
1586 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

ACE: Availability-Aware CloudSim Extension
Manar Jammal , Hassan Hawilo , Ali Kanso, and Abdallah Shami , Senior Member, IEEE

Abstract—In the interconnected globe where service delivery
is the success measure, cloud high availability (HA) is an
indispensable area for enterprises. An HA-aware cloud system
provides different approaches to handle the outages. This includes
geo-redundancy, failover schemes, and HA-aware placement solu-
tions. However, using real-cloud platforms to model HA-aware
approaches is hindered by the configuration settings. To this end,
simulation tools, such as CloudSim, can be used to evaluate HA
solutions and a cloud resiliency against failures. CloudSim allows
implementing of scheduling policies, but it does not support
HA properties. This paper provides availability-aware CloudSim
extension (ACE). ACE extends CloudSim with a graphical and
textual modeling to ensure simplicity and reusability of cloud
scenarios. ACE has added HA-aware modeling (HA metrics
and failure/redundancy/interdependency models) and HA-aware
scheduling (HA-aware placements, failover, repair, and load
balancing policies) into CloudSim. With ACE, the creation of
cloud scenarios is facilitated, and multiple HA-aware deploy-
ment solutions can be evaluated under different stochastic and
deterministic events. ACE can assess the impact of different
redundancy/failure models, and other performance policies to
extract HA-aware lessons. In this paper, ACE is assessed on a
cloud application to evaluate different redundancy/failure mod-
els and provide availability analysis of the HA-aware placement
solution.

Index Terms—High availability, failure injection, software
components, virtual machines, repair, load balancing, failover,
redundancy, simulation, CloudSim, computational path.

I. INTRODUCTION

ALTHOUGH cloud computing is not new, it is considered
a game-changing concept in the information and commu-

nications technology fields. Studies show that cloud services
have evolved to everything or anything as a Service (XaaS),
which will be responsible for the growth in the market of
the cloud services [1]. The XaaS includes software as a ser-
vice (SaaS), infrastructure as a service (IaaS), and platform as
a service (PaaS) [2]. Therefore, different challenges should
be addressed to ensure the cloud adoption in many enter-
prises. These issues range from compliance concerns, security,
interoperability, and other services management issues [3].
However, availability is one of the key factors to ensure an

Manuscript received November 22, 2017; revised July 13, 2018 and
October 7, 2018; accepted October 30, 2018. Date of publication
November 6, 2018; date of current version December 10, 2018. This work is
partially supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC-STPGP 447230) and Ericsson Research. The associate
editor coordinating the review of this paper and approving it for publication
was B. Stiller. (Corresponding author: Manar Jammal.)

M. Jammal, H. Hawilo, and A. Shami are with the Electrical and Computer
Engineering Department, Western University, London, ON N6A 5B9, Canada
(e-mail: mjammal@uwo.ca; hhawilo@uwo.ca; abdallah.shami@uwo.ca).

A. Kanso is with IBM Cloud, IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598 USA (e-mail: akanso@us.ibm.com).

Digital Object Identifier 10.1109/TNSM.2018.2879665

optimal cloud performance and satisfy quality of service (QoS)
and quality of experience (QoE). Although cloud data are
safely stored in well-managed cloud platforms, outages can
happen even on these platforms. For example, GitLab has
faced data loss due to accident deletion on Feb. 1, 2017,
which has caused the permanent loss of “six hours’ worth”
of data [4]. Similarly, Dropbox, Microsoft Azure, Google,
and Amazon Web Services have suffered cloud outages in
the last few years [5]–[8]. Therefore, availability is a main
concern to be addressed in large distributed systems and appli-
cations, mainly cloud platforms [9]–[12]. It is necessary to
note that availability is the measure of the percentage of
time a system is available for normal usage in a given time
interval [13].

In order to ensure highly available cloud services, it is
necessary to design a cloud model and simulation that can
emulate real cloud outages, execute repairing policies, and
recover failures accordingly. Using real cloud settings (i.e.,
Amazon Elastic Compute Cloud (EC2)) to model applications
and evaluate their behavior under certain performance policies
is restricted by cloud platform configurations and infrastruc-
ture. As an alternative, modeling and simulations can be used
to emulate the cloud. These approaches can build new algo-
rithms and policies, test them before the actual deployment in
a real cloud, and enhance the performance of large-scale dis-
tributed systems. This can save the tenants significant time and
effort and some degree of reassurance about the level of high
availability (HA). On the other hand, cloud provider can ben-
efit from the simulations to evaluate new features/extensions
to their cloud and check if their HA guarantees are realistic.

Due to their scalability and efficiency characteristics, dis-
crete event simulators (DES) can be used in the modeling
and evaluation of the distributed systems [14]. CloudSim is
a simulation framework used for the scheduling and resource
allocation algorithms on cloud infrastructure. However, it is
not designed to model HA constructs and therefore, over-
looks the availability and failures of the cloud applications. In
this paper, we propose Availability-aware CloudSim Extension
(ACE) that models HA-aware policies and metrics in the cloud.
The contributions of ACE can be summarized as follows:

• Allow the injection of failures and failure-dependency
between cloud applications.

• Implement load balancing technique.
• Differentiate between the cloud as a provider consisting

of data centers (DCs) and servers, and as a user where
applications components are modeled to form functional
chains and protection groups.

• Provide recovery and repair solutions.
• Schedule cloud applications with HA objectives and

evaluate fault-tolerant cloud scheduling approaches.

1932-4537 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4833-7644
https://orcid.org/0000-0003-0673-9845
https://orcid.org/0000-0003-2887-0350

JAMMAL et al.: ACE 1587

• Support reactive, proactive, and adaptive fault-tolerant
approaches. Any failure type can be injected into the
cloud infrastructure and applications as long as it is asso-
ciated with its mean time to failure (MTTF) and mean
time to repair (MTTR).

• Provide generic and repeatable input templates for
cloud simulators, GITS, using JavaScript Object Notation
(JSON) data format.

The rest of this paper is structured as follows. In Section II,
the related work is presented for cloud simulators. Section III
presents the problem background and motivation including
different fault types, measures, cloud scheduling, and the com-
plexity of cloud models. In Section IV, ACE design and
implementation are described. Section V defines the evaluation
results of ACE. Finally, Section VI presents the conclusion and
future work.

II. RELATED WORK

This section provides a literature study on some of the
existing cloud simulators. Wickremasinghe et al. [15] propose
CloudAnalyst as an extension to CloudSim. CloudAnalyst
extends CloudSim with a module for visualizing the sim-
ulation results as a Portable Document Format (PDF)
file. Although CloudAnalyst focuses on modeling simula-
tions rather than development, it supports neither HA-aware
metrics nor a generic input template with HA features.
Kliazovich et al. [16] propose GreenCloud as an energy-
aware simulator for cloud DCs. GreenCloud models the
energy consumption of cloud infrastructure (DCs, servers,
and network links) and packet-level communication configura-
tions. Gupta et al. [17] propose Green Data Center Simulator
(GDCSim) as another energy-aware simulator to model DC
behavior and resource management in terms of power objec-
tives. Although energy and HA are main concerns in the cloud,
GreenCloud and GDCSim exclude any HA modeling in the
cloud. Zhou et al. [18] extend CloudSim with FTCloudSim
to include reliability mechanisms. It evaluates the system
performance under faulty events and generates the necessary
details to determine the pros and cons of the approach under
evaluation. Although FTCloudSim supports some reliability
features, it discards redundancy between applications compo-
nents as well as the dependency relations. It does not support
the automated generation of requests within the functional
chain of a certain application. Also, the recovery policies do
not ensure a failover to a redundant component and do not
trigger the repair policy of the faulty component.

Tighe et al. [19] propose Data Center Simulator (DCSim)
to evaluate different DC management and scheduling algo-
rithms. Although DCSim models multi-tier applications and
supports the dependency and replication simulations between
virtual machines (VMs), it discards other HA features
(failure injection, repair, recovery, and load balancing).
Ostermann et al. [20] propose GroudSim as Grid and Cloud
simulator based on discrete events. According to differ-
ent distribution functions, GroudSim can simulate the exe-
cution of jobs on computing resources and calculate the
associated cost and workload. Unlike other literature stud-
ies, we distinguish ourselves with a unique well-defined

availability-aware extension of CloudSim simulator. Fig. 1
shows a comparative analysis between ACE and some of
the existing cloud simulators in terms of HA-aware modeling
and scheduling. These simulators do not support HA-aware
scheduling as they do not include availability modeling fea-
tures (in terms of HA metrics, redundancy models, and load
balancing). The extension does not only capture an HA-aware
input template for the simulator, but it supports different HA
metrics and features. This includes failure injection module,
applications components recovery and repair, HA-aware allo-
cation mechanism, automated request generation to maintain
application functional chains, and load balancing. Besides,
ACE captures different redundancy models and multiple dis-
tributions functions for the failure/repair rates.

III. BACKGROUND AND MOTIVATION

Realizing an HA-aware cloud system entails an intricate
planning. However, to design a new and innovative HA-aware
cloud solution, a modeling and simulation environment is
needed to model several cloud properties, such as availability,
security, and energy. A simulation environment can be applied
to evaluate multiple scenarios under different performance and
HA constraints.

CloudSim is an extensible cloud-based simulator built in
the CLOUDS Laboratory at the University of Melbourne,
Australia. It models and simulates cloud systems and differ-
ent scheduling and allocation policies [21]–[23]. CloudSim is
an open-source simulator and is built on the top of a discrete
event simulator, SimJava [15], [24]. However, CloudSim does
not support availability-aware properties, constraints, and/or
allocation policy. Also, it does not support a “ready-to-use”
setting to generate cloud scenarios, but it needs a Java-based
code to create any cloud set-up using its entities. Therefore,
this paper aims at extending CloudSim with HA features
and generic input template for creating cloud scenarios while
ensuring repeatability, portability, and simplicity. This section
addresses the fault types and measures of the cloud as well as
the structure of the cloud model.

A. Outages and Fault-Tolerant Measures

In a cloud system, faults are realized as resources failures
whether the resource is application or infrastructure [25]–[28].
The two common types of failures behaviors in the cloud are:

Fail-stop/Crash failures: The entity of a system changes to
a failure state that is detected by other entities [29], [30].

Byzantine failures: Upon a failure, the component shows
malicious and random behavior, which sometimes collides
with other components and causes the system to perform in
an arbitrary mode [25], [29], [31].

With this in mind, fault-tolerance or availability of a system
is expressed in terms of MTTF and MTTR where MTTF deter-
mines the time in which the system functions normally before
failure, and MTTR is the time needed to resume the function-
ality of a failed system [32]. The availability A is calculated
as follows:

A =
MTTF

MTTF + MTTR
. (1)

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

1588 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

Fig. 1. Comparative analysis of cloud simulators in terms of HA-aware modeling and scheduling.

B. Scheduling in the Cloud

To ensure the fully-exploitation of cloud capabilities, it is
necessary to design an HA-aware solution while maintaining
an efficient utilization of computational resources [33], [34].
Each cloud DC hosts thousands of servers with hundreds of
VMs. While VMs process multiple tasks, the cloud receives
new batches of users’ requests. In order to have a seamless
processing, these requests should be hosted by the VM/server
that can satisfy computational needs while maximizing their
availability. Therefore, task scheduling and assignment are
paramount approaches to prevent any service level agree-
ment (SLA) violation in terms of HA and performance of
the cloud [35]. With scheduling, different cloud metrics and
objectives can be evaluated in terms of each other (HA-energy-
security or HA-performance-fairness) to generate a trade-off
that satisfies the desirable SLA and QoS. In order to perform
scheduling in a cloud environment, different phases should be
executed:

• Determination phase: Define type of “to-be-processed”
requests/task, such as rigid tasks (predefined resources
by users), evolving tasks (changeable resources through
simulation), and moldable tasks (constrained resources by
the scheduler) [36].

• Discover phase: Resource/HA/Energy-based pooling and
filtering of available infrastructure.

• Decision phase: Choose target host (DC, server,
and VM).

• Process phase: Submit the request/task to the host to be
processed.

C. Cloud Model

Similar to Service Oriented Architecture (SOA), different
roles can be defined in any cloud environment [37]. Fig. 2
shows the cloud model. These roles can be distributed as
follows:

Cloud provider offers PaaS and IaaS to the users. It consists
of multiple DCs hosting thousands of servers. Each infras-
tructure component is characterized by its resources and HA
metrics.

Cloud broker is an intermediate negotiator between the
cloud service provider and consumer.

Cloud aggregators combine different cloud providers to
offer a larger and hybrid infrastructure to cloud customers.

Cloud users consist of multiple applications components
that use the cloud capabilities to execute certain computa-
tions or to process requests. A 3-tier Web application is
an example of cloud applications [38]. At the front-end, a
Hypertext Transfer Protocol Secure (HTTPS) server processes
requests and forwards them to an App server. At the back-end,
a database (DB) server stores the users’ data and sponsors the
App server that generates the required information. The depen-
dency interaction between these component types constitutes
the functional/computational path that should be followed by
a request to be successfully executed.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

JAMMAL et al.: ACE 1589

Fig. 2. Different roles in the cloud model.

To this end, this paper provides an abstract and generic
simulation approach where different cloud nodes (DC, server,
application components, VMs), load balancer, and HA features
are well-defined and modeled.

IV. ACE DESIGN

This section describes the design of ACE to simulate and
evaluate cloud systems having an erroneous nature. ACE
contributions are summarized as follows:

• Define an architecture for HA-aware cloud (generic tem-
plate for cloud model that captures HA features).

• Provide automated generation of requests while dis-
covering the functional chains (computational path)
and protection group (redundancy group) for cloud
applications.

• Integrate HA-aware cloud allocation algorithm that places
cloud applications while maximizing their HA and satis-
fying other SLA performance requirements.

• Design a load balancing algorithm at each tier of a cloud
application.

• Provide a failure injection module and recovery/repair
mechanisms to ensure self-healing upon failures of DCs,
servers, and VMs (representing cloud applications).

• Implement a modular and reusable HA-aware extension
for CloudSim.

• Evaluate availability of different HA-aware deployments
of cloud applications.

The source codes of ACE are released in the Atlassian
Bitbucket repository (https://bitbucket.org/manarjammal/ace-
availability-aware-cloudsim-extension.git).

A. ACE Modules

Input template module: CloudSim is extended with a user-
friendly method, GITS (generic input template for cloud
simulators), for generating a scenario, without exposing the
cloud user to the details of development and coding in the
simulator. Manual creation of scenarios in CloudSim can be
a tedious and erroneous job. Therefore, GITS aims at provid-
ing an imperative way to generate cloud scenarios that ensure
configurations reusability, applications portability, and auto-
mated orchestration between different cloud providers while
minimizing error, cost, and time-to-value.

Fig. 3. ACE model (Using Eclipse Ecore representation).

GITS models the cloud provider, cloud user, and virtu-
alization mapping between them through VM/containers. It
captures different HA attributes associated with each entity of
the cloud including HA statistical measures (MTTF, MTTR,
and recovery time), redundancy model, failure types, and
recovery mechanisms. GITS models the cloud as a cloud
provider consisting of multiple DCs hosting multiple racks
and servers and a cloud application consisting of multiple
components of different types. Each type is associated with a
failure type, redundancy model, SLA requirements, workload
characteristics, and redundancy model. Different redundancy
and dependency relations between component types are cap-
tured as well. Components can be modeled in an active-active
redundancy model, active-standby (cold and hot) model, and
active-spare model. Fig. 3 shows Ecore diagram for GITS
cloud model.

To maintain modularity and easy-to-use features, GITS con-
sists of a multi-layer input model. At the frontend layer, an
Eclipse graphic modeling framework (GMF) project is built
to provide a user-friendly approach. An Extensible Markup
Language (XML) file is generated from the GMF, which will
be inputted to the mid-layer and parsed into a JSON template.
The latter is used because it is a human readable and reusable
approach, which is mapped to a Unified Modeling Language
(UML) class diagram at the backend layer. GITS is generic in
a sense that it can be easily modified to fit any cloud simulator.
Fig. 4 and Fig. 5 show the GMF and JSON template of GITS.

It is necessary to note that the output of any simulation is
saved as an excel sheet where requests information is included.

Computational path and request generation module: Each
application consists of multiple components. Each component
belongs to a certain type that can depend on and/or spon-
sor other types. For example, a Web application consists of
3 types: HTTPS-based component type, App-based type, and
DB-based type where HTTPS depends on the App that is spon-
sored by DB. This interdependency communication between
applications components forms the computational path or
functional chain. In other words, it is the route followed by a
user request to be successfully executed. Note that a request
refers to a CloudSim cloudlet. The CloudSim cloudlet is refer-
eed by cloudlet in the rest of the paper. CloudSim is extended
to include this components chaining. Each computational path

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

1590 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

Fig. 4. ACE graphical editor.

Fig. 5. ACE JSON template.

consists of the different levels (three levels in case of the Web
application). The first level represents the components types
that do not have any dependents (HTTPS type in case of the
Web application). The requests arrive at the load balancer to
be forwarded to the first level/tier of the chain. The first tier
represents the primary component and its redundant ones. It is
necessary to note that this redundancy relation forms a protec-
tion group (primary and redundant components). The requests
are distributed on the active components of the first level.
Once a request is processed, a sub-request is generated and
forwarded again to the load balancer to be distributed on the
active components of the second tier. The same process goes
on until the request reaches the last tier. Fig. 6 shows the Web

application with computational path and protection group. A
request is successfully processed if all the subrequests created
at all the tiers of the path are successfully executed. CloudSim
is also extended to include automatic generation of requests.
Upon completion, a new request is automatically generated
and distributed by the load balancer to the different tiers of
the chain. It is necessary to note that user can either define
a number of requests at the beginning of simulation or trig-
ger the automated generation of requests while defining the
simulation time.

HA-aware placement module: CloudSim provides space and
time-based allocation policies, but it overlooks HA objective
and constraints. ACE provides an HA-aware allocation policy

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

JAMMAL et al.: ACE 1591

Fig. 6. Example of three-tier Web application.

for applications components. A simulator user can use either
the default policy or the proposed HA-aware approach. The
HA-aware approach is divided into sub-algorithms. Prior to
the applications’ components placement, a criticality analysis
is performed to differentiate between applications components
priorities [39]. For example, if a 3-tier Web application has
only one DB active component, the failure of the DB instance
would have a high impact on the application’s requests.

The failure of each application’s component can cause an
outage (O) or a service degradation (D). With Nfail being the
number of failures, the component’s criticality is the product
of its Nfail and its unavailability [40]. Front-end (FE) com-
ponents can cause an outage as defined in (2). If a dependent
(DeC) can tolerate the outage (OT), of its sponsor compo-
nent (SC), the latter’s failure causes a degradation as defined
in (3). Finally, the sponsor’s failure causes a degradation and
an outage as defined in (4) [39].

criticalityFE = (Nfail × MTTR)o (2)

criticalityd = (Nfail × MTTR)d (3)

criticalitydo =
∑

DeC

(Degradation + Outage)

where
{
Degradation =

(
(Nfail)SC × OTDeC

)
d

Outage =
(
(Nfail)SC × (MTTRSC − OTDeC)

)
o

(4)

Once criticality is defined, the applications components are
then inputted to the placement algorithm. The latter finds a
pool of servers that satisfy the performance demands of the
applications components (computation resources and latency).
The servers pool is imported to the availability algorithm
to find the best server while maximizing the HA of the
applications components. To that end, the availability sub-
algorithm is executed to select a server from the pool with
the highest availability measure (highest MTTF and lowest
MTTR). However, the chosen server should satisfy the delay,
affinity, and anti-affinity constraints. As for the affinity con-
straints, the availability algorithm restricts the placement of a
component and its redundant ones on the same server (geo-
redundancy policy). It also places the dependent components
on their sponsor server if they cannot tolerate the sponsor fail-
ure. Otherwise, the algorithm provides different locations for
the sponsor component and its dependents. Fig. 7 shows the
flowchart of the placement algorithm.

The HA-aware allocation algorithm generates the mapping
between applications components and their hosts (servers and
DCs). It is necessary to note that the VMs represent the appli-
cations’ components. Prior to the simulation, the algorithm is

Fig. 7. Flowchart of the HA-aware placement algorithm in ACE.

executed, and the VM-host (component-host) is defined. To
that end, the CloudSim broker is extended to include the VM-
host binding at the beginning of the simulation. This extended
broker class binds the VM to the required server in order to
ensure that we can access the VM list of any server and the
server of any VM, especially upon failure.

Load balancing module: A load balancing algorithm is
added to CloudSim. At each tier of the computational path,
a load balancer is responsible for the distribution of the
requests between available VMs. A fair load balancing algo-
rithm is implemented to ensure a fair workload distribution
among different entities. This algorithm is implemented using
weighted round robin technique [41]. First, the load balancer
searches for active components (VMs) to process a request.
Then it adds weights to the VMs having the least waiting
queue size (least number of requests in its queue) to handle
the workload. The load balancer does not only distribute the
requests on the relevant VMs, but it is also responsible for the
redistribution of requests upon failure of their corresponding
VMs and/or hosts (servers and/or DCs). Fig. 6 shows the load
balancing model of ACE for a 3-tier Web application.

Failure injection module: Each cloud entity is associated
with availability measures. With MTTF and MTTR, the avail-
ability ratio is calculated using (1). The failure time is then
determined by multiplying this ratio with the simulation
duration. Once determined, a failure is injected into the sim-
ulation. The faulty entity is considered “destroyed”, and its
corresponding requests are redistributed to the redundants.

Recovery and repair modules: Once the failure is injected,
the extended broker detects and isolates it to protect the rest

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

1592 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

Fig. 8. ACE architecture and different modules.

of the cloud system. Simultaneously, it triggers the recovery
and repair policies. If the failure happens at the VM, the lat-
ter’s “recovery time” determines when to trigger the recovery
policy, and the MTTR determines when the repair policy is
launched. The broker triggers “DestroyVM” method to gen-
erate a failure and acknowledges the DC. To that end, the
“CloudSim class” in the core engine is extended to include
dynamic future queue where its size can be updated anytime
due to any unplanned event (failure, recovery, and repair) dur-
ing the simulation. Since we can access the host identifier (ID)
from a VM, the broker iterates over the “VM HashMap” of
the host of faulty VM and changes the latter status to inac-
tive, which is simultaneously updated in the VM list of the
load balancer. The broker then determines the cloudlet queue
of the faulty VM, which is extracted from the scheduling pol-
icy. The cloudlet in the execution queue is considered “failed”.
As for the cloudlets (requests) in the waiting queue, they are
released and associated with a “failed” flag. Concurrently, the
broker calls the load balancer to determine the available active
redundant VM with the least cloudlet queue size.

It is necessary to note that the broker is extended to act
as the brain of the simulation and to ensure modularity and
reusability of the code. For instance, any load balancer policy
can replace the proposed one without affecting the simula-
tion. Once the broker gets the apt redundant VM, it generates
new cloudlets holding the same IDs as the old ones and trig-
gers their failover to the corresponding VM. After VM repair
time, the faulty VM is active again and ready to process new
requests. If the failure happens at the level of the host, the bro-
ker iterates over its “VM HashMap” and repeats the previous
VMs recovery and repair policies. After MTTR of the faulty
server, its status changes to normal, and it is ready to host
new VMs. Similarly, if the failure happens at the DC level,
its servers fail automatically, and the same applies to their

hosted VMs. The VMs and its cloudlets are recovered/repaired
as discussed above. The faulty DC and its servers are con-
sidered healthy again after their MTTR. It is necessary to
note we do not consider a hardware recovery policy (hardware
redundancy), redundancy is only assigned to the applications’
components.

B. ACE Building Blocks

This section explains the different classes used to extend
CloudSim with ACE. Fig. 8 shows ACE architecture and its
main classes. The user starts with generating the cloud scenar-
ios using the input template module. Once the data is defined,
the JSON template is added to the source file of ACE. When
the user runs the simulation, ACE access the JSON template
and populates its cloud model accordingly. Once the cloud
model is populated, ACE executes the HA-aware placement
module to deploy the application’s components on the servers
that satisfy the performance and HA-aware constraints. Once
this module generates the placements, it maps the servers to
their corresponding component using VMs. ACE executes then
the computational path and request generation module to build
the functional and protection groups within each type. It also
executes the routine responsible for generating the requests
(tasks) for the application’s components. At this stage, the
load balancing module is executed to distribute the requests
between the redundant instances of each component type.
Once the failure time is determined using the failure injec-
tion module, the latter injects failure and destroys the faulty
node. Simultaneously, the recovery and repair module is exe-
cuted to isolate the failure and trigger the recovery and repair
policies. The load balancing module is re-executed to failover
the workload to the redundant instance(s) of the faulty entity.
Once the repair policy is executed and the faulty component

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

JAMMAL et al.: ACE 1593

is active again, the load balancing module is re-executed to
distribute the request accordingly.

CloudletExtension: This class extends the Cloudlet class
in CloudSim to reflect availability metrics (ID, the status of
completion, and dependents/sponsors).

CloudletScheduler classes: These classes include
CloudletSpaceSchedulerSpaceSharedExtension and
CloudletTimeSchedulerSpaceSharedExtension, which are
extended to release the resources of the faulty VM and ensure
that it has its full resources when it becomes healthy.

Comp2CloudletAdapter: This class maps the components
of the ACE input template (JSON template) to the extended
cloudlet class (HA measures (MTTF, MTTR, tolerance time)
and dependents/sponsors).

Comp2VMCloudSimAdapter: This class represents each
application component with a VM in the simulation.

CP4ComponentsVMs: This class is used to determine the
dependent(s) and/or sponsor(s) of each component type and
generate the computational path or the functional chain of the
corresponding applications.

CPStructure: This class determines the structure of the com-
putational path where the application component type of the
first tier of the path, application components of the path, and
a number of active components in each tier are defined.

CreateCloudlet4VM: This class generates the cloudlets of
each VM (a component of a specific type) where each cloudlet
has the characteristics of its corresponding VM.

DCBrokerExtension: This class is considered the brain of
ACE simulation. It is extended to include failure injection
of VM/server/DC, dynamic generation of cloudlets/VMs and
computational path, dynamic destruction of VM/server/DC
upon failure, recovery, and repair policies. The broker is also
extended to support static requests, dynamic requests, and
fluctuated workload generation.

DCExtension: This class captures HA measures (MTTF and
MTTR) of the DC and includes the acknowledgment for a VM
failure and the binding between the VM and host according
to the proposed HA-aware algorithm.

FT classes: These classes include DatacenterFailureTime,
HostFailureTime, and VMFailureTime. They determine the
data structure of the failure time of the DC, server, and VM.

DC2CloudSimDCAdapter: This class maps the DC of the
ACE JSON template to the extended DC class in CloudSim.

HAUtilities: This class is used to calculate the time to inject
the failure based on the simulation duration.

HostExtension: This class is extended to include
HA measures of the server and its map of the
hosted VMs.

IntroduceVMFailureAndRecovery: This class tracks the sim-
ulation time to inject failures and trigger recovery. This class
considers failure priority in a sense that if DC, server, and VM
fail at the same time, it triggers DC failure then host failure
followed by VM failure. Also, if the MTTF is given same as
MTTR of a VM, this class can handle this error. It will initially
trigger a VM failure followed by a repair. This feature can be
used to redistribute requests of a certain VM to its redundants
upon its overload.

LB: This load balancing class distributes the requests to
the active VMs at each tier of the computational path. It

also redistributes the requests to the redundant VMs upon
DC/server/VM failure.

PopulatingFromHAAllocator: This class generates the
placements of the applications components on the best servers
while maximizing the components HA.

RedundancyModelTags: This class defines the tags for
redundancy types (active, standby, or spare) of each VM.

RequestStructure: This class determines the structure of the
request where it defines the request unique ID, status, final
request state, and the sub-cloudlets.

VMAllocationPolicyExtension: This class releases the
resources of the faulty VM from its host.

VMExtension: This class is extended to capture HA mea-
sures of a VM, its component type, broker, host ID, and
cloudlet.

CloudSim: It is one of the core engine classes of CloudSim.
This class adds a dynamic update of the future queue. For
instance, when the failure of an entity is injected during the
simulation, a failure event is generated. This event should be
added to the future queue of the DES, and consequently, the
queue size should be updated accordingly.

V. ACE EVALUATION

This section provides an evaluation of ACE to show the
impact of availability metrics on the cloud performance. ACE
is assessed on a three-tier Web application. Amazon Web
application is an example [42]. The MTTF, MTTR, and recov-
ery time the measures of the HA of deployed components
(VMs), inject failures, and recover faulty nodes. It is neces-
sary to note that the downtime of an application component
C is calculated in terms of outage hours per year, and its
availability AC is calculated as follows [43]:

AC =
(

8760 − downtimeC
8760

)
× 100 (5)

In this section, the availability of each deployed VM (com-
ponents) is measured in terms of outage hours per year, and
the availability of a cloud scenario where its VMs are already
deployed is measured in terms of a number of successfully pro-
cessed requests. ACE can be used to test and evaluate different
cloud-based objectives:

• Evaluate multiple availability and performance-aware
allocation techniques.

• Assess the resiliency of cloud model under study in terms
of different failures and recovery policies.

• Provide availability analysis of any cloud placement solu-
tion. The analysis does not only detect failures, their
effects, and recovery/repair schemes, but it calculates the
availability of a cloud model under various stochastic and
deterministic events (failure, recovery, and overload).

• Assess the capability of each application component to
process user requests under different configurations.

• Evaluate the impact of redundancy models and failures
on the number of served requests, their response, and
waiting time.

• Extract different HA-aware lessons to improve the cloud
resiliency to failure in the future (anticipated elasticity).

• Model and evaluate different requests’ distribution where
ACE can model fixed number requests, workload

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

1594 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

TABLE I
DIFFERENT HA METRICS DISTRIBUTION

fluctuation (different workload’s distribution to model
real-case scenarios, such as peak/normal periods), and
automated generation of requests while defining their
arrival rate AR.

ACE is implemented in Eclipse on a Linux VM with 26GB
of RAM and 6 vCPUs running Ubuntu12.04. For all scenarios,
simulations are run multiple times to define a confidence level
of 95% based on the t-Table [44].

A. Modeling a Scenario in ACE

This section describes how to model a three-tier Web appli-
cation on a network of 2 DCs, 2 racks, and 6 servers using
GITS. GITS is implemented in Eclipse on a Linux VM run-
ning Ubuntu12.04. In order to create a cloud scenario for ACE,
the user can either run the GMF project as a Java application
or use the JSON template.

Each GITS template has an objective; “scheduling” of cloud
applications or “evaluation” of a certain scheduling solution.
We assume “scheduling” objective for this scenario. This sec-
tion also assumes that each DC consists of a rack, 2 shelves,
and 3 servers where each is associated with its own com-
putational resources and availability attributes. Each DC is
associated by an availability zone; i.e., “Z1”. This zone means
all the DC’s servers are located in it. Since we have one DC
with these characteristics, the DC_count is set to one. As for
the rack, the user should define its resources, HA attributes,
and the parent DC. Similarly, the shelves and servers are
defined in the GMF or JSON template.

The VMs represent the mapping between the cloud infras-
tructure and the cloud applications. Since the scenario’s objec-
tive is “scheduling”, the VM’s hosting server and the hosted
component are set to “Null” as they are determined auto-
matically after the execution of the application’s placement
algorithm.

As for the redundancy model, GITS support different mod-
els, such as active-active, active-standby, or active-spare. In
this case, an active-active redundancy model is used. It is
necessary to note that upon failure of a component, its work-
load’s failover time is determined by the redundancy model.
For example, if the redundancy model is active/standby, the
failover time is the summation of the fetch state delay, parsing
state delay, recuperation duration, execution time, and the ter-
mination duration. As for the dependency relation, it is defined
by a delay tolerance (acceptable delay between these types)
and a tolerance time (time that a dependent can tolerate upon
the outage of its sponsor).

Since a 3-tier Web application is being modeled, the HTTPS
depends on the App server and thus it has the DependsON

TABLE II
COMPUTING METRICS

property set as “App” and the DepParam is set according to the
corresponding delay tolerance and tolerance time. Similarly,
the App type is populated. As for the DB type, it does not
have sponsors and thus its DependsON and DepParam are
set to “Null”. As for the redundancy model, it is defined
using the RedundancyModel, CompType_instances, names,
and RedParam. Each component has an SLA to be defined.
The SLA is associated with the average request arrival rate,
allowed outage time, and other HA and scheduling metrics.

B. ACE Configuration

Once the input is defined, the user should determine if
the requests are fixed or dynamically generated during the
simulation. For this purpose, the user can define the num-
ber of requests (Arrival Rate (AR)) arriving simultaneously at
the active nodes. The user should also define the Simulation
Duration (SD) to run certain scenario. The results are evalu-
ated on a network of 3 DCs, 6 racks, and 70 servers. The
MTTF of the cloud nodes is generated using an exponen-
tial distribution, and MTTR time is generated using truncated
normal distribution [45], [46]. Different HA metrics are avail-
able online [47]–[49]. Table I and Table II show the different
configuration metrics of the cloud scenario [50], [51].

To capture the intercommunication relations between appli-
cations’ components (VMs), ACE is evaluated on a real-time
3-tier Web application. The redundancy model of this appli-
cation is active/active where the number of active components
is changed during the simulation to capture their impact.

It is necessary to note that given the same configuration of
the cloud infrastructure and applications, the confidence level
of the evaluation results of ACE exceeds 95%. In other words,
ACE shows the same performance and generates consistent
results using the same cloud settings (scenarios and attributes).

C. Results

In this section, ACE is evaluated to measure the following.
1) Redundancy Impact on Request States: The number of

applications’ components per type is changed to measure the
impact of redundancy model on the number of served requests,
their response, and waiting times. Different redundancy mod-
els are defined where 2-RED means that an application’s
component type has 2 active redundant components (i.e., an
HTTP component type with 2-RED means it has 2 active
redundant components HTTP1 and HTTP2), 3-RED means
that an application’s component type has 3 active components
(i.e., an DB component type with 3-RED means it has 3 active
redundant components DB1, DB2, and DB3), and 4-RED
means that an application’s component type has 4 active redun-
dant components (i.e., an DB component type with 4-RED

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

JAMMAL et al.: ACE 1595

Fig. 9. Impact of redundancy models on the number of the served requests for automatic request generation.

Fig. 10. Impact of the redundancy models on the request’s response and waiting times.

means it has 4 active redundant components DB1, DB2, DB3,
and DB4). The request states are evaluated under different SD
and AR where SD = x TU (x is simulation time measured
in Time Unit (TU)) and AR = X req/time (X request arrives
at each active node). Fig. 9 shows the impact of the redun-
dancy model on the number of served requests for different
SD and AR. It is noticeable that the number of served requests
increases as the number of components increases. For exam-
ple, the system can serve 37 requests for 2-RED while 4-RED
allows the serving of 77 requests under same SD = 100 TU
and AR = 10 req/time. Changing the SD allows serving more
requests, which increase from 77 to 99,978 for 4-RED.

To measure the impact of the redundancy model on the
request response and waiting times upon failure, we define

AR = 10req/time for SD = 102TU while requests are dynam-
ically generated as long as a healthy active component(s) are
available. In Fig. 10, the total average response and wait-
ing times of the requests are measured. Although a failure is
injected to the system, the response and waiting times do not
exceed the allowed response and waiting times (500 and 200
milliseconds (ms) respectively) [52]. It is noticeable that the
response and waiting times decrease with the increase in the
number of components per type. In this case and upon a fail-
ure, the requests failover, and the load balancer distributes the
requests of a faulty node to its redundant. When the number
of components per type increases, a wider request redistri-
bution space is available, and consequently, its response and
waiting times decrease. Fig. 10 shows these measures. The

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

1596 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

Fig. 11. Impact of the number of failure injections on the request number
for different redundancy models.

average response and waiting times for the requests of the
faulty node(s) represent those times during the outage states.
Although these measures decrease as more components are
added to a type, the requests’ response and waiting times
during the outage period might violate the acceptable times
(response of 500 ms and waiting of 200 (ms)).

2) Failure Injection Impact on Request States: The number
of failure injection per component type is changed to measure
the impact of failures on the number of served requests, their
response, and waiting times. The requests are evaluated under
SD = 104TU and AR = 100req/time. Fig. 11 shows the
impact of failure injection on the number of served requests.
As more failures are injected per type, the number of served
requests drops from 9,978 to 7,959 for 4-RED. Although a
recovery solution is executed upon failure, the number of
requests decreases in case of a faulty system because the
requests’ response and waiting times increase.

To measure the impact of the failure injection on the request
response and waiting times, we define AR = 10req/time for
SD = 102TU for 2-RED while requests are dynamically gen-
erated as long as a healthy active component(s) are available.
In Fig. 12, the total average response and waiting times of the
requests are measured. It is noticeable that the response and
waiting times increase with the increase in the failure injec-
tions per type. For example, the response and waiting times
for one failure injection/type are 499.77 and 199.64 ms respec-
tively, which increase to 499.82 and 199.97 ms respectively
for 3 failures/type. The numbers do not violate the allowed
ones (response of 500 ms and waiting of 200 (ms)) [52]. In
this case and upon failures, the load balancer redistributes the
requests. When multiple failures are injected, the number of
waiting requests for each node increases and consequently,
causes an increase in the response and waiting times. Scaling
up the system can be a solution as shown above. Fig. 12 shows
these measures. For the 2-RED scenario under study, the aver-
age response and waiting times of the requests of faulty nodes
increase from 703.66 and 309.12 to 725.49 and 362.23 ms
respectively and thus violate the SLA.

3) Availability of Deployed Components: The HA-aware
placement algorithm is executed to place the components
on the servers while maximizing their availability, which is
measured using (1). Fig. 13 shows the availability of the
components of the three-tier Web application where each tier
consists of 3 components/type. The availability of different

components ranges between three to four nines of availabil-
ity. The proposed algorithm prioritizes the component types to
ensure that mission-critical applications are given the priority
to be allocated first [39]. This allocation results in the change
of the availability nines where high-priority components are
placed on the servers that guarantee the highest HA.

4) ACE Scalability: In order to evaluate the ability of ACE
to model a real-cloud scenario, we use the Google public
dataset on workload traces [53]. These traces are taken from a
Borg cell over a period of 7 hours. The data has a set of tasks
where each is characterized by its consumed memory and CPU
cores. Each task is associated with its parent; in this case, we
assume the parent is the component type of an application. A
parent (or component type) can have multiple tasks (requests).
It is necessary to note that the dataset has been anonymized
where the tasks have a numeric IDs instead of names and
the CPU/memory requirements are determined using a linear
transformation. The data consists of the following:

• Time (integer) - time (seconds) since the start of data
collection

• parentID (integer) - unique ID of the job
• TaskID (integer) - unique ID of the task
• Type (0, 1, 2, 3) - class of job
• Normalized Task Cores (float) - normalized value of the

average number of cores
• Normalized Task Memory (float) - normalized value of

the average memory
Since a 3-tier Web application is used in our case, we

assume that there are three job types (HTTPS, DB, and App).
Generally, Amazon’s DCs host 50,000 to 80,000

servers [54] and Google’s DC hosts ∼70,000 servers [55].
However, due to the time complexity and limited compu-
tational resources, the Google workload traces are tested
on 2-RED model and a network of 3 DCs, 6 racks, and
70 servers.

Different simulations are performed to measure the number
of requests ACE can process during different SDs given this
scenario. These simulations are executed on 2-RED model.
Fig. 14 shows the scalability of ACE. For 2-RED case, ACE
can process 42 requests for SD = 100TU to reach ∼four mil-
lion requests for SD = 107TU . With these experiments, it is
noticeable that ACE can model and simulate multiple cloud
scenarios where thousands of requests are processed.

Although ACE can simulate a high number of requests,
the time for simulating such cases on a limited resources
environment can be a hiccup. The simulation time increases
with the increase in the SD and the number of served
requests. For SD = [100 − 107TU], the 2-RED time reaches
∼7,348,255 ms.

D. Discussion on ACE Fault-Tolerant Approaches

This section describes how ACE can be used to support
different fault-tolerant approaches.

Reactive fault-tolerance approach: ACE supports different
redundancy models as a reactive fault-tolerant policy. Using
ACE, the user can define any type of redundancy model
(active/active, active/standby,...) to reduce the failures’ impact

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

JAMMAL et al.: ACE 1597

Fig. 12. Impact of the number of failure injections on the request’s response and waiting times.

Fig. 13. Availability of each deployed component.

Fig. 14. ACE scalability: Number of request processed using ACE for 2-RED
model.

on the execution of the application instances. The reactive
fault-tolerant approach can be extended to include elasticity
approach where the redundant instances can be scaled up or
down based on the examined performance-aware objective.

Fig. 15. ACE time complexity for 2-RED model.

Proactive fault-tolerant approach: ACE implements a load
balancing approach as a proactive fault-tolerant model. The
workload is distributed among the redundant instances of cer-
tain component type to minimize the faults’ recovery and
failures. It is necessary to note that a migration approach
can be easily implemented in ACE as another proactive
fault-tolerant approach.

Adaptive fault-tolerant approach: At this stage, ACE
implements an HA-aware placement solution as an adaptive
fault-tolerant approach. The placement solution selects the
best deployments of the application’s components depend-
ing on their current state and other functional (computational
resources, delay..) and non-functional (availability; i.e., redun-
dancy, interdependency...) constraints. The redundancy model
type is one of the input data of ACE; therefore, this approach
can be easily extended to an algorithm that runs in paral-
lel with the simulation, monitor the application’s components’

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

1598 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

states and (de)allocate redundant instances according to the
criticality and other performance requirements.

VI. CONCLUSION

Providing a resilient cloud is imperative to underpin enter-
prises availability and performance requirements. It is of great
importance to design an approach that does not only pro-
vide HA-aware placements of applications but also assess the
cloud elasticity and provide the necessary HA-based lessons
to improve the services’ availability. Simulation tools are one
of the best ways to model the cloud and simulate it in terms
of multiple QoS objectives. With this in mind, we extended
CloudSim simulator with ACE to include HA properties in
a sense that failures can be injected and recovered from. To
that end, we proposed a JSON template, GITS, to generate
cloud scenarios while keeping the development complexities
behind the scene. GITS does not only model the cloud, but
it captures different HA properties. ACE implements these
properties in CloudSim. Once the simulation starts, ACE gen-
erates HA-aware placements of different cloud applications
and builds the application functional chain to capture depen-
dency and redundancy. It also injects failures, provides failover
using redundancy models, and repairs the faulty nodes. Also, it
provides a load balancing algorithm to distribute the dynamic
and static requests. In the future work, ACE will be extended
to include elasticity features where scaling up and down will
be implemented to overcome failures and meet performance
requirements.

REFERENCES

[1] TechRepublic. (Jan. 31, 2017). The State of IaaS: Growing
as Cloud Adoption Continues. Accessed: Feb. 15, 2017.
[Online]. Available: http://www.techrepublic.com/article/the-sta
te-of-iaas-growing-as-cloud-adoption-continues/?ftag=TRE9ae7a1a&bh
id=25335435715452818046449410599561

[2] Chargify. (Feb. 7, 2017). The Future is XaaS: What You Need to
Know About Everything-as-a-Service. Accessed: Feb. 19, 2017. [Online].
Available: https://www.chargify.com/blog/xaas-everything-as-a-service/

[3] L. Wang, R. Ranjan, J. Chen, and B. Benatallah, Cloud
Computing, Methodology, Systems, and Applications. Boca
Raton, FL, USA: CRC Press, Oct. 2011. [Online]. Available:
http://www.infosys.tuwien.ac.at/Staff/sd/papers/Buchbeitrag%20V.%20E
meakaroha.pdf

[4] WHIR Hosting Cloud. GitLab’s Not Alone: AWS, Google,
and Other Clouds Can Lose Data, Too. Accessed: Feb. 15,
2017. [Online]. Available: http://www.thewhir.com/web-hosting-
news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-
too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed
%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+
Features%2C+Blogs+and+more%29

[5] ZDNet. Dropbox Sync Glitch Results in Lost Data for Some
Subscribers. Accessed: Oct. 13, 2017. [Online]. Available:
http://www.zdnet.com/article/dropbox-sync-glitch-results-in-lost-data-
for-some-subscribers/

[6] InformationWeek. (May 14, 2014.) Social Science Site Using
Azure Loses Data. Accessed: Dec. 9, 2016. [Online]. Available:
http://www.informationweek.com/cloud/cloud-storage/social-science-
site-using-azure-loses-data/d/d-id/1252716

[7] Computer World. (Aug. 20, 2015). OOPS: Google ‘Loses’ Your Cloud
Data (Sky Falling; Film at 11). Accessed: Dec. 9, 2016. [Online].
Available: http://www.computerworld.com/article/2973600/cloud-
computing/google-cloud-loses-data-belgium-itbwcw.html

[8] BusinessInsider. (Apr. 28, 2011). Amazon’s Cloud Crash Disaster
Permanently Destroyed Many Customers’ Data. Accessed: Jan. 11,
2017. [Online]. Available: http://www.businessinsider.com/amazon-lost-
data-2011-4

[9] H. Hawilo, A. Kanso, and A. Shami, “Towards an elasticity framework
for legacy highly available applications in the cloud,” in Proc. IEEE
World Congr. Services (SERVICES), Jul. 2015, pp. 253–260.

[10] S. Ayoubi, Y. Zhang, and C. Assi, “A reliable embedding framework
for elastic virtualized services in the cloud,” IEEE Trans. Netw. Service
Manag., vol. 13, no. 3, pp. 489–503, Sep. 2016.

[11] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: State of the
art, challenges, and implementation in next generation mobile networks
(vEPC),” IEEE Netw., vol. 28, no. 6, pp. 18–26, Dec. 2014.

[12] S. Ayoubi, Y. Chen, and C. Assi, “Towards promoting backup-sharing
in survivable virtual network design,” IEEE/ACM Trans. Netw., vol. 24,
no. 5, pp. 3218–3231, Oct. 2016.

[13] M. Toeroe and F. Tam, Service Availability: Principles and
Practice. Hoboken, NJ, USA: Wiley, May 2012. [Online]. Available:
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1119954088.html

[14] A. Boteanu and C. Dobre, “A simulation model for fault tolerance
evaluation,” Sci. Bull., vol. 73, no. 1, pp. 13–26, 2011.

[15] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: A
CloudSim-based visual modeller for analysing cloud computing environ-
ments and applications,” in Proc. 24th IEEE Int. Conf. Adv. Inf. Netw.
Appl., 2010, pp. 446–452.

[16] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. U. Khan, “GreenCloud:
A packet-level simulator of energy-aware cloud computing data centers,”
in Proc. IEEE Glob. Telecommun. Conf. (GLOBECOM), 2010, pp. 1–5.

[17] S. K. S. Gupta et al., “GDCSim: A tool for analyzing Green Data
Center design and resource management techniques,” in Proc. Int. Green
Comput. Conf. Workshops, 2011, pp. 1–8.

[18] A. Zhou, S. Wang, Q. Sun, H. Zou, and F. Yang, “FTCloudSim: A
simulation tool for cloud service reliability enhancement mechanisms,”
in Proc. Middleware Posters Demos Track, Dec. 2013, p. 2.

[19] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “DCSim: A data centre
simulation tool for evaluating dynamic virtualized resource manage-
ment,” in Proc. 8th Int. Conf. Netw. Service Manag. (CNSM) Workshop
Syst. Virtual. Manag., 2012, pp. 385–392.

[20] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,
“GroudSim: An event-based simulation framework for computational
grids and clouds,” in Proc. Euro Par Parallel Process. Workshops,
Aug. 2010, pp. 305–313.

[21] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya,
“CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Softw.
Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011.

[22] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya,
“CloudSim: A novel framework for modeling and simulation of cloud
computing infrastructure and services,” GRIDS Lab., Univ. Melbourne,
Melbourne, VIC, Australia, Rep. GRIDS-TR-2009-1, 2009.

[23] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simu-
lation of scalable cloud computing environments and the CloudSim
toolkit: Challenges and opportunities,” in Proc. Int. Conf. High Perform.
Comput. Simulat., 2009, pp. 1–11.

[24] W. Zhao, Y. Peng, F. Xie, and Z. Dai, “Modeling and simulation of
cloud computing: A review,” in Proc. IEEE Asia–Pac. Cloud Comput.
Congr., 2012, pp. 20–24.

[25] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “Availability analysis
of cloud deployed applications,” in Proc. IEEE Int. Conf. Cloud Eng.
(IC2E), Apr. 2016, pp. 234–235.

[26] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “A formal model for
the availability analysis of cloud deployed multi-tiered applications,” in
Proc. 3rd IEEE Int. Symp. Softw. Defined Syst., Apr. 2016, pp. 82–87.

[27] M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “Mitigating the risk
of cloud services downtime using live migration and high availability-
aware placement,” in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci.
(CloudCom), Dec. 2016, pp. 578–583.

[28] E. Bauer and R. Adams, Reliability and Availability of Cloud Computing.
Piscataway Township, NJ, USA: Wiley, 2012. [Online]. Available:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118393994

[29] K. Bilal et al., “Fault tolerance in the cloud,” in Encyclopedia of Cloud
Computing. Chichester, U.K.: Wiley, May 2016. [Online]. Available:
http://sameekhan.org/pub/B_K_2015_BC_MB.pdf

[30] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan,
“Leveraging virtualization to optimize high-availability system configu-
rations,” IBM Syst. J., vol. 47, no. 4, pp. 591–604, 2008.

[31] A. Agbaria and R. Friedman, Overcoming Byzantine
Failures Using Checkpointing, Univ. Illinois at Urbana–
Champaign, Champaign, IL, USA, 2003. [Online]. Available:
https://www.perform.illinois.edu/Papers/USAN_papers/03AGB02.pdf

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

JAMMAL et al.: ACE 1599

[32] I. Koren and C. M. Krishna, Fault Tolerant Systems, Elsevier,
Amsterdam, The Netherlands, 2007. [Online]. Available: ftp://doc.nit.ac.
ir/cee/y.baleghi/Fault-Tolerant/Books/fault-tolerant-systems.pdf

[33] H. A. Alameddine, S. Sebbah, and C. Assi, “On the interplay between
network function mapping and scheduling in VNF based networks:
A column generation approach,” IEEE Trans. Netw. Service Manag.,
vol. 14, no. 4, pp. 860–874, Dec. 2017.

[34] M. Khabbaz, K. Shaban, and C. Assi, “Delay-aware flow scheduling in
low latency enterprise datacenter networks: Modeling and performance
analysis,” IEEE Trans. Commun., vol. 65, no. 5, pp. 2078–2090,
May 2017.

[35] S. Ayoubi, S. Sebbah, and C. Assi, “A Cut-and-solve based approach
for the VNF assignment problem,” IEEE Trans. Cloud Comput., to be
published.

[36] J. Weinberg. (2005). Job Scheduling on Parallel Systems.
[Online]. Available: http://cseweb.ucsd.edu/∼j1weinberg/papers/
weinberg06researchExam.pdf

[37] K. Jeffery and B. Neidecker-Lutz, “The future of cloud com-
puting opportunities for European cloud computing beyond
2010,” Eur. Commission Inf. Soc. Media, Rep., 2012. [Online].
Available: http://cordis.europa.eu/fp7/ict/ssai/docs/executivesummary-
forweb_en.pdf

[38] A. E. Elsanhouri, M. A. Ahmed, and A. H. Abdullah, “Cloud appli-
cations versus Web applications: A differential study,” in Proc. 1st Int.
Conf. Commun. Comput. Netw. Technol., 2012, pp. 31–36.

[39] M. Jammal, A. Kanso, and A. Shami, “CHASE: Component high avail-
ability scheduler in cloud computing environment,” in Proc. IEEE Int.
Conf. Cloud Comput. (CLOUD), 2015, pp. 477–484.

[40] Reliability HotWire. (2017). Basic Concepts of FMEA
and FMECA. Accessed: May 1, 2017. [Online]. Available:
http://www.weibull.com/hotwire/issue46/relbasics46.htm

[41] KEMP Application Delivery. (2018). Load Balancing
Algorithms. Accessed: May 22, 2018. [Online]. Available:
https://kemptechnologies.com/load-balancer/load-balancing-algorithms-
techniques/

[42] Amazon Web Services. (Sep. 2010). AWS Template Format. Accessed:
Mar. 2016. [Online]. Available: https://s3-us-west-2.amazonaws.com/
cloudformation-templates-us-west-2/AutoScalingMultiAZWithNotificat
ions.template

[43] M. Jammal, A. Kanso, and A. Shami, “High availability-aware
optimization digest for applications deployment in cloud,” in Proc. IEEE
Int. Conf. Commun. (ICC), Jun. 2015, pp. 6822–6828.

[44] T table. (2007). t-Table. Accessed: Dec. 2016. [Online]. Available:
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

[45] Reliability HotWire. (Sep. 2007). Availability and the Different
Ways to Calculate It. Accessed: Sep. 20, 2016. [Online]. Available:
http://www.weibull.com/hotwire/issue79/relbasics79.htm

[46] EventHelix. (2014). System Reliability and Availability. Accessed:
Sep. 20, 2016. [Online]. Available: http://www.eventhelix.com/Real
timeMantra/FaultHandling/system_reliability_availability.htm#.WKz9jV
UrKUk

[47] C. Cerin et al. (Jun. 2013). Downtime Statistics of Current
Cloud Solutions. [Online]. Available: http://iwgcr.org/wp-
content/uploads/2013/06/IWGCR-Paris.Ranking-003.2-en.pdf

[48] The Availability Digest. (Jan. 2015). Comparing Clouds With
CloudHarmony. Accessed: Sep. 20, 2016. [Online]. Available:
http://www.availabilitydigest.com/public_articles/1001/cloud_compariso
ns.pdf

[49] CloudHarmony. (2017). CloudSquare Service Status. Accessed: Feb. 13,
2017. [Online]. Available: https://cloudharmony.com/status-1year

[50] P. Garraghan, P. Townend, and J. Xu, “An empirical failure-analysis of
a large-scale cloud computing environment,” in Proc. IEEE 15th Int.
Symp. High Assurance Syst. Eng., 2014, pp. 113–120.

[51] C. Jaiswal. DBHAaaS—Database High Availability as a
Service for Cloud Computing, Univ. Missouri, Columbia, MO,
USA, 2016. [Online]. Available: https://mospace.umsystem.edu/
xmlui/bitstream/handle/10355/50815/Dissertation_2016_Jaiswal.pdf?
sequence=1&isAllowed=y

[52] InfoQ. (Nov. 2015). Real-time Data Processing in AWS Cloud. Accessed:
Jan. 20, 2017. [Online]. Available: https://www.infoq.com/articles/real-
time-data-processing-in-aws-cloud

[53] Cluster-Data. (Aug. 2015). Google Cluster Data, Trace
Version 1. Accessