
1006 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

A Fairness-Aware Pricing Methodology for Revenue
Enhancement in Service Cloud Infrastructure

Yuanfang Chi, Student Member, IEEE, Xiuhua Li, Student Member, IEEE, Xiaofei Wang, Member, IEEE,
Victor C. M. Leung, Fellow, IEEE, and Abdallah Shami, Senior Member, IEEE

Abstract—Infrastructure-as-a-service (IaaS) cloud providers
sell their resources as different types of virtual machines (VMs)
called instances. Any resource is limited in capacity, so is the
resource in cloud. Pricing models can be used as a tool for cloud
providers not only to cover their costs and realize a profit but also
to encourage cloud tenants to use cloud resources efficiently and
achieve high utilization. In this paper, we propose a new pricing
methodology that encourages cloud tenants, whose requested VMs
can be allocated easily and fairly, to use more cloud service by of-
fering them lower prices, while discouraging cloud tenants, whose
requested VMs are difficult to allocate, from using cloud service
by charging them higher prices, while enhancing the revenue that
a cloud provider receives. We perform a case study with a multire-
source allocation fairness algorithm, i.e., the dominant resource
sharing algorithm. Then, we further conduct case studies with
two ways of price calculation: the total unit price redistribution
and total revenue redistribution. Evaluation results show that
the proposed pricing model with total unit price redistribution
and total revenue redistribution can increase the overall reve-
nue of cloud providers by up to 11.60% and 11.18%, respectively.

Index Terms—Cloud computing, fairness, pricing model, pric-
ing sensitivity, revenue enhancement.

I. INTRODUCTION

C LOUD computing is transforming information technol-
ogy around the world. The computational and storage

resources provided by infrastructure-as-a-service (IaaS) cloud,
through different types of instances, are easy to access and
maintain. Thus, large investments have been made to move
business services into cloud and implementing/managing data
centers to support cloud services. This raises a number of
concerns with respect to the cost efficiency of the cloud, from
the perspectives of both the cloud providers and the cloud con-
sumers or tenants. Upon the request of an instance by a tenant,
if the cloud has enough resources to host the instance, a virtual
machine (VM) is allocated onto a server, so that the cloud
tenant could run her applications or other computational tasks
on the instance, or the VM to be specific. Many research works

Manuscript received November 16, 2014; revised March 30, 2015; accepted
June 2, 2015. Date of publication July 13, 2015; date of current version
June 26, 2017. This work was supported by the Canadian Natural Sciences and
Engineering Research Council under Grant STPGP 447230.

Y. Chi, X. Li, X. Wang, and V. C. M. Leung are with the Department of
Electrical and Computer Engineering, The University of British Columbia,
Vancouver, BC V6T 1Z4, Canada (e-mail: yuanchi@ece.ubc.ca; lixiuhua@
ece.ubc.ca; xfwang@ece.ubc.ca; xiaofeiwang@ieee.org; vleung@ece.ubc.ca).

A. Shami is with the Department of Electrical and Computer Engineer-
ing, Western University, London, ON N6A 5B9, Canada (e-mail: ashami@
eng.uwo.ca).

Digital Object Identifier 10.1109/JSYST.2015.2448719

[1]–[3] have been devoted to leverage server virtualization and
allocation techniques to optimize data center resource alloca-
tion via VM placement optimization. However, optimization
from any aspect alone is limiting. The amount of resources that
a cloud tenant needs varies from time to time. Traditional re-
source allocation and provisioning techniques still require data
centers to be prepared for the intense resource demand during
peak period [4]. Incorrect estimations of user demand levels
may lead to costly overprovisioning of resources. Moreover,
regardless of how the cloud is considered to be an unlimited
resource pool, any resource has fixed capacity. It is obvious
that having an optimal resource allocation algorithm to squeeze
more capacity to serve more tenants is the key to increase the
cloud provider’s revenue [5]. It is important to incentivize cloud
tenants to request for cloud resources reasonably, by devising a
pricing methodology that charges each cloud tenant fairly, so
that no one could use up a large portion of the resource and
leave few to others. Therefore, user behaviors and usage pat-
terns should also be considered as inputs to the VM placement
problem. Many research works [6], [7] have shown that the use
of pricing to induce desirable user behavior is a successful
approach.

Furthermore, most cloud providers do not offer their ten-
ants a service-level agreement (SLA) with the exact measures
specifying the service provided. For example, Amazon Elastic
Compute Cloud (EC2) only describes its central processing
unit (CPU) resource in terms of equivalent Xeon processors
and its input/output (I/O) performance as “high”, “moderate”,
and “low”, which are hardly measurable by cloud tenants [8].
Google Compute Engine advertises that its load balancing
technique would let its user achieve maximum performance1

without specifying what “maximum performance” means. For
services with best effort, no cloud service provider would
promise that the service would meet some definite standards.
The SLA of Amazon EC2 guarantees a service availability
of 99.95% without mentioning performance.2 Although Xu
and Li [8] have pointed out that a number of measurement
studies have reported computational performance degradations
of cloud services, most cloud tenants understand that they are
using a best-effort service with performance variations, and
hence, they tolerate minor performance degradations [9]. In
fact, it is difficult for cloud tenants to determine whether the
performance degradation is due to the lack of resources. For

1https://cloud.google.com/products/compute-engine/
2http://aws.amazon.com/ec2/sla/

1937-9234 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

CHI et al.: FAIRNESS-AWARE PRICING FOR REVENUE ENHANCEMENT IN SERVICE CLOUD INFRASTRUCTURE 1007

a moment or two, people using applications that are run as a
cloud service may experience a slow response time. However,
it is almost impossible for an end user to determine if it is the
cloud provider or the network provider that should be blamed.
Thus, many researchers have proposed revenue enhancement
strategies [8], [10], such as resource overbooking, capacity right
sizing, and resource throttling, to increase server utilization lev-
els and save maintenance and operation costs. These all proved
to be truly revenue-increasing techniques. However, would it
be fair to cloud tenants that the cloud provider profits in such
a way? First of all, cloud tenants’ inability to detect resource
shortages or performance degradation is critical for making
these techniques feasible and profitable. Second, all the costs of
implementing and operating such revenue enhancement tech-
niques are eventually paid by each cloud tenant. It would be
unfair to those cloud tenants who have kept their resources
highly utilized. Third, a cloud service with a flat rate but utilizes
resource throttling and overbooking to try to realize a higher
profit is untruthful to its users.

