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Abstract—High availability is a critical requirement for cloud
deployed services. Cloud providers offer different availability
zones with geo-redundancy to protect their infrastructure and
consequently their tenants against failures and natural disasters.
Nevertheless, different zones may have different reliability levels
depending on the hardware equipment, the geo-location, the
energy source powering the facility, etc. Hence, the ability to
assess the expected availability of a given deployment is extremely
important for both the cloud tenants and providers that are
bound by a service level agreement. Due to the stochastic nature
of failures, a formal stochastic model is needed to quantify the
expected availability offered by an application deployment. This
paper presents a Stochastic Petri Net model to evaluate the avail-
ability of cloud services and their deployment in geographically
distributed data centers. The proposed Stochastic Petri Net model
captures the characteristics of the cloud provider and user. It
translates them into elements of an availability model that can
be solved to calculate the expected availability and subsequently
be used to guide the cloud scheduling solution.

Index Terms—High availability, cloud applications, software
components, virtual machines, stochastic failures, stochastic Petri
Net, recovery, load balancing.

I. INTRODUCTION

With the cloud computing era, many business applications are

offered as cloud services where they can be accessed anytime

and anywhere [1] [2]. Depending on the needs of cloud users,

Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service

(PaaS) provide the required web applications and compu-

tational resources in the form of virtual machines (VMs).

With the widespread of on-demand cloud services/VMs, their

availability becomes a paramount aspect for cloud providers

and users. It is important to note that availability is the

percentage of time where these services are available in a given

duration. Cloud services encounter different types of hardware

and software failures and consequently become unavailable

[3]. As for the cloud users, they cannot prevent or mitigate

the service downtime unless they have their proprietary high

availability (HA) solutions, such as the Netflix HA approach

[4]. Therefore, the stochastic nature of service failures and

the urgent need for availability solutions require an availabil-

ity evaluation model that identifies failures, their underlying

causes, and mitigates associated risks and service outages. It

has been shown that analytical models, such as Stochastic Petri

Nets (SPNs) and Markov chains have been used to analyze

the reliability/availability of many complicated information

technology (IT) systems [5] [6]. However, the complicated

nature of cloud infrastructure configurations and dynamic state

changes require a comprehensive and analytical availability-

centric model.

A few literature studies address scheduling of cloud services

and their availability analysis using different extensions of

Petri Net models. In [7], the authors propose an availability

analysis approach for cloud computing systems using Stochas-

tic Reward Net (SRN) and Markov chain models. They analyze

the impact of changing the number of physical machines,

their mean time to failure (MTTF), and mean time to repair

(MTTR) on the service availability. In [8], the authors propose

statistical models to predict availability of a distributed system

and to find host subsets with related statistical characteristics

and availability models. While [9] and [10] propose queuing

and Stochastic Petri Net service availability models through

software rejuvenation and failure prevention, [11] describes the

impact of adding servers on service availability using Colored

Stochastic Petri Net model. When it comes to applications

scheduled in a cloud model, their availability is not only

affected by the existing infrastructure or the cloud user side,

but it depends on of both, in addition to the effect of failover

solutions, requests processing time, and interaction between

different components and their hosts.

In this paper, our availability analysis approach is based on a

Stochastic Petri Net model to evaluate the availability of cloud

services and their deployment in geographically distributed

data centers (DCs). The main contributions of this approach

are:

• Ability to capture the stochastic nature of failures accord-

ing to different probability distribution functions.

• Ability to capture the cloud elements (DCs, servers, and

VMs) and the correlation aspect of their failures.

• Ability to capture the functional workflow between the

components of multi-tiered applications (queuing and

request forwarding) as well as the high availability mech-

anisms they employ (load balancing and redundancy

schemes).

• Ability to assess and quantify the expected availability

of application components according to their different
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deployments in the cloud (inter-DC vs. intra-DC deploy-

ments).

The rest of this paper is organized as follows. Section II defines

the problem background where it presents the challenges of

scheduling application components and the need for Stochastic

Petri Net models. Section III describes the cloud model and

the proposed Stochastic Petri Net model. The evaluation and

results of this model are presented in Section IV. Finally,

Section V concludes the paper.

