time

consuming and error prone task. To mitigate this complex-

ity, we have defined a one to one mapping to achieve the

transformation from the UML model of a cloud system to the

corresponding SCPN model. This way, we have automated the

model transformation from a UML model to the SCPN model

which, will be analyzed with TimeNet tool. The exponential

failure distribution has been used in many previous failure

analysis and availability related work: [9], [10], [11], [12],

and [13]. In this paper also, we use the exponential failure

distribution to reflect failure rate or MTTF of DCs, servers,

and applications/VMs. Such distribution is applied on all the

stochastic failure transitions of the proposed SCPN model.

The repair/recovery timed transitions, are modeled using a

deterministic distribution. Note that our approach also supports

other failure rates, as our model does not depend on a specific

probability distribution.

III. CONCLUSION

Cloud services may become unavailable due to various

stochastic failures while they are expected to be accessible

at anytime and anywhere. In this paper, we explained an

automated approach to capture the stochastic behavior of cloud

systems and assess availability aspects of such systems. The

paper proposed a SCPN approach that evaluates the availability

of cloud services and their deployments in inter- or intra-

data centers. This approach considers different failure types,

functionality constraints, redundancy models, and interdepen-

dencies between different components’ applications.
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