To address these problems, we propose a pricing methodol-
ogy with dynamic pricing [11], which has been shown to be
beneficial in many industries [12]. Under this methodology,
an IaaS cloud provider may charge different tenants different
prices. Inspired by the principle of the law of supply and
demand, we also aim to use pricing to incentivize cloud tenants
to use data center resources in a way that is fair, while ensuring
high utilization levels. Given that the types of VMs and the
number of VMs requested by all active cloud tenants are known
at any point in time, our pricing methodology leverages a task
scheduling algorithm to evaluate how many VMs each tenant
should receive, so that the total resources allocated to each
cloud tenant is fair and resource utilization is higher compared
to other fair-sharing resource allocation algorithms [13]. A pric-
ing weight for each tenant is derived according to the number of
VMs allocated to the tenant. Finally, new prices are determined
based on the prices that the cloud provider was charging orig-
inally and the weight derived. The total number of requests of
different VMs changes as the result of price changes; hence,
system optimal resource utilization and optimal usage behav-
iors are eventually achieved. Furthermore, we study our pric-
ing methodology with the dominant resource fairness (DRF)
algorithm [14] and show that the total revenue that a cloud
provider receives is enhanced. Moreover, we study our pricing
methodology with total unit price redistribution, where we sum
up the unit prices charged by a cloud provider originally and
redistribute the charges among users according to the pricing
weight, and total revenue redistribution, where we sum up the
revenue received by a cloud provider originally and redistrib-
ute the charges among users according to the pricing weight.
The proposed pricing methodology follows a pay-as-you-go
pricing model. It suits the fundamental characteristics of the
cloud as an on-demand and usage-based service. The proposed
pricing methodology is transparent and truthful because it takes
the total allocable resources into consideration, so that any
manipulation from the backend such as resource throttling or
capacity right sizing is reflected in the new prices. Unlike the
spot instance [15], our proposed pricing methodology does
not produce service termination. In addition, instead of setting

the price to the highest possible rate, the prices generated by
our pricing methodology are determined by looking at the
utilization of system resources.

To the best of our knowledge, this is the very first work to
introduce a fairness-aware pricing model that increases IaaS
cloud service revenue. The remainder of this paper is organized
as follows: We study the existing pricing models in Section II.
Then, we present our new pricing methodology in Section III
and its formulation in Section IV. In Section V, we use the het-
erogeneous DRF (DRFH) allocation algorithm, as an example,
to study the efficiency of our proposed pricing methodology
and show that it is revenue enhancing and achieves personal
and social fairness. The results of a numerical experiment and
a trace-driven simulation are shown in Section VI. Section VII
concludes this paper.

II. RELATED WORK

For the IaaS cloud, computing infrastructures, such as CPUs,
storage, and network, are virtualized and provisioned to cloud
tenants as instances. Each cloud tenant simply requests in-
stances to run her applications or other services. Some exam-
ples of IaaS are Amazon EC2 and Google Compute Engine
[16]. The flat-rate pricing model is used by most of the cloud
providers, such that cloud tenants are charged according to
the time of usage regardless of network congestions or system
workload. Many researchers have proposed pricing models that
provide dynamic rates to encourage cloud tenants to lease
instances in a desired manner.

A. Pricing Methodologies

1) Flat-Rate Pricing: Reserved Instances: Amazon EC2
provides the option for customers to subscribe to its cloud
service for one- or three-year periods with a nonrefundable
one-time payment at a lower rate. Cloud tenants can use
their reserved resources at anytime during the reserved period,
while Amazon ensures that the reserved resources are always
available [17]. However, resources may be wasted if the cloud
tenant has reserved an instance but for most of the time left
it idle. Freemium and Usage Based: To encourage potential
cloud tenants to try their cloud services, both Amazon EC2
and Google Compute Engine provide free but limited amount
of resources for a limited time period. Once the actual usage
exceeds the limits, usage-based pricing is generally applied.
Usage-based pricing is the most common pricing model for
cloud services because it is elastic and charges a tenant based
on the actual usage. A typical Google Compute Engine standard
instance may contain one virtual core and 3.75-GB memory
and charges in minute-level increments for the time that the
cloud tenant runs her instance.1 Amazon EC2 bills to the
nearest server hour or gigabyte month [17]. Usage-based pric-
ing allows users to use the cloud service anytime without
a long-term commitment, but the access to cloud service is
not always guaranteed. Financial Option: Sharma et al. [18]
proposed a pricing model that employs the financial option
theory and Moore’s law. They treated the cloud computing
commodities as assets and mapped cloud parameters to the

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

1008 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

Black–Scholes–Merton model. Moore’s law is used to describe
the value of the resources in cloud. The price determined by
their model is the optimal price that the cloud provider should
charge the clients to recover its initial cost.

2) Dynamic-Rate Pricing: Although flat-rate pricing is
widely adopted by mobile, Internet, and television service
providers, Gallego and van Ryzin [19] have shown that flat-
rate pricing is optimal when the capacity or quantity of the
expected sales is infinite. On the other hand, the dynamic
pricing method has shown its benefit, when the capacity is
fixed and unsold volume is worthless, such as in the airline,
hotel, and electric utility industries [12]. Spot Instances: Ama-
zon provides its unsold cloud capacity as spot instances for
customers to bid on. Amazon sets its spot prices through a
market-driven auction and publishes its spot price for the next
time period online, so that customers can run those instances
as long as their bids exceed the current spot price. Spot
instance pricing allows Amazon to sell more of its unused
resources at the highest possible rate, while preserving con-
trol over the spot price [15]. Unfortunately, for cloud tenants,
spot instances introduce uncertainty to their access to the
cloud service because they may be terminated at any time.
Smart Metering: The smart metering model proposed by
Narayan et al. [20] provides dynamic pricing of the cloud ser-
vice based on the load condition. The resource usage is metered
and recorded. The customer’s historical utilization statistics are
used to predict the load condition for the next time interval of
operation and thus determine the price. The price is then pub-
lished on the cloud provider’s website, so that the customer
could decide whether to continue her usage.

B. Fairness-Aware Pricing

There has been some research work considering resource
fairness in cloud servers. Fairness–efficiency tradeoffs were
studied in [21] with multiple resource types. The authors de-
fined percentage efficiency as the percentage difference be-
tween the total number of jobs processed in a given allocation
and the maximum number of jobs that can be processed with
the same capacity constraint, and the leftover capacity as the
amount of unused resources. Since one of the goals of our pric-
ing methodology is to increase the revenue of a cloud provider
while achieving a high level of resource utilization, finding the
most efficient resource fair-sharing algorithm is crucial for our
pricing methodology. Another work [22] considered the price
competitions among different providers in the open market.
They tackled the cloud competition problem and proposed
a noncooperative game to investigate the price competition
among cloud providers and its impact on profit of all cloud
providers, tenant satisfaction, and final instance prices. How-
ever, the competition among multiple cloud providers is out of
the scope of this paper.