II. BACKGROUND

Many high availability solutions have been proposed to

mitigate the software or hardware failures of a virtualized

system [12], [13], and [14]. However, these approaches do

not associate their HA-aware solutions with an availability

assessment model. Different types of failures affect the cloud

infrastructure and applications. Besides, some challenges are

raised when choosing best deployment of cloud applications

while satisfying the HA and functionality requirements. There-

fore, it is necessary to understand the HA-aware scheduling

challenges and the need for a SPN model to handle them.

A. Challenges in modeling multi-tiered applications:
When it comes to HA-aware scheduling of applications in

a cloud environment, the challenge lies in selecting the best

deployment model while analyzing the impact of the adopted

HA mechanism, different failure types, functionality con-

straints, the redundancy, and interdependency models between

different components. For instance, suppose a typical multi-

tiered application that consists of three-tiers with a front-

end HTTP servers, a business logic application (App) on the

middle tier, and a database (DB) storing the system state at

the back-end. The HTTP servers depend on the App, which,

in turn, is sponsored by the DB. Each component type consists

of a primary component and multiple active/standby replicas.

Each type is associated with certain failure types. When it

comes to deploying such application in a single cloud with

geographically distributed DCs, multiple options are to be

considered on whether inter- or intra-DC deployment should

be selected. It is not always the case that maximum inter-DC

distribution is preferable because this decision depends on the

above factors.

B. Modeling systems with Stochastic Petri Nets:
Petri Nets are widely used to model the behavior of different

Discrete Event Systems (DES) [15]. They are graphically

presented as directed graphs with two types of nodes: places

and transitions. Deterministic Stochastic Petri Nets (DSPN)

are one of the Petri Nets extensions for modeling the systems

with stochastic and deterministic behavior [16]. Three

transition types are defined in DSPN: immediate transitions

that fire without any delay under a condition, timed transitions

that fire after a deterministic delay, and stochastic transitions

that fire after an exponentially distributed delay.

DSPN is formally presented as a tuple of

(P, T, I, O,H,G,M0, τ,W,Π) where P and T are the

non-empty disjoint finite sets of places and transitions,

Fig. 1: Simplified UML model for a cloud deployment.

respectively. I and O are the forward and backward incidence

functions such that I, O: (P × T ) ∪ (T × P ) −→ N

where N is the set of non-negative integers. H describes

the inhibition conditions. G is an enabling function that

given a transition and a model state determines whether the

transition is enabled. M0 is the initial marking. The function

τ associates timed transitions with a non-negative rational

number (τ : T −→ Q+, where Q+ stands for the set of

non-negative rational numbers). The function W associates an

immediate transition with a weight (relative firing probability).

Finally, Π associates an immediate transition with a priority

to determine a precedence among some simultaneously

firable immediate transitions. To model the behavior of an

application running on cloud with stochastic failures, we have

used Stochastic Colored Petri Nets (SCPN), which is a class

of DSPN models where the tokens can have different colors

(types) [17]. SCPN can model both deterministic (recoveries)

and stochastic (failures) cloud behaviors. It is simulated and

analyzed using TimeNet [18]. In the following section, we

explain the SCPN model proposed for a multi-tier application

deployed in cloud.

III. APPROACH

A typical cloud deployment is composed of different software

components running on an execution environment (e.g VM or

container). The VM is hosted on a server, and the server in

turn is hosted on a DC. Fig. 1 illustrates our simplified Unified

Modeling Language (UML) model that captures such cloud

deployment. Each software component has some attributes to

capture the incoming workload distribution (arrivalRate), the

time duration required to process a request (processingTime),

the number of requests the component can process in parallel

(bufferSize), the maximum capacity of the requests waiting to

be processed (queueSize), the number of redundant replicas

considered for each component (numberOfReplicas), and the

redundancy schema of the component (redundancyModel).
Execution environment (VM), server, and DC may fail because

of different failure types. Each failure type has a failure rate,

a recommended recovery action, and recovery duration based
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Fig. 2: Overall approach.

on the recommended recovery.

UML as a semi-formal model cannot simulate the behavior

of the system or measure the availability of a service while

different stochastic failures are happening. On the other hand,

Stochastic Petri Nets are behavioral models that have proven

to be suitable to model and simulate the behavior of such

systems with stochastic behavior. However, building the SCPN

model manually can be a fallible job; in order to alleviate this

intricacy, we have proposed a one to one mapping approach.

The latter is based on mapping an instance of the UML

model describing a given deployment of the application in the

cloud to the corresponding SCPNs model. The transformation

approach builds a components dependency graph to identify

the number of tiers and their orders. Next, it creates the places

and transitions that are common in all the SCPN models

and iterates over each tier creating the load balancer, all

the component replicas, their VMs, and their corresponding

servers. Then the DCs are created, the transitions are annotated

with the proper rates, and the guards are annotated with the

proper conditions. Fig. 2 summarizes this approach.

In the following, we explain a one to one mapping to achieve

the transformation from the UML model of a cloud system to

the corresponding SCPN model.

A. SCPN model building blocks
This section explains the SCPN model used to evaluate various

HA-aware deployments of application components in a cloud

environment. We define five different SCPN building blocks

that we use in our model transformation phase. Each VM,

server, and DC has its own failure rate (MTTF) and recovery

time (MTTR). As in [1], [2], [19], and [20], the exponential

failure distribution is used in this paper to reflect failure rates

or MTTF of DCs, servers, and applications/VMs. As for the

repair/recovery timed transitions, a deterministic distribution

is applied on them to trigger any repair or recovery behavior.

It should be noted that our approach also supports other

failure rates as our model does not depend on a specific

probability distribution. Figures provided in this paper follow

the representation of TimeNet. In TimeNet, the immediate

transitions are shown as black bars while deterministic and

exponential timed transitions are shown as thick white-filled

bars.

1) Data center model: Fig. 3a shows the DC model. A DC

has two states: healthy (the place DCi) and failed (the place

DCi fail). Failure is modeled using an exponential timed

transition (Ti DCfail) whereas the recovery is a determinis-

Fig. 3: Data center, server, and VM sub-models.

tic one (Ti DCup).

2) Server model: Fig. 3b presents the server model. The

server also has two states: healthy (Si) and failed (Si fail).
The server failure is modeled using an exponential transition

(Ti sfail). It can also fail immediately due to the failure of

its hosting data center (Ti sDCfail). We represent the data

center hosting Si with S(i)DC . In the following, we use the

place name in the formulas to show the number of the tokens

available in that place. The immediate transition Ti sDCfail
is guarded with:

GTi sDCfail = (S(i)DC == 0)
The recovery occurs according to a deterministic transition

(Ti sUP ). A server cannot be recovered unless its host data

center is healthy. Thus, Ti sUP is guarded with:

GTi sUP = (S(i)DC == 1)
3) VM model: A VM (Fig. 3c) can fail through an expo-

nential transition (Ti fail) or can fail immediately due to the

failure of its hosting server or DC (Ti Hfail). We refer to

the server and DC hosting the VM with VM(i)Server and

VM(i)DC , respectively. Ti Hfail is guarded with:

GTi fail = (VM(i)DC == 0 ∨ VM(i)Server == 0)
The recovery happens after a deterministic delay (Ti up). Note

that in this case, also a VM cannot be recovered unless its

hosting data center and server are healthy. Thus, Ti up is

guarded with:

GTi up = (VM(i)DC == 1 ∧ VM(i)Server == 1)
4) Load Balancer model: Fig. 4 illustrates the load

distributor and round robin load balancer sub-model. The

place LoadDistributor has a fixed number of tokens, and the

load balancer transitions (T LBi and T LB0) distribute the

workload among the replicas of the same component. Each

component has a queue place (Ci queue) to represent the

number of requests it can queue for processing and a flushing

place (Ci flushing) to ensure a round robin distribution.

When a component Ci receives a token in its queue, its

flushing place is marked, and the component will not receive

another token until its flushing place is unmarked. Let the
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round robin order be C1, C2, C3, ...CM where M is the

number of replicas, and then the same order repeats. The

transition T LB1 is the first one that becomes enabled, and its

clock starts elapsing. Once it is fired, one token is produced

in C1 queue, and one token is produced in C1 flushing.

As long as C1 flushing is marked, C1 cannot receive

another token. On the other hand, T1 flush cannot be fired

until all other components have received their share. As

soon as C1 receives a token, the transition T LB2 becomes

enabled, and its clock starts elapsing. The same way other

components receive their share until CM receives a token.

At this time, T1 flush is enabled, and C1 flushing is

unmarked. Subsequently, T2 flush, T3 flush, ...TM flush
also fire. According to the nature of workload arrival of

the system, T LBi can have different distributions (e.g.

deterministic, exponential, ...).

Note that if a component is not available due to a full queue

or a component failure, VM failure, server failure, or DC

failure, it should give its turn to the next available component.

For M being the number of replicas (numberOfReplicas),
L being the maximum capacity of a component queue

(queueSize), VM(i)Server and VM(i)DC being the host

server and DC of VMi, we define V SDH(i) and V SDF (i)

as follows:

V SDH(i)=[VMi==1 ∧ VM(i)Server==1 ∧ VM(i)DC==1]

V SDF (i)=[VMi == 0 ∨ VM(i)Server==0 ∨ VM(i)DC==0]

T LBi is guarded with GT LBi :

∀i∈1:MGT LBi
=

(Ci flushing == 0 ∧ V SDH(i) ∧ Ci queue < L)∧

k=1:i−1

(Ck flushing == 1 ∨ V SDF (k))
∧

j=i+1:M

(Cj flushing == 0 ∨ V SDF (j))

And Ti flush is guarded with GTi flush:

∀i∈1:MGTi flush =
∧

j=1:i−1

(Cj flushing == 0∨ V SDF (j))
∧

k=i+1:M

(Ck flushing == 1 ∨ V SDF (k))

If all the components fail or their queues are full, the

requests are dropped and sent to the place DeniedService.

Transition T LB0 is guarded with:

GT LB0
=∧

i=1:M

(VMi == 0 ∨ VM(i)Server == 0 ∨ VM(i)DC ==

0 ∨ Ci queue ≥ L)

5) Component model: Fig. 5 illustrates the model of a

component including partially the load balancer delivering

the workload to the component. Each component has a

queue (Ci queue) and a buffer to model the maximum

number of requests a component can process in parallel

(Ci processing), such as multi-threaded components.

The requests stored in the queue can enter the buffer only

if the component, its corresponding server, and VM are

healthy, and the number of tokens already in the buffer

is below the maximum. When a component fails, all the

Fig. 4: Load balancer model.

Fig. 5: Component model.

requests in its buffer are lost and transferred to the place

Lost in phasei where ‘i’ is the tier number. The transition

Ti Lost in Processing is guarded with:

GTi Lost in Processing =
VM(i) == 0 ∨ VM(i)Server == 0 ∨ VM(i)DC == 0
In addition, in each tier, if all the replicas fail at the same

time, all the tokens stored in the component queue are

transferred to the place LostReq. The transition Ti Lost is

guarded with:

GTi Lost =∧

i=1:M

(VM(i) == 0 ∨ VM(i)Server == 0 ∨ VM(i)DC == 0)

When a component fails, the requests already stored in

its queue are transferred again to the load distributor to be

failed over to the other healthy redundant components. The

transition T failover Ci to LB is guarded with:

∀i∈1:MGT failover Ci to LB =
(VM(i) == 0 ∨ VM(i)Server == 0 ∨ VM(i)DC == 0)∧∨

j=1:M |j �=i

(VM(j) == 1∧VM(j)Server == 1∧VM(j)DC ==

1)
The tokens are successfully processed through deterministic

transition (Ti processed). The latter tokens are then stored

in the place Cmid. Note that in a multi-tier system, the tokens

successfully processed in one tier are carried to the next tier

where they are load balanced among the replicas of the next

tier. The tokens successfully processed in all the tiers are

stored in a final place. The availability of the system is only

determined by those tokens that reach this final place.

IV. CASE STUDY

This section provides an example of a cloud deployment

modeled by SCPN, and then the model is used to evaluate

different deployments from HA perspective. The system under

study is a three-tier application, mainly Big Data analysis

application. At the front end, the Filters receive unstructured
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Fig. 6: SCPN model of a three-tier application running in a cloud environment.

