
A Formal Approach for QoS Assurance in the
Cloud

Parisa Heidari
Electrical and Computer
Engineering Department,

Western University,
London, Ontario, Canada, N6A 3K7

pheidar2@uwo.ca

Hanifa Boucheneb
Computer Engineering Department,
École Polytechnique de Montréal,

P.O. Box 6079, Station Centre-ville,
Montréal, Québec, Canada, H3C 3A7

hanifa.boucheneb@polymtl.ca

Abdallah Shami
Electrical and Computer
Engineering Department,

Western University,
London, Ontario, Canada, N6A 3K7

ashami2@uwo.ca

Abstract—Cloud computing is an attractive business model
offering cost-efficiency and business agility. Recently, the trend is
that small and large businesses are moving their services to cloud
environments. The quality of service is always negotiated between
the cloud users and the cloud providers and documented in the
service level agreement (SLA). Yet assuring–or even measuring–
the quality of the provided service can be challenging. This
paper proposes a formal approach for quantifying the quality
of service in the cloud systems as promised in the SLA. The
proposed approach uses controller synthesis to find a system
configuration that meets the SLA requirements. The formal
approach suggested in this paper is based on, but not limited
to, Time Petri Nets (TPN). As a case study, we focus on service
availability as a key performance indicator in the SLA and for
a sample set of resources providing a service, we determine the
system configuration satisfying the SLA.

Index Terms—Cloud Computing; Formal Verification; Con-
troller Synthesis; Quality of Service (QoS); Service Level Agree-
ment (SLA); Availability; Time Petri Nets (TPN)

I. INTRODUCTION

Cloud computing [1] provides a suitable business model to
integrate various on-demand and pay-per-use services. With
the proliferation of cloud computing environments, more com-
panies are moving their services to cloud platforms to benefit
from the cost-efficiency advantages and the agility with which
business can be conducted [2]. Cloud providers promise to
deliver a specified level of quality to their customers; the
expected level of quality of service is determined in the Service
Level Agreement (SLA) and is supposed to be guaranteed by
the cloud providers.

An SLA document usually has a proprietary structure, but
generally it explains the type and quality of the service agreed
upon between the cloud provider and the cloud consumers [3].
Moreover, SLA determines the penalties in case of deviation
from the negotiated QoS. Quality of service is delineated
through Key Performance Indicators (KPI) such as response
time. Cloud consumers are responsible for investigating the
best profitable choice, and the provider who is offering their
desired level of quality with a competitive price and enhanced
support wins the client. Cloud providers in turn need to find the
optimal system configuration with the least cost while meeting
the expected level of QoS.

Assuring the quality of service promised in the SLA is very
critical for the cloud providers. If the promised QoS is not
satisfied the provider is penalized. The cloud providers often
need to over-provision their resources to guarantee that QoS
agreed in the SLA is met. On the other hand, there is always
a trade-off between the cost and quality. The better the quality
being offered, the more cost is imposed to the providers–which
of course leads to more energy consumption and an increased
carbon footprint. For example, service availability is a KPI that
is defined as the percentage of time the service is available
for the end users in a given duration. A service is considered
highly available if it is accessible 99.999% of the time [4]
(a.k.a., five nines). The availability is obtained from:

Availabiliy = MTTF/(MTTF +MTTR)

where MTTF stands for Mean Time To Failure and MTTR
stands for Mean Time To Recover. Online services are ex-
pected to be always available but not every online service
has to be highly available. The question is how to find the
optimal system design that satisfies the quality of service as
promised in the SLA without incurring unnecessary costs to
the providers and, consequently, to the environment.

Choosing the suitable resource entities from the COTS1

components, such that the user requirements are met and the
provider’s profit is maximized, is usually seen as an optimiza-
tion problem that investigates available resources and their
specifications and ends with recommending which resources
to choose. However, quality of service does not depend solely
on the type of the resource entities providing that service.
Sometimes the system configuration plays a critical role in
the quality of service delivered to the end-users [5]. In order
to achieve long-term success, the quality of service should be
monitored intently. A service is available if the resources pro-
viding that service are failing less frequently (higher MTTF),
and the service is recovered shortly (lower MTTR) [6]. Yet it
is important to note that the service is not recovered unless
the failure is detected, and that a failure is detected faster if
the service is monitored more frequently (which impacts the
standard performance of the system). Based on the system

1Commercial off-the-shelf

2015 IEEE 7th International Conference on Cloud Computing Technology and Science

978-1-4673-9560-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CloudCom.2015.36

629

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:10:45 UTC from IEEE Xplore. Restrictions apply.

configuration, the service is recovered either by repairing the
failed entities or by failing over the service to some other
redundant entities that can handle the service. If the redundant
resources are synchronized with the entities providing the
service, the failover delay is decreased. Failure detection time
and recovery time are configurable to some extent.

In this paper, the main objective is to identify the system
configuration required to meet the expected level of QoS while
considering available resource specifications and configura-
tion. We consider not only the characteristics of the COTS
components (such as their MTTF), but also the configurable
specifications of the system design (e.g., detection time). A
formal controller synthesis approach that finds the appropriate
system configuration meeting the user requirements as per
SLAs is the main contribution of this paper. We apply some
controller synthesis techniques to create the most accom-
modating controller that meets the desired requirements, as
established in the SLA. The proposed approach investigates
whether the system design is sufficient to guarantee an SLA
requirement; if not, then the proposed approach identifies
how to correct the configuration design. The formal approach
presented here is based on Time Petri Nets (TPN). However,
application of controller synthesis for QoS assurance is not
limited to Time Petri Nets and can be extended to other formal
models (e.g., Timed Automata).

The rest of the paper is organized as follows: Section II
provides some background knowledge about formal verifica-
tion and controller synthesis, Time Petri Nets as a known
formal model, and the forward on-the-fly controller synthesis
algorithm of [7] for safety and reachability properties. Section
III describes the suggested approach for locating the system
configuration that meets the SLA promises. The formal con-
troller synthesis approach discussed in this paper is based on
the controller synthesis algorithm of [7] that finds a controller
to enforce a system to meet a given behavior. Section IV is
dedicated to a brief survey of some relevant fieldwork and
literature. Finally, Section V concludes the paper.

II. BACKGROUND

A. Formal Verification and Controller Synthesis

System designers manage the functional and non-functional
requirements that should be guaranteed in the implementation.
Considering the cost of a failure in critical systems, it is fa-
vorable to verify the system design before any implementation
to make sure that all of the requirements will be met. Formal
methods provide reliable means to verify whether the system
will satisfy the properties of interest or find a counter example
where the property of interest is violated. Note that verification
is different from simulation. Simulation may show some errors
in the behavior of the system but cannot guarantee that the
system is error free or behaves as expected.

In order to verify the system formally, the behavior of the
system is modeled according to the mathematical formulas;
subsequently, some model-checker techniques are applied to
the model to verify that it is satisfying the desired requirements
(or to give a counter example). Some of the known models

are algebraic modeling languages, Automata and Petri Nets.
These models have a mathematical disposition, but the last
two have user-friendly graphical interfaces that conceal the
complicated analysis. Many extensions are already suggested
in the literature to both Automata and Petri Nets making them
more expressive.

Model-checking techniques are useful to locate the viola-
tions where the model is not behaving as expected. Once a
model is not satisfying the expected requirement, controller
synthesis methods are applied to determine how to correct the
system to achieve the desired requirement.

Ramadge and Wonham introduced the theory of “control”
based on the formal languages in [8]. The controller enforces
a discrete event system (DES) to behave consistently. Subse-
quently, the theory of control was extended to the other models
such as Timed Automata [9] and Time Petri Nets [10]. In
these cases the control specification is articulated according
to model states instead of model language. Typically, the
system is modeled and the property of interest is determined.
The desired controller should guarantee the satisfaction of
those properties. The existence of such controller and its
implementation is then investigated.

In controller synthesis, actions are categorized in two dis-
joint sets: controllable and uncontrollable. Controllable actions
are those managed by the controller; the controller acts on the
controllable actions to enforce the property of interest while
it does not have any control of the uncontrollable actions.

B. Time Petri Nets (TPN)

Petri Nets [11] are directed graphs composed of two
types of nodes: Places and Transitions. Time Petri Nets
[12] are extensions of Petri Nets where each transition has
a time interval. Formally, TPN is presented by a tuple
(P, T, Pre, Post,M0, Is) where P stands for the set of Places
and T stands for the set of transitions. P and T are non-empty
disjoint sets. In a controllable Time Petri Net, transitions
are partitioned in controllable and uncontrollable transitions
(Tc, Tu respectively) where Tc∩Tu = ∅ and T = Tc∪Tu. Pre
and Post are the backward and the forward incidence func-
tions (Pre, Post : P × T → N,N is the set of non-negative
integers), M0 is the initial marking (M0 : P → N), and Is
is the static interval function (Is : T → Q+ × (Q+ ∪ {∞})),
where Q+ is the set of non-negative rational numbers. Is
associates with each transition t an interval called the static
firing interval of t. Bounds ↓ Is(t) and ↑ Is(t) of the
interval Is(t) are respectively the minimum and maximum
firing delays of t.

Let M be a marking and t a transition. Transition t is
enabled for M if and only if all required tokens for firing
t are present in M , i.e., ∀p ∈ P,M(p) ≥ Pre(p, t). In
this case, the firing of t leads to the marking M ′ defined
by: ∀p ∈ P,M ′(p) = M(p) − Pre(p, t) + Post(p, t). We
denote En(M) the set of transitions enabled for M , i.e.,
En(M) = {t ∈ T | ∀p ∈ P, Pre(p, t) ≤M(p)}.

The TPN state is calculated based on clock or interval
characterizations [13]. Our focus here is on the second char-

630

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:10:45 UTC from IEEE Xplore. Restrictions apply.

acterization where the TPN state is defined as a pair (M, I),
where M is a marking and I is a firing interval function
(I : En(M) → Q+ × (Q+ ∪ {∞})). In other words, the
bounds of I(t) are respectively the minimal and maximal
remaining times before t can fire. Note that for any real value
v ≥ ↓ Is(t), if ↑ Is(t) = ∞, then ↑ Is(t) − v = ∞ and
max(0, ↓ Is(t) − v) = 0. This means that for a TPN with
unbounded firing intervals, many clock states may infinitely
map to the same interval state. In such a case, all these states
will obviously exhibit the same future behavior. We consider
here the interval characterization as it induces much more
abstractions.

The TPN state space is the structure (Q,→, q0), where:
q0 = (M0, I0) is the initial interval state of the TPN and
Q = {q|q0

∗

→ q}(
∗

→ being the reflexive and transitive closure
of →) is the set of reachable states of the model. The state
space is usually abstracted to remove some irrelevant details
while preserving the properties of interest. Many abstraction
methods are proposed in the literature such as the state class
graph (SCG) [14], the zone based graph (ZBG) [15], and so
on. These methods mainly differ in the state characterization
(interval or clock), the properties they preserve, etc. SCG is
based on the interval states and preserves the linear properties.
In this paper, we are interested in linear properties and SCG
is a suitable method for our calculations.

C. A forward on-the-fly approach for controller synthesis

In [7], [16], the authors have proposed a forward on-the-fly
method for controller synthesis of Time Petri Nets where the
undesired behavior of the system is determined and defined as
the set of bad markings. In essence, the state class graph [14]
of the given TPN is explored on-the-fly and path by path to
collect those sequences leading to bad states (states having bad
markings). For a given class α and a sequence ω feasible from
α and leading to a bad marking, the subclass of α leading to
a bad marking is calculated. Ultimately, the controller should
eliminate these subclasses. The algorithm starts from the last
states leading to a bad marking and tries to eliminate the
subclasses leading to the bad states. In the event that the
algorithm cannot regulate the behavior of the system from the
last states (for example, there is no controllable transition or
the whole class is leading to a bad state), then the algorithm
will act in some earlier states. In [16], it is proven that the
controller calculated by this method is maximally permissive,
meaning that it imposes the least restriction on the normal
behavior of the system. The authors have also shown that this
method will definitely give the controller if it exists. In other
words, if the algorithm fails to calculate the controller, such
controller does not exist; thus, there is no way to enforce the
system to satisfy our property of interest.

III. SLA FORMAL VERIFICATION

In this section, we expound a solution based on controller
synthesis to design a system configuration to satisfy SLA
requirements with the least impact on the normal behavior of
the system. Step one: the system behavior is modeled formally.

In this approach, we model the system behavior using Time
Petri Nets. Then, we apply the controller synthesis approach
of [7] to the model and explore the entire state space of the
system to verify whether the desired property is satisfied in all
states and paths. As proven in [16], if there is any state where
the property of interest is violated, the controller synthesis
algorithm of [7] will locate a controller to force the property
of interest in the whole state space. If the algorithm fails to
locate said controller, then such a controller does not exist.

We focus on the service availability as a main KPI discussed
in the SLA, and explain how the controller synthesis algorithm
of [7], [16] is helping in QoS assurance. For better clarifica-
tion, we apply the approach to a hypothetical example. Sup-
pose a cloud provider is operating a content delivery network
(CDN) as a service to the end-users, and service availability is
the requirement discussed in the SLA. In order to guarantee the
availability of the service, the provider has to consider some
redundant resources to continue providing the service if the
main resources fail. Different redundancy models are already
introduced in the literature [4] (from the cloud provider’s
perspective). They mainly differ in the number of redundant
standby units considered for each service, the number of active
units that can provide the service (restricted by one or extended
to more), and whether the resources providing a service can
act as the standby resources of other services at the same
time. From the service perspective, we can designate all of
these redundancy models to two main groups: active/active
and active/passive. In active/active–which is typically used
for stateless services–multiple redundant resources provide
the service and a load-balancer is employed to balance the
workload among them. In active/passive configuration, one set
of resources are providing the service and one or multiple sets
of redundant resources are reserved to manage the service in
case the active resources fail.

Service availability is usually accompanied with another
KPI: service continuity. The function of “service continuity”
is to maintain the service from where it was interrupted while
the “availability” is to make the service available regardless of
whether its state is preserved. In case of the stateful services,
a synchronization solution is required to be integrated among
the redundant resources. For example, some check-pointing
solutions are required to capture and save the state periodically
and then synchronize the resources. Once the active entities
fail, the service is failed over to the passive redundant entities
and continued from the last check-pointed state. In case of
stateful services, the redundant resources can have different
levels of synchronization compared to the active ones. Those
levels are as follows: the redundant resources may not be
instantiated (called spare); they can be instantiated but not
synchronized with the active ones (cold standby); they can
be instantiated, and maintain the state locally but will delay
execution (warm standby); or the redundant resources can be
instantiated and aware of the state of the active entities (hot
standby). The redundant resources can only provide the service
when they are instantiated, are aware of the state, and are in
their execution mode. Thus, in case of stateful services, the

631

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:10:45 UTC from IEEE Xplore. Restrictions apply.

resources should be instantiated, the state should be fetched,
parsed and executed. As soon as the redundant entity is in its
execution mode, it can take the active role and provide the
service from where it was interrupted while in the case of
stateless services (or if service continuity of a stateful service
is not considered), the service is provided once the resources
are instantiated and are in their execution mode.

To configure the system, the CDN as a service provider
needs to choose the resources providing the service, select the
redundancy model and determine some configurable options
such as the level of synchronization between the redundant
resources and the monitoring interval of the service. The final
configuration should satisfy the required QoS (service avail-
ability and continuity in this case). For the sake of simplicity,
we assume the service is provided by a single component,
hosted on a virtual machine (VM). The CDN provider chooses
an active/passive configuration and communicates with two
VMs in two different zones/regions from the underlying In-
frastructure provider. Each VM can host a component. The
component on the primary VM is in its execution mode and
provides the service (active). The service is stateful and the
state is captured and saved periodically. In case of a failure
occurring on the active side, the service is failed over to the
component hosted on the secondary VM (passive). The passive
entity can be a hot, warm, or cold standby, or even a spare
unit. As explained above, the time needed for the service
recovery varies according to the type of redundant entity. Hot
standby has the lowest recovery time while warm, cold and
spare have higher recovery times, respectively. Moreover, the
service is recovered only after being detected, and detection
time depends on the monitoring frequency. The lower recovery
time–which may cost more for the provider–is achieved by
having a minimized detection time, a higher synchronization
level, and enhanced COTS components that reach to their
execution mode faster. In addition, a better synchronization
level and lower detection time have more impact on the normal
performance of the system. The provider needs to choose the
most efficient options for the standby type and monitoring
interval such that the service is recovered fast enough to meet
the SLA availability requirement while imposing the least cost
and performance overhead.

Assume the provider chooses a component that, on average,
fails once a month and a VM that fails every 4 months. As
per the SLA agreement, the required service availability is
99.99% which means the total service outage of 52.56 minutes
is acceptable on a yearly basis. We expect 15 failures per
year and therefore, every failure needs to be recovered within
210.24 seconds. The component is monitored periodically
and the frequency is configurable with the default value of
120 seconds, meaning that the failure will be detected within
2 minutes. Once the failure is detected, the faulty resource
should be cleaned up, then the redundant component hosted
on the secondary VM needs some time to reach to its execution
mode and provide the service. The time required to clean up
the faulty entity, in addition to the time the redundant entity
needs to reach to its execution mode, is between [50, 60] sec

VMH

VMD

CompD

FailOver

CompH

CompM

VMM

SLAF

FailureDc[0, 120]

Dv [60, 180]

Fc[0,∞[

Rv [50, 100]

Rc[50, 100]

FO[10, 10]

SF [210.24, 210.24]

Fv [0,∞[

••

Fig. 1. TPN model of a simple CDN as a service. Rc, Rv , Dc and Dv are
the controllable transitions

for hot standby,]60, 70] sec for warm standby,]70, 80] sec for
cold standby and finally]80, 100] sec for a spare, respectively.
VM failure is detected within [60, 180] seconds. Once a com-
ponent failure due to VM failure is detected again, the service
is failed over to the redundant resources. Component and
VM monitoring intervals and recovery time are configurable
(controllable actions). Failover takes 10 seconds.

In order to find the convenient detection time and synchro-
nization level, first we model the behavior of the system with
TPN. Fig. 1 illustrates the corresponding TPN. At the begin-
ning, both the component providing the service and its hosting
VM are healthy. CompH and VMH places model the healthy
component and VM. At some point, the component fails and
transition Fc is fired leaving one token in the Failure place
and one token in the CompM place (monitoring component).
Once the component failure is detected, the transition Dc is
fired and the token reaches to CompD (failure detected). After
the redundant component reaches to its execution mode the
transition Rc is fired and a token is generated in the FailOver
place. After the failover delay, the transition FO is fired, which
consumes the tokens from Failure and FailOver places. The
service is recovered and failed over to the passive entity thus,
one token is generated in the CompH place.

The component can also fail due to VM failure. Transition
Fv models the VM failure and consumes both the tokens of
CompH and VMH and subsequently generates two tokens
one in the Failure place and one in the VMM place.
Transition Dv models the detection time required for detecting
the VM failure and once fired leaves a token in the VMD

place. Again the redundant component reaches to its execution
mode after a delay (the transition Rv). Once Rv is fired, one
token is generated in each of VMH and FailOver places. In
this model, the transitions Rc, Rv, Dc and Dv are controllable.
However, timing interval associated to Rv and Rc are the
same, as they are both modeling the time required for the
component to reach to its execution mode. The transition SF
models the outage per failure and is fired if the service is not

632

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:10:45 UTC from IEEE Xplore. Restrictions apply.

α0α1 α2

α8

α4α3 α5

α6 α9 α7

Fv

FO

Rc

Dv

Rv

Dc

Fc

SFSF
Rc

Rv

SF

FO

SF

Fig. 2. The State Class Graph of the TPN given at Fig.1

recovered within the outage interval meeting the SLA. Then, if
SLAF is marked, we have a forbidden marking which should
be avoided.

According to the controller synthesis approach of [7] and
[16], we calculate the state space of the TPN model of Fig. 1,
which is presented in Fig. 2. TABLE I depicts the information
concerning the state classes of Fig. 2. In order to meet the SLA
availability requirement, α6 , α7 and α9 should be avoided.
To avoid α9 from the state class α5 the transition FO should
fire before the transition SF . But FO is not a controllable
transition, so the algorithm goes back one state and tries to
control the system from α3 by limiting the time interval of the
controllable transition, Rc. In addition, at α3, the transition
Rc should fire before SF to prevent α6 (i.e., Rc < SF).
The condition is 50 ≤ Rc ≤ 90 ∧ 50 ≤ Rc ≤ 80, and
therefore 50 ≤ Rc ≤ 80. In the same vein, to avoid α9 from
α8, the transition FO should fire before the transition SF .
But FO is not controllable, so the algorithm goes back one
state and tries to control the system from α4 by limiting time
interval of Rv. In addition, at α4 the transition FO should
fire before SF to prevent α7 (i.e., Rv < SF), which is
not possible. At this point, the algorithm returns to the state
α2 and tries to control the system by limiting the transition
Dv such that ultimately α7 and α9 are avoided; the result
is that we end up with 60 ≤ Dv ≤ 120. Then, given these
resource types, the component monitoring interval can be up
to 2 minutes, VM monitoring can be between 1 and 2 minutes
and hot, warm and cold standby are at acceptable limits.
Ultimately, the appropriate system configuration, as well as
the synchronization level of the standby entities that satisfy
the QoS, are calculated appropriately.

After illustrating the idea through a simple example, we
can consider more complicated cases. Failure has different
sources (e.g., failure of a component, VM, server, rack, data-
center and so on). Different failures, which nonetheless may
be recovered after different delays, can be detected through
different mechanisms and within different detection intervals.
Owing to unspecified limitations or constraints, sometimes
a recovery or detection interval is not configurable and is
uncontrollable. The challenge is to control the system through
the limited controllable actions. Moreover, if the service is pro-
vided through multiple components, the components can have
different dependencies. The TPN model should correspond to

TABLE I
THE STATE CLASSES OF THE TPN IN FIG.1

α0 : CompH + VMH 0 ≤ Fc <∞∧ 0 ≤ Fv <∞
α1 : CompM + VMH 0 ≤ Dc ≤ 120 ∧

210.24 ≤ SF ≤ 210.24
α2 : Failure+ VMM 60 ≤ Dv ≤ 180 ∧

210.24 ≤ SF ≤ 210.24
α3 : CompD + Failure 90.24 ≤ SF ≤ 210.24 ∧

+VMH 50 ≤ Rc ≤ 100
α4 : Failure+ VMD 50 ≤ Rv ≤ 100 ∧ 30.24 ≤ SF ≤ 150.24
α5 : FailOver + VMH 10 ≤ FO ≤ 10 ∧ 0 ≤ SF ≤ 160.24
α6 : CompD + VMH 0 ≤ Rc ≤ 9.76

+SLAF

α7 : SLAF + VMD 0 ≤ Rv ≤ 69.76
α8 : FailOver + VMH 10 ≤ FO ≤ 10 ∧ 0 ≤ SF ≤ 100.24

+Failure

α9 : FailOver + VMH −
+SLAF

the exact behavior of the system. For each failure type, the
controller synthesis approach will determine the appropriate
time intervals (monitoring and recovery) that help to satisfy the
SLA availability requirements. If the SLA considers multiple
KPIs at the same time, the controller synthesis approach may
calculate different intervals for the same timing and then the
intersection of all of the calculated intervals corresponding to
different KPIs should be considered.

For a given set of entities, appropriate monitoring interval,
and the suitable synchronization level for the standby entities
can be extracted using this approach. The advantage of this
solution is that it mitigates (and even conceals) the complex
mathematical calculations; the only thing a system integrator
has to do is create the Petri Net model, which is similar to
determining the behavioral state machine of the system.

IV. RELATED WORK

With the proliferation of Cloud Computing frameworks,
assuring the quality of the services provided by the cloud
remains challenging. Research that addresses this issue has
been undertaken, and is currently underway. In the following
paragraphs, we briefly review the most relevant contributions.

For the cloud consumers, selection of the most convenient
cloud provider needs to consider various correlated indica-
tors owing to its multi-choice selection capacity. In [17],
the authors have introduced a trust model that helps cloud
customers–especially those with mission critical applications–
to choose the most reliable cloud provider offering them the
most reliable resources. In [18], the authors have proposed a
platform that benchmarks different cloud providers, considers
different user expectations and finds the one that fits the user
requirements. In fact, in [17] and [18] the principal question
is which provider to choose.

In [19], the authors have introduced a new cloud model
called SLA-aware service and a language CSLA to describe
the quality of service. Then, they have used a feedback
control loop to keep the performance as stipulated in the
SLA. In other words, their control approach consists in finding
an elasticity engine that increases/decreases the resources in

633

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:10:45 UTC from IEEE Xplore. Restrictions apply.

service, according to the increase/decrease of the workload. In
this way, the performance is kept according to the SLA while
the resource utilization is minimized.

In [20], the resource allocation as an optimization problem
(e.g., in different datacenters) is discussed in relation to cost.
The authors have proposed an algorithm to calculate the cost
of each resource allocation that meets the SLA requirement;
they then analyze and recommend the most profitable options.
In [19] and [20], the objective is to provide the expected QoS
while minimizing the costs. Both of them are considering the
performance KPI (e.g., the response time).

From a high availability perspective, extrapolating a con-
figuration for availability management that meets the user
requirements is a challenging, time-consuming and error-
prone task for system integrators. In [21], the authors have
proposed to predict which components can potentially meet the
required level of service availability. Then, they eliminate the
components that cannot meet the availability level of interest
and apply the configuration generation method proposed and
implemented in [22], [23] for the components that passed their
prediction test successfully. In [21], the availability manage-
ment configuration is designed based on predicting the level
of service availability that the component entities can provide.
The final configuration is evaluated through simulation. In
their approach, the failure rates and the recovery duration are
all presented as the specification of the components; in our
approach, we take into account not only the specification of
the resource entities, but also some configurable characteristics
of the system (such as detection time and the level of synchro-
nization). We can use the prediction method proposed in [21]
simply to reduce the number of available COTS components
(inputs), and then apply our formal approach to find the
convenient recovery and monitoring time.

V. CONCLUSION

In this paper, we presented a formal controller synthesis
approach for QoS assurance in cloud environments. This
approach locates the system configurations meeting the QoS
level stipulated in the SLA. In this paper, our focus was on
the service availability as a main KPI outlined in the SLA.
Through our methodology, we modeled the system using TPN.
However, applying controller synthesis for QoS assurance is
not limited to TPN and can be extended to the other formal
models like Timed Automata.

The advantage of this solution for the system integrators is
to hide the complex mathematical calculations. A system in-
tegrator knows the behavioral state machine of the system and
can easily create the corresponding TPN model. The proposed
approach in this paper performs all of the calculations to find
a configuration that meets the SLA objectives.

VI. ACKNOWLEDGEMENTS

This work has been partially supported by Natural Sciences
and Engineering Research Council of Canada (NSERC) and
MITACS. We also thank Ali Kanso for the valuable comments
and discussions.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
2011, accessed: 2015-02-09. [Online]. Available: http://csrc.nist.gov/
publications/nistpubs/800-145/SP800-145.pdf

[2] “Business Agility in the Cloud,” accessed: 2015-08-05. [On-
line]. Available: https://hbr.org/resources/pdfs/tools/Verizon\ Report\
June2014.pdf

[3] S. Frey, C. Luthje, and C. Reich, “Key Performance Indicators for
Cloud Computing SLAs,” in EMERGING 2013 : The Fifth International
Conference on Emerging Network Intelligence, 2013, pp. 60–64.

[4] M. Toeroe and F. Tam, Service Availability: Principles and Practice.
Wiley, 2012.

[5] Y. Song, W. Tobagus, J. Raymakers, and A. Fox, “Is MTTR More
Important Than MTTF for Improving User-Perceived Availability?”
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.88.182

[6] A. Kanso, M. Toeroe, and F. Khendek, “Comparing Redundancy Models
for High Availability Middleware,” Computing, vol. 96, no. 10, pp. 975–
993, 2013.

[7] P. Heidari and H. Boucheneb, “Efficient method for checking the
existence of a safety/ reachability controller for time Petri nets,” in
10th International Conference on Application of Concurrency to System
Design(ACSD), 2010, pp. 201–210.

[8] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[9] H. Wong-Toi and G. Hoffmann, “The control of dense real-time discrete
event systems,” Technical report STAN-CS-92-1411, Stanford University,
1992.

[10] A. S. Sathaye and B. H. Krogh, “Synthesis of real-time supervisors for
controlled time Petri nets,” 32nd Conference on Decision and Control,
vol. 1, pp. 235–236, 1993.

[11] C. Petri, “Kommunication mit Automaten.” PhD Dissertation, University
of Bonn, 1962.

[12] P. M. Merlin, “A study of the recoverability of computing systems,” PhD
dissertation, University of California, Irvine, United States, 1974.

[13] W. Penczek and A. Polrola, “Specification and model checking of tempo-
ral properties in time Petri nets and timed automata,” 25th International
conference on application and theory of Petri nets, vol. 3099 of LNCS,
pp. 37–76, 2004.

[14] B. Berthomieu and M. Diaz, “Modeling and verification of time de-
pendent systems using time Petri nets,” IEEE Transactions on Software
Engineering, vol. 17, no. 3, 1991.

[15] H. Boucheneb, G. Gardey, and O. H. Roux, “TCTL model checking of
time Petri nets,” Journal of Logic and Computation, vol. 6, no. 19, pp.
1509–1540, 2009.

[16] P. Heidari and H. Boucheneb, “Maximally permissive controller synthe-
sis for time Petri nets,” International Journal of Control, 2012.

[17] M. Alhamad, T. Dillon, and E. Chang, “SLA-Based Trust Model for
Cloud Computing,” in 13th International Conference on Network-Based
Information Systems, 2013, pp. 321–324.

[18] M. Souidi, S. Souihi, S. Hoceini, and A. Mellouk, “An Adaptive Real
Time Mechanism For IaaS Cloud Provider Selection Based on QOS
Aspects,” in International Conference on Communications (ICC), 2015.

[19] D. Serrano, S. Bouchenak, , Y. Kouki, T. Ledoux, J. Lejeune, and
J. Sopena, “Towards QoS-Oriented SLA Guarantees for Online Cloud
Services,” in 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2013, pp. 50–57.

[20] H. Goudarzi and M. Pedram, “Multi-dimensional SLA-based Resource
Allocation for Multi-tier Cloud Computing Systems,” in 4th Interna-
tional Conference on Cloud Computing, 2011, pp. 324–331.

[21] P. Pourali, M. Toeroe, and F. Khendek, “Enhanced Configuration
Generation Approach for Highly Available COTS Based Systems,” in
9th International Conference on Availability, Reliability and Security
(ARES), 2014, pp. 104–113.

[22] A. Kanso, M. Toeroe, A. Hamou-lhadj, and F. Khendek, “Generating
AMF Configurations from Software Vendor Constraints and User Re-
quirements,” in International Conference on Availability, Reliability and
Security (ARES), 2009, pp. 454–461.

[23] A. Kanso, “Automated Configuration Design and Analysis for Service
High-Availability,” PhD Dissertation, Concordia University, Montreal,
Canada, 2012. [Online]. Available: http://spectrum.library.concordia.ca/
974790/9/Kanso\ PhD\ F2012.pdf

634

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:10:45 UTC from IEEE Xplore. Restrictions apply.