III. FAIRNESS-AWARE PRICING METHODOLOGY

Here, we introduce our fairness-aware pricing methodology
for IaaS cloud computing service providers.

A. Motivation

Our pricing methodology determines prices, for each active
user in the system, according to how easily the system could
provision VMs requested by the user. With the allocation
goal of both fair sharing among all users and high system
utilization, fewer resources allocated to a user by a task sched-
uling algorithm indicates that the system has more difficulty
to place the user-requested VM. Therefore, we are motivated
to raise the prices for these users who overload the system.
As a result of price changes, requests for a specific type of
VM by existing or potential users are encouraged or discour-
aged according to the law of supply and demand. Our pricing
methodology is based on a pay-as-you-go pricing model with
dynamic unit prices, so that the fundamental characteristics
of the cloud as an on-demand and usage-based service are
preserved. Furthermore, new prices are determined according
to the total allocable resources; system optimal resource uti-
lization is achieved by using pricing to incentivize users to use
the cloud service in the desired way. Hence, manipulations from
the system backend by the cloud provider, such as capacity right
sizing, resource throttling, and overbooking, are not necessary.
Compared to the spot instance [15] provided by Amazon,
our proposed pricing methodology does not produce service
termination. In addition, instead of setting the prices to the
highest possible rate, prices generated by our pricing method-
ology are determined by considering the utilization of system
resources.

B. Methodology

As mentioned earlier, the main motivation of this work is
leveraging a pricing policy to manipulate user behavior, for
the purpose of increasing system resource utilization. Fig. 1
shows a sequence diagram that demonstrates the working
mechanism of the proposed fairness-aware pricing methodol-
ogy. Users request VMs with known current prices of VM
types. Then, upon the arrival of a new user’s VM request,
task scheduling algorithms are executed to dynamically allocate
cloud resources, subject to the cloud server’s existing tasks
and available resources. The algorithm not only determines
how easily the VM could be hosted but also decides on which
server the VM is to be placed. While the user’s request is
being fulfilled, the real-time cloud information, including in-
coming VM settings and current cloud workload, is updated
to the decision-making module that implements our proposed
pricing model. The new price is generated accordingly after
the allocation decision. With the new prices, existing users
react by increasing or decreasing their usage percentage of
the cloud service. Once the user reactions are submitted to
our system, the algorithm starts again from the beginning as
a new loop. In addition, potential users may decide to start to
use the cloud service. This procedure continues as the users’
demands fluctuate. It is apparent that a decision-making module
that predicts users’ reaction to future prices and subsequently
adjusts prices to achieve predefined optimization goals is the
key of our methodology. Details are described in following
sections.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

CHI et al.: FAIRNESS-AWARE PRICING FOR REVENUE ENHANCEMENT IN SERVICE CLOUD INFRASTRUCTURE 1009

Fig. 1. Sequence diagram for fairness-aware pricing.

TABLE I
DEFINITION OF INPUT VARIABLES

IV. PROBLEM DISCUSSION

With the pricing methodology proposed in the last section,
a number of open issues remain to be addressed before the
methodology can be put in practice. For instance, on which
server or servers should the cloud system place the requested
VMs? How would pricing affect users’ demands? How to
determine the price, in order to enhance the revenue? Here, we
discuss these issues.

We define the input variables, as shown in Table I. Suppose
that the set of serversS, resource typesR, and resource capacity
vector cl are known for each server l. In addition, suppose that
the set of cloud tenants U , the resource vector of their desired
types of VM Di, and the number of VMs that users initially
requested Ts are known.

A. Price Sensitivity

Our pricing methodology leverages the concept of price
sensitivity to model the user reaction to the new price generated
by our pricing model. In a competitive market, price sensitivity
defines the highest price a customer would pay for the desired
product and the lowest price a customer would pay without sec-
ond thought of the product quality [23], [24]. As the most pow-
erful tool to marketers, price sensitivity is well studied when
setting the price of a new product to maximize the demand of
the product and the business outcome [25]. For a majority of the
buyers, the price is not only a key factor that will influence their
purchase decisions but also an indicator for them to perceive
product or service quality. The price threshold that captures
consumer insensitivity to small price changes was examined

Fig. 2. Commodity demand curve.3

in [25]. Harmon et al. [23] studied the price sensitivity mea-
surement (PSM) model and incorporated it into the value-based
software engineering (VBSE) process. PSM check is used twice
during the VBSE process to first refine customer value assess-
ment of the potential product and then help in finalizing the
development of a marketing plan prior to commercialization.
Moreover, the law of supply and demand suggests that the
availability and desirability of a product has a great effect on the
product price [26]. If the supply is sufficient but the demand is
low, the price will be low. In contrast, if the supply is inadequate
but the demand is high, the price will be high. Then, given that
all other factors are equal, the demand of the good or service
decreases as the price increases.3 The demand curve of a com-
modity is downward sloped, as shown in Fig. 2. However, to
the best of our knowledge, the specific demand curves of cloud
services have not been well studied.

In this paper, we formulate the user sensitivity to cloud usage
price as a market reaction function fR, which represents the
relationship between the price p and the cloud users’ corre-
sponding demand level D(p). That is

D(p) = fR(p). (1)

In this paper, a higher demand level indicates an increasing
need of cloud VMs.

3http://www.investopedia.com/terms/l/lawofdemand.asp

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

1010 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

B. Cloud Task Scheduling

One of the most important steps of our proposed pricing
methodology is to determine how easily a VM can be handled
by the cloud. The computing resources provided by the cloud
consist of heterogeneous servers, where each server may con-
tain a different amount of resources. Hence, the allocation of
various forthcoming VM requests onto the distributed servers
in the cloud is of great importance for the overall system effi-
ciency. The VM placement algorithm in [27] leverages the abil-
ity of VM migration to dynamically migrate VMs from servers
with low utilization, so that unutilized servers could be switched
off to save energy. A dynamic VM placement algorithm is
proposed in [28], which migrates VMs according to different
user-defined policies. In [29], an algorithm is proposed based
on a binary search tree to find the suitable server for optimal
VM placement. A VM placement algorithm is proposed in [30]
with the goal of minimizing the active servers. Considering the
multiresource nature of cloud platform, Ghodsi et al. [14] intro-
duced the idea of DRF to this area. DRF is a multiresource allo-
cation problem with the goal to equalize the dominant share,
which is the maximum ratio of any resource allocated to a
user in the system, among all cloud tenants. It is modeled as
a max–min optimization problem and is shown to possess a
number of fairness properties such as sharing incentive, strat-
egy proofness, envy freeness, and Pareto efficiency. A higher
system utilization is also promised compared to a slot-based fair
scheduling and a max–min fair-sharing algorithm that focuses
on a single-resource type [14]. However, one limitation of DRF
is that it simplifies resources in a cloud computing system as
resources in a supercomputer. It does not consider the capacity
limitation of each server and the fact that, after several VMs are
placed in a server, the remaining resources of this server might
not be sufficient to host other VMs. DRFH is proposed in [31],
which generalizes DRF by applying it to real cloud computing
systems with heterogeneous servers.

C. Fairness

Some of the desirable fairness properties are sharing incen-
tive that guarantees that no user is better off in a system where
resources are equally partitioned among all users; strategy
proofness, where no user can be better off by providing untruth-
ful resource demands; Pareto efficiency, where user requests are
allocated without preempting existing allocations; envy free-
ness, where no user prefers the allocation of another user [14].

Two important fairness properties that users care the most
is personal and social fairness. Personal fairness means that
the price meets each user’s personal expectation [32]. Most
users would expect that a VM consisting of smaller resources is
cheaper than a VM that consists of larger resources. Social fair-
ness means that the provider does not profit unreasonably and
the price only increases based on the increase of costs. Since
server capacity is limited, one VM with a larger amount of
resources allocated in a server could use up a large portion of
the server’s resources, and the remaining resources might not be
sufficient for allocation to other users’ VMs. Therefore, a VM
with larger amount of resources is more costly to allocate. Our

proposed methodology charges more for those VMs that require
a large amount of resources, which indicates social fairness.

D. Revenue Enhancement

One of the goals of our proposed pricing methodology is
to enhance the revenue for cloud service providers. Given the
number of VMs that each user has initially requested Tsi , we
first determine Tni

, i.e., the number of VMs that each user is
allocated by the cloud system. Then, let Pei be the unit price
that the cloud system charges each user. The total revenue Re

that a cloud provider receives is calculated as

Re =
∑
i∈U

Tsi × Pei , ∀ i ∈ U. (2)

User elasticity is determined through the demand function

Tsi = fR (Pei) , ∀ i ∈ U. (3)

We input the same user demand vectors and system resource
vectors into our pricing model to obtain the new prices Pdi

.
Then, we use the demand function again to derive the number of
VMs that users would request after they receive the new prices,
which is denoted by T ′

si . That is

T ′
si = fR (Pdi

) , ∀ i ∈ U. (4)

All users’ VM requests are scheduled using first-in–first-
out (FIFO) scheduling again. Let T ′

ni
be the number of VMs

that each user is allocated. The total revenue Rd that a cloud
provider receives with the new prices is calculated as

Rd =
∑
i∈U

T ′
ni

× Pdi
, ∀ i ∈ U. (5)

V. CASE STUDY ON DRFH FAIRNESS

In [31], authors have proved that the DRFH allocation algo-
rithm achieves significant improvements in resource utilization,
as compared to the traditional slot scheduler (e.g., Hadoop
fair scheduler). Thus, here, we study our proposed pricing
methodology with DRFH allocation algorithm.

A. Market Reaction Function

Since the supply and demand functions of the cloud service
as the price changes have not been well studied, we utilize
an isoelastic demand function to model how the level of user
demand changes as price changes [8], i.e.,

fR(p) =

(
1

p

)(1
α)

, α ∈ (0, 1) (6)

where α is the elasticity coefficient.
From (5) and (6), we deduce that

Rd =
∑
i∈U

(
1

Pdi

)(1/α−1)

, α ∈ (0, 1). (7)

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

CHI et al.: FAIRNESS-AWARE PRICING FOR REVENUE ENHANCEMENT IN SERVICE CLOUD INFRASTRUCTURE 1011

When the price is smaller than 1, the revenue generated by
our pricing methodology decreases as α increases. In contrast,
when the price is larger than 1, the revenue generated by our
pricing methodology increases as α increases.

B. DRFH Scheduling

DRFH takes the set of heterogeneous servers S, server re-
source types (e.g., CPU, memory, and storage) R, and normal-
ized resource capacity vector for each server l, cl as one input
and takes the set of cloud tenants U and resource vector of re-
quested VM Di as another input. Let r∗i be the largest resource
required by user i’s VM, then the normalized demand of user
i’s VM is calculated as

dir =
Dir

Dir∗i

, ∀ i ∈ U, r ∈ R. (8)

For example, consider a system with two servers, i.e., Server
1 with 2 CPUs and 12-GB RAM and Server 2 with 12 CPUs
and 2-GB RAM. The system has 14 CPUs and 14-GB RAM
in total. Thus, Server 1 and Server 2 have normalized resource
capacity vectors 〈1/7, 6/7〉 and 〈6/7, 1/7〉, respectively. Suppose
that there are two users. User1 requests VMs with 0.1 CPUs and
0.5-GB RAM. User2 requests VMs with 1 CPU and 0.2-GB
RAM. User1 and user2 have normalized demand vectors 〈1/5,1〉
and 〈1, 1/5〉, respectively.

Let Ail = {Ail1, . . . , Ailm} be the resource allocation vector
for user i on server l, Ai = {Ai1, . . . , Aik} be the allocation
matrix of user i, and A = {A1, . . . , An} be the overall alloca-
tion for all users. An allocation is feasible only if no server has
used more resources than its total resources, i.e.,

∑
Ailr ≤ clr, ∀ l ∈ S, r ∈ R. (9)

Let Nil(Ail) be the maximum number of VMs that can be
scheduled for user i in server l and Dir be the fraction of the
total resource r required by user i, then

Nil(Ail) = min
r∈R

{
Ailr

Dir

}
, ∀ l ∈ S, r ∈ R. (10)

Let Ni(Ai) be the total number of VMs that can be scheduled
for user i under allocation Ai, then

Ni(Ai) =
∑
l∈S

Nil(Ail). (11)

The dominant resource allocated to user i in server l is

Gil(Ail) = Nil(Ail)Dir∗i = min
r∈R

{
Ailr

dir

}
. (12)

Therefore, the global dominant share allocated to user i is

Gi(Ai) =
∑
l∈S

Gil(Ail) =
∑
l∈S

min
r∈R

{
Ailr

dir

}
. (13)

The goal of DRFH is to maximize the minimum global dom-
inant share among all users, subject to the capacity constraints

of each server, i.e.,

max
A

min
i∈U

Gi(Ai)

s.t.
∑

Ailr ≤ clr, ∀ l ∈ S, r ∈ R. (14)

DRFH allocates resource to the user with minimum global
dominant share among all active users. When a user has all its
VMs placed in a server, it is removed from the user set U , and
DRFH repeats the allocation process with the updated user set.

C. DRFH-Based Revenue Enhancement

According to the law of supply and demand, given that
other factors such as advertisement, brand preferences, product
differentiation, and segment membership are kept the same, the
quantity demanded and the price of a commodity are inversely
related [23]. For simplicity, let

wi =

1
Ni(Ai)∑

i∈U
1

Ni(Ai)

, ∀ i ∈ U (15)

where w = {w1, . . . , wn} denote the weights assigned to n
tenants.

1) Total Unit Price Redistribution: We first study the case in
which we keep the total unit price for all users the same and re-
distribute the sum among users according to the weights. To be
specific, the new price for each user i is calculated according to
the weight of user i and the price that the cloud provider charges
each tenant. For example, a typical Google Compute Engine
standard instance may contain one virtual core and 3.75-GB
memory and charges in minute-level increments for the time
that the cloud tenant runs her instance at $0.07/h.1 Let Pe =
{Pe1 , . . . , Pen} denote the prices that the cloud provider
charges n tenants and Pd = {Pd1

, . . . , Pdn
} denote the new

prices generated by our pricing model for the n tenants, then

Pdi
= wi ×

∑
i∈U

Pei , ∀ i ∈ U. (16)

The algorithm for calculating unit prices for user i is shown
in Algorithm 1.

Algorithm 1 Pricing Calculator for User i

1: Given S, R, cl, U , di, Ts, Pe as input.
2: Set Pesum ← 0
3: Get Ni(Ai) ← DRFH (S, R, cl, U , di, Ts)
4: for n = 1 to N do
5: wi ← ((1/Ni(Ai))/(

∑
i∈U (1/Ni(Ai))))

6: Pesum ← Pesum + Pei

7: end for
8: Pdi

← wi × Pesum

2) Total Revenue Redistribution: Next, we study the case in
which we keep the total revenue of all users the same and re-
distribute the sum among users according to the weights, given

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

1012 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

the number of VMs that can be scheduled for each user by
DRFH. To be specific, the revenue generated by user i, i.e., Rei ,
is calculated as

Rei = Ni(Ai)× Pei , ∀ i ∈ U. (17)

New unit price Pd = {Pd1
, . . . , Pdn

} is calculated as

Pdi
=

wi ×
∑

i∈U Rei

Ni(Ai)
, ∀ i ∈ U. (18)

The algorithm for calculating unit prices for user i is shown
in Algorithm 2.

Algorithm 2 Pricing Calculator for User i

1: Given S, R, cl, U , di, Ts, Pe as input.
2: Set Pesum ← 0
3: Get Ni(Ai) ← DRFH (S, R, cl, U , di, Ts)
4: for n = 1 to N do
5: wi ← ((1/(Ni(Ai)))/

∑
i∈U (1/(Ni(Ai))))

6: Resum ← Resum + Pei ×Ni(Ai)
7: end for
8: Pdi

← ((wi × Pesum)/Ni(Ai))

D. DRFH-Based Fairness

In [14], authors showed that, unlike the fair division mech-
anisms of competitive equilibrium from equal incomes [33],
which does not satisfy strategy proofness and population mono-
tonicity, and asset fairness, which does not satisfy sharing in-
centive and bottleneck fairness, DRF satisfies sharing incentive,
strategy proofness, envy freeness, Pareto efficiency, single-
resource fairness, bottleneck fairness, and population mono-
tonicity at the mean time. In [31], authors proved by deduction
that DRFH, as an extension of DRF, satisfies strategy proofness,
envy freeness, Pareto efficiency, single-resource fairness, bot-
tleneck fairness, and population monotonicity as the DRF does.
Furthermore, authors in [31] showed through the trace-driven
evaluation that, although DRFH does not guarantee 100%
sharing incentive for all users, it provides 98% of users the
same task completion ratio as the traditional slot schedulers do.
Since the calculation of our new prices is inversely proportional
to the number of tasks that the DRFH algorithm can schedule
for a user, our proposed pricing methodology satisfies the same
fairness properties as DRFH. That is, our proposed pricing
methodology provides sharing incentive for most of the users;
it is strategy proof, envy free, and Pareto efficient and satisfies
single-resource fairness, bottleneck fairness, and population
monotonicity.

For the same example described previously, suppose that a
cloud provider charges for one VM with 0.1 CPU and 0.5-GB
RAM at $0.6/h and one VM with 1 CPU and 0.2-GB RAM at
$1.2/h. In addition, assume that each user requests an infinite
number of VMs. DRFH allocates 12 VMs to user1 and 6 VMs
to user2. The new prices are calculated as $0.4/h and $1.6/h for
user1 and user2, respectively.

TABLE II
SYSTEM RESOURCE VECTOR

Personal Fairness: Since most users would expect that a
VM consisting of smaller resources is cheaper than a VM that
consists of larger resources, the new prices of $0.4/h, for a VM
with 0.1 CPU and 0.5-GB RAM, and $1.6/h, for a VM with
1 CPU and 0.2-GB RAM, indicate personal fairness of our
pricing model.

Social Fairness: Our new prices are inversely proportional
to the number of VMs that a user receives. With the goal of the
DRFH allocation algorithm to equalize the share of resources
among all active users, fewer VMs allocated indicates that the
type of VM requested consists of larger amount of resources. A
VM with larger amount of resources is more costly to allocate;
hence, it should be charged more. Comparing to the original
prices, the decrease in user1’s price and the increase in user2’s
price indicate social fairness of our pricing model.

VI. EVALUATIONS

In order to evaluate the proposed fairness-aware pricing
methodology, we conduct experiments to compare the total
revenue that our pricing model produces with the total revenue
that a pricing model with flat-rate unit price would produce.
To be specific, in numerical evaluations, we use actual Google
Compute Engine VM types to model our cloud system. We
compare the revenue of our pricing model with the revenue that
a cloud provider would receive with Google Compute Engine
unit prices. In the trace-driven evaluation, we use the sum of
CPU and memory of each requesting VM as the unit price of
this VM. Then, we compare the revenue of our pricing model
with the revenue that a cloud provider would receive with the
calculated unit prices. New prices are generated once a request
of VM has arrived at the system. Then, a user responds to the
new prices that are modeled according to the demand function
described in Section V-A. Finally, the revenue of our pricing
model is calculated as the product of the new unit prices and
users’ final decision of the amount of VMs that they request.

A. Numerical Evaluations

Here, we demonstrate the efficiency of our algorithm with a
numerical simulation with two types of computing resources,
including CPU units and memory devices. A cloud service
provider with two servers is hosting applications of four users
simultaneously. We formulate the servers’ resource as a vector
〈CPU, Memory〉 and all users’ request as a resource vector
〈CPU, Memory〉 and corresponding unit prices from Google
Compute Engine. These numeric data are listed in Tables II
and III, respectively. We use FIFO scheduling to simulate the
process of VM allocation and, at the end of the scheduling pro-
cess, get the actual number of VMs that each user could receive.

1) Total Unit Price Redistribution: Fig. 3 illustrates the
comparison of revenues achieved with unit prices of Google

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

CHI et al.: FAIRNESS-AWARE PRICING FOR REVENUE ENHANCEMENT IN SERVICE CLOUD INFRASTRUCTURE 1013

TABLE III
USER DEMAND VECTOR AND PRICES OF GOOGLE COMPUTE ENGINE

Fig. 3. Comparison of revenues generated by existing and proposed pricing
models.

TABLE IV
NEW UNIT PRICES COMPARED TO GOOGLE

COMPUTE ENGINE UNIT PRICES

Compute Engine and proposed policies with α set to 0.5, 0,6,
0.7, 0.8, and 0.9. Revenues converge as the system resource is
fully occupied, at which the sum of VMs requested by all users
is approximately 15. Since the unit prices are smaller than 1,
the revenue with a smaller α value is greater than the revenue
with a larger α value, as depicted in Section V-A. Overall, new
revenue generated by our proposed pricing methodology is
higher than the existing revenue calculated with unit prices of
Google Compute Engine.

In Table IV, we compare our new unit prices for each user
with Google Compute Engine unit prices of the types of VMs
used in the example, with each user requesting five VMs of
their desired type. The VM with 〈1CPU, 3.75 GB〉 requires the
smallest portion of resources, so that it is easy to be placed on a
server. Therefore, the unit price of VM 〈1CPU, 3.75 GB〉 is the
lowest. On the other hand, the VM with 〈4CPU, 15 GB〉 requires
the largest portions of resources, so that it is hard to be placed on
a server. Hence, the new price of this type of VM is the highest.

In Fig. 4(a), we compare the change of user requests of our
new unit prices of the types of VMs used in the example, with
α set to 0.9. The VM with 〈1CPU, 3.75 GB〉 is charged at
the lowest price; therefore, the number of VMs that User A
requests is increased the most. On the other hand, the VM with
〈4CPU, 15 GB〉 is charged at the highest price; therefore, as a
response to the price increases, User D requests less and less
VMs. In Fig. 4(b), we compare the number of VMs allocated
on a server for each user with our new unit prices of the types
of VMs used in the example, with α set to 0.9.

In Fig. 5, we compare the revenue generated by each user
with our new unit prices of the types of VMs used in the
example, with α set to 0.9. Compared to the revenue achieved
with Google Compute Engine unit prices, the results show that
revenues generated with our pricing methodology by users B
and D are decreased, whereas the revenues generated by
users A and C are increased. Nevertheless, with our pricing
methodology, the greatest revenue is generated by user D as
it requires the type of VM that is most difficult to handle; the
next greatest revenue is generated by user C and then user B
and user A, which indicates personal and social fairness.

2) Total Revenue Redistribution: Fig. 6 illustrates the com-
parison of revenues achieved with unit prices of Google Com-
pute Engine and proposed policies, with α set to 0.5, 0.6, 0.7,
0.8 and 0.9. Revenues converge as the system resource is fully
occupied. Again, the revenue with α = 0.5 is greater than the
revenue with α = 0.9. Overall, new revenue generated by our
pricing methodology is higher than the revenue calculated with
the existing unit prices of Google Compute Engine.

In Table V, with user requests indicated, we compare the unit
prices generated for each user’s requested VM type with the
unit prices provided by Google Compute Engine. The result
shows that the VM with 〈1CPU, 3.75 GB〉 is the cheapest VM
and the VM with 〈4CPU, 15 GB〉 is the most expensive VM.

With α set to 0.9, in Fig. 7(a), we compare the requests
submitted to the cloud system by each user with the existing
and new unit prices, and in Fig. 7(b), we show the differences
of the number of requested VMs allocated for each user with
the existing and new unit prices.

In Fig. 8, we compare the revenue generated by each user
with α set to 0.9. The results show that, compared to the reve-
nue achieved with Google Compute Engine unit prices, the
revenues generated by users A and B are decreased with our
new unit prices, whereas revenues generated by users C and D
are increased with our new unit prices. Furthermore, the great-
est revenue is generated by user D as it requires the type of
VM that is most difficult to handle; the next greatest revenue is
generated by user C and then user B and user A, which indicates
personal and social fairness.

B. Trace-Driven Simulations

Here, we evaluate our proposed pricing model with empirical
data from Google cluster-usage traces.4 The traces contain user
resource requests and system resource information for about a
month-long period in May 2011. We extract the system resource
vector (S and R), the set of active cloud tenants (U), the

4https://code.google.com/p/googleclusterdata/

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

1014 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

Fig. 4. (a) Comparison of requests generated by each user. (b) Comparison of allocated VMs for each user.

Fig. 5. Comparison of revenues generated by each user.

resource vector of the VM requested by the ith user (di), and
the number of VM requests submitted (Tsi) from the traces.
Since server resources provided in Google cluster-usage traces
are normalized to the largest server resource, the actual Google
Compute Engine price of the requested type of VM is hard to
determine. Thus, we assume that, originally, the cloud provider
charges $1/CPU/h and $1/GB RAM/h, where both CPU and
RAM are normalized numbers extracted from Google cluster-
usage traces. For example, a server with normalized 0.5 CPU
and 1-GB RAM is originally charged at $1.5/h.

As described in Section V-A, elasticity coefficient α is the
decisive parameter for market reaction. However, the values of
α are different from user to user, subject to distinct application
domain and various motivations. To simulate a reasonable
scenario, the elasticity coefficient α is derived by dynamic
calculations with price and demand settings in our experiments.

Fig. 6. Comparison of revenues generated by existing and proposed pricing
models.

TABLE V
NEW UNIT PRICES COMPARED TO GOOGLE

COMPUTE ENGINE UNIT PRICES

Specifically, the value of α is calculated by the following
equation for our trace-driven simulations:

α =
1

log1/p fR(p)
. (19)

1) Total Unit Price Redistribution: The trace-driven sim-
ulation results for total unit price redistribution are depicted
in Fig. 9. The revenue of the cloud provider is calculated
according to the user demands extracted from the traces and

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

CHI et al.: FAIRNESS-AWARE PRICING FOR REVENUE ENHANCEMENT IN SERVICE CLOUD INFRASTRUCTURE 1015

Fig. 7. (a) Comparison of requests generated by each user. (b) Comparison of allocated VMs for each user.

Fig. 8. Comparison of revenues generated by each user.

the assumed original unit prices from Google Compute Engine
and unit prices generated by our proposed pricing methodology.
The user demands vary throughout the monitoring period, so
does the cloud provider’s revenue, which ranges from around
$0 to around $15 000. From the results, we observe that our
proposal outperforms the existing pricing policy in most of the
time slots. Cumulatively, the cloud service providers’ overall
revenue can be increased from $2 173 700 to $2 426 000, which
is by up to 11.60%.

2) Total Revenue Redistribution: In contrast, we also con-
ducted evaluations for the pricing of total revenue redistribu-
tion. From the results shown in Fig. 10, we observe that
the cloud service provider derives more revenue with the
novel pricing solution, comparing to the existing flat pricing
approach. The overall revenue increased significantly from
$2 172 800 to $2 415 600, which is around 11.18%.

Fig. 9. Comparison between existing and proposed pricing models with data
extracted from Google trace.

VII. CONCLUSION

In this paper, we have proposed a pricing methodology that
induces the optimal resource utilization and enhances the rev-
enue of cloud providers. New prices are determined according
to the number of tasks that a user could get scheduled by the
cloud task scheduling algorithm. A user whose task is difficult
for the system to process is discouraged from being submitted
to the system as frequently as other users’ tasks that can be
handled easily. A case study of the methodology with the DRF
allocation algorithm has been performed. Furthermore, we have
studied our methodology with total unit price redistribution and
total revenue redistribution. Numerical simulations have been
conducted to compare the total revenue that a cloud provider
would receive and the requests of resource submitted to the
cloud system by each user with the new unit prices generated
by our pricing methodology, in both of the cases, to the total

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

1016 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

Fig. 10. Comparison between existing and proposed pricing models with data
extracted from Google trace.

revenue and resource requests that a cloud provider would
receive with its original prices. An empirical study with trace-
driven simulation results has shown that the proposed pricing
policy with total unit price redistribution and total revenue
redistribution can increase the cloud service providers’ overall
revenue by up to 11.60% and 11.18%, respectively.

REFERENCES

[1] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual ma-
chines for managing SLA violations,” in Proc. Int. Symp. 10th IFIP/IEEE
IM, May 2007, pp. 119–128.

[2] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
IEEE INFOCOM, Mar. 2010, pp. 1–9.

[3] M. Abu Sharkh, M. Jammal, A. Shami, and A. Ouda, “Resource allocation
in a network-based cloud computing environment: Design challenges,”
IEEE Commun. Mag., vol. 51, no. 11, pp. 46–52, Nov. 2013.

[4] H. Zhang et al., “Resource allocation for cognitive small cell networks: A
cooperative bargaining game theoretic approach,” IEEE Trans. Wireless
Commun., vol. 14, no. 6, pp. 3481–3493, Jun. 2015.

[5] H. Zhang, C. Jiang, J. Cheng, and V. Leung, “Cooperative interference
mitigation and handover management for heterogeneous cloud small cell
networks,” Arxiv Preprint Arxiv:1504.08076, 2015.

[6] S. Ha, S. Sen, C. Joe-Wong, Y. Im, and M. Chiang, “Tube: Time-
dependent pricing for mobile data,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 247–258, Aug. 2012.

[7] H. Shen and Z. Li, “New bandwidth sharing and pricing policies to
achieve a win-win situation for cloud provider and tenants,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 835–843.

[8] H. Xu and B. Li, “A study of pricing for cloud resources,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 4, pp. 3–12, Apr. 2013.

[9] H. Zhang et al., “Resource allocation in spectrum-sharing OFDMA fem-
tocells with heterogeneous services,” IEEE Trans. Commun., vol. 62,
no. 7, pp. 2366–2377, Jul. 2014.

[10] G. Birkenheuer, A. Brinkmann, and H. Karl, “The gain of overbooking,”
in Job Scheduling Strategies for Parallel Processing. Berlin, Germany:
Springer-Verlag, 2009, pp. 80–100.

[11] W. Ma, H. Zhang, W. Zheng, and X. Wen, “Differentiated-pricing based
power allocation in dense femtocell networks,” in Proc. 15th Int. Symp.
WPMC, Sep. 2012, pp. 599–603.

[12] W. Elmaghraby and P. Keskinocak, “Dynamic pricing in the presence of
inventory considerations: Research overview, current practices, and future
directions,” Manage. Sci., vol. 49, no. 10, pp. 1287–1309, Oct. 2003.

[13] H. Zhang, C. Jiang, X. Mao, and H. Chen, “Interference-limited resource
optimization in cognitive femtocells with fairness and imperfect spectrum

sensing,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1761–1771,
Mar. 2016.

[14] A. Ghodsi et al., “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. NSDI, 2011, vol. 11, pp. 24–24.

[15] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“Deconstructing Amazon EC2 spot instance pricing,” ACM Trans. Econ.
Comput., vol. 1, no. 3, pp. 16:1–16:20, Sep. 2013.

[16] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, “Cloud comput-
ing pricing models: A survey,” Int. J. Grid Distrib. Comput., vol. 6, no. 5,
pp. 93–106, Oct. 2013.

[17] A. Gohad, N. C. Narendra, and P. Ramachandran, “Cloud pricing models:
A survey and position paper,” in Proc. IEEE CCEM, Oct. 2013, pp. 1–8.

[18] B. Sharma, R. K. Thulasiram, P. Thulasiraman, S. K. Garg, and
R. Buyya, “Pricing cloud compute commodities: A novel financial eco-
nomic model,” in Proc. 12th IEEE/ACM Int. Symp. Ccgrid Comput.,
Washington, DC, USA, 2012, pp. 451–457.

[19] G. Gallego and G. van Ryzin, “Optimal dynamic pricing of inventories
with stochastic demand over finite horizons,” Manage. Sci., vol. 40, no. 8,
pp. 999–1020, Aug. 1994.

[20] A. Narayan, S. Rao, G. Ranjan, and K. Dheenadayalan, “Smart metering
of cloud services,” in Proc. IEEE Int. SysCon, Mar. 2012, pp. 1–7.

[21] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework,” in Proc. IEEE
INFOCOM, Mar. 2012, pp. 1206–1214.

[22] X. Jin, Y. K. Kwok, and Y. Yan, “A study of competitive cloud re-
source pricing under a smart grid environment,” in Proc. IEEE Int.
Conf. CLOUDCOM Technol. Sci., Washington, DC, USA, 2013, vol. 1,
pp. 655–662.

[23] R. Harmon, D. Raffo, and S. Faulk, “Incorporating price sensitivity mea-
surement into the software engineering process,” in Proc. PICMET—
Technol. Manage. Reshaping World, Jul. 2003, pp. 316–323.

[24] R. E. Goldsmith and S. J. Newell, “Innovativeness and price sensitivity:
Managerial, theoretical and methodological issues,” J. Product Brand
Manage., vol. 6, no. 3, pp. 163–174, 1997.

[25] S. Han, S. Gupta, and D. R. Lehmann, “Consumer price sensitivity and
price thresholds,” J. Retailing, vol. 77, no. 4, pp. 435–456, Winter 2001.

[26] D. Gale, “The law of supply and demand,” Math. Scand., vol. 3, pp. 155–
169, 1955.

[27] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman, “VMFlow: Lever-
aging VM mobility to reduce network power costs in data centers,” in
NETWORKING 2011, vol. 6640, Lecture Notes in Computer Science,
J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont, and C. Scoglio,
Eds. Berlin-Verlag: Springer-Verlag, 2011, pp. 198–211.

[28] C. Hyser, B. Mckee, R. Gardner, and B. J. Watson, “Autonomic virtual
machine placement in the data center,” Hewlett Packard Lab., Palo Alto,
CA, USA, Tech. Rep. HPL-2007-189, pp. 2007–189, 2007.

[29] S. K. Mandal, On-demand VM placement on cloud infrastructure,
Ph.D. dissertation, Dept Comput. Sci. Eng., Nat. Inst. Technol. Rourkela,
Rourkela, India, 2013.

[30] H. N. Van, F. D. Tran, and J. M. Menaud, “SLA-aware virtual resource
management for cloud infrastructures,” in Proc. 9th IEEE Int. Conf. CIT ,
Oct. 2009, vol. 1, pp. 357–362.

[31] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in cloud com-
puting systems with heterogeneous servers,” CoRR, vol. abs/1308.0083,
2013.

[32] H. Wang et al., “Distributed systems meet economics: Pricing in the
cloud,” in Proc. 2nd USENIX Conf. Hot Topics Cloud Comput., 2010,
pp. 6–6.

[33] H. R. Varian, “Equity, envy, and efficiency,” J. Econ. Theory, vol. 9,
no. 1, pp. 63–91, Sep. 1974.

Yuanfang Chi (S’15) received the B.A.Sc. degree
in 2012 from The University of British Columbia
(UBC), Vancouver, Canada, where she is currently
working toward the M.A.Sc. degree with the Depart-
ment of Electrical and Computer Engineering.

As a Research Assistant in the UBC Wireless Net-
works and Mobile Systems (WiNMoS) Laboratory,
she is conducting research work in cloud-pricing-
related topics. Before her postgraduate studies, she
was an R&D Software Engineer with Tsinghua Uni-
versity, Beijing, China, for one year. Her current

research interests include cloud resource management, demand management,
and pricing strategies.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

CHI et al.: FAIRNESS-AWARE PRICING FOR REVENUE ENHANCEMENT IN SERVICE CLOUD INFRASTRUCTURE 1017

Xiuhua Li (S’13) received the B.S. and M.S. degrees
from the Honors School and the School of Electron-
ics and Information Engineering, Harbin Institute
of Technology, Harbin, China, in 2011 and 2013,
respectively. He is currently working toward the
Ph.D. degree with the Department of Electrical and
Computer Engineering, The University of British
Columbia, Vancouver, Canada.

His current research interests include resource al-
location, optimization, distributed antenna systems,
cooperative backhaul caching, and traffic offloading

in mobile content-centric networks.

Xiaofei Wang (S’07–M’13) received the B.S. de-
gree in computer science and technology from
Huazhong University of Science and Technology,
Wuhan, China, in 2005 and the M.S. and Ph.D.
degrees in computer science and engineering from
Seoul National University, Seoul, Korea, in 2008 and
2013, respectively.

He is currently a Postdoctoral Research Fellow
with the Department of Electrical and Computer
Engineering, The University of British Columbia,
Vancouver, Canada. His current research interests

include social-aware multimedia service in cloud computing, cooperative back-
haul caching, and traffic offloading in mobile content-centric networks.

Dr. Wang was a recipient of the Korean Government Scholarship for Excel-
lent Foreign Students in IT Field by the National IT Industry Promotion Agency
(NIPA) from 2008 to 2011, and he also received the Global Outstanding
Chinese Ph.D. Student Award in 2012.

Victor C. M. Leung (S’75–M’89–SM’97–F’03)
received the B.A.Sc. (Honour) in Electrical Engi-
neering in 1977 and Ph.D. in Electrical Engineer-
ing in 1982, both from the University of British
Columbia.

He is a Professor in electrical and computer en-
gineering and a holder of the TELUS Mobility Re-
search Chair at The University of British Columbia
(UBC), Vancouver, Canada. He has coauthored more
than 800 technical papers in archival journals and
refereed conference proceedings, several of which

had won best paper awards. His research is in the areas of wireless networks
and mobile systems.

Dr. Leung is a Fellow of the Royal Society of Canada, a Fellow of the
Canadian Academy of Engineering, and a Fellow of the Engineering Institute
of Canada. He is serving or has served on the editorial boards of the Journal
of Communications and Networks (JCN), the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS (JSAC), the IEEE TRANSACTIONS ON COM-
PUTERS, the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, the
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, the IEEE WIRELESS

COMMUNICATIONS LETTERS, and several other journals. He has provided
leadership to the technical program committees and organizing committees
of numerous international conferences. He was the recipient of the 1977
Association of Professional Engineers of British Columbia (APEBC) Gold
Medal, the Canadian Natural Sciences and Engineering Research Council
(NSERC) Postgraduate Scholarships from 1977 to 1981, a 2012 UBC Killam
Research Prize, and an IEEE Vancouver Section Centennial Award.

Abdallah Shami (M’03–SM’09) received the B.E.
degree in electrical and computer engineering from
the Lebanese University, Beirut, Lebanon, in 1997
and the Ph.D. degree in electrical engineering from
the Graduate School and University Center, The City
University of New York, New York, NY, USA, in
September 2002.

Since July 2004, he has been with Western Uni-
versity, London, Canada, where he is currently a Pro-
fessor in the Department of Electrical and Computer
Engineering. His current research interests are in the

areas of network-based cloud computing and wireless/data networking.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:07:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