TABLE I: Different MTTF, MTTR, and processing time

MTTF(DC1; DC2; DC3) x∗;x;x x;1.5x;2x x;2x;3x

MTTR x/3 x/10 x/30

*: x is the failure rate of DC1.

data and remove redundant/useless ones. In the middle, the

Analysis Engines analyze the data and generate structured data

form. At the back end, the Databases store the structured

data produced by the Analysis Engine. In this case study,

we are particularly interested in comparing inter and intra-

DC scheduling, and we change alternatively the DC hosting

the servers and VMs. Fig. 6 illustrates a snapshot of the

SCPN model of this system. Analyzing the service availability

can be done either by (1) quantifying the percentage of time

a given service is in a healthy state, or (2) by analyzing

the percentage of served requests in comparison to the total

number of received requests. We used the latter technique;

therefore we have fixed the number of tokens in the initial

LoadDistributor place. The percentage of the requests that

are successfully processed through the three tiers (ServedReq)

indicates the service availability of the cloud application.

A. Evaluation and results
To investigate different DC scheduling, we have considered

multiple scenarios and conducted some experiments with the

SCPN model. Our main focus in this paper is the effect of DC

failures on HA. The failure rates of VMs and servers (used in

Ti fail and Ti sfail) are fixed throughout these experiments.

We consider that DCs can have similar or different failure

rates. As a base line, they all have the same MTTF (x; x;

x). Then we modify the failure rate of the DCs assuming that

DC1 fails more frequently, DC3 is always the most reliable

Fig. 7: Service availability of different deployments and different MTTRs.
DCs have similar MTTF.

one, and DC2 has a failure rate between the two others. Then

we consider different MTTR for each variation of the MTTF.

Table I shows different parameters altered in our experiments.

We have considered three deployments: the first deployment

maximizes the distribution among the DCs, such that in each

tier at least one of the replicas is on DC1, one is on DC2, and

one is on DC3 (named Dep.1-2-3). In the second deployment,

we put one replica of each tier on DC2 and two other replicas

of each tier on DC3 (called Dep. 2-3). In the third deployment,

all the replicas are hosted by the most reliable DC, which

is DC3 (Dep.3 afterwards). We aim to evaluate which of

the three deployments would maximize the availability of the

application. The model presented in Fig. 6 is analyzed with

transient simulation of TimeNet4.2 running on a VM in a

private cloud with 225GB of RAM and 20 vCPUs running

Ubuntu12.04. The results presented in this paper are the

outcome of multiple repetitions of the simulation.

First, we consider the case where all of the DCs have the

same MTTF (x; x; x), and we vary the MTTR among DCs as
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Fig. 8: Service availability of different deployments and different MTTRs.
DCs have different MTTF (x; 1.5x; 2x).

presented in Table I. Fig. 7 depicts the corresponding results

for the three deployments mentioned above. When the DCs

have the same failure rates, we should go for a maximum

distribution as it reduces the probability of the service outage

due to multi-DC failures. In the second step, we change the

failure rates of DC1, DC2, and DC3 to x, 1.5x, and 2x,

respectively and change the recovery time as listed in Table

I. Fig. 8 presents the results. Finally, we consider the case

where DCs have different MTTF of x, 2x, and 3x, respectively.

Again, we vary the MTTR according to Table I. The results

are presented in Fig. 9. Based on the results of Fig. 8 and Fig.

9, when the reliability of DCs differs, we can opt for the most

reliable ones instead of maximum distribution. A single DC

deployment is not the optimal choice.

The approach presented in this paper allows verifying which

scheduling options among different placement possibilities can

meet the required level of availability.

V. CONCLUSION

Cloud services experience various stochastic failures and

consequently become unavailable. With the always on and

always available trend, inoperative services halt the business

continuity. It is not enough to provide a HA-aware solution

that can mitigate failures and maintain certain availability

baseline, but it is necessary to assess such solution and its

resiliency to any failure modes. The paper proposed a SCPN

model that evaluates the availability of cloud services and

their deployments in inter- or intra-DCs. This model considers

different failure types, functionality constraints, redundancy

models, and interdependencies between different application

components. Consequently, different decisions had been ex-

tracted from this model that aid in designing the best HA

solution of an existing cloud model.
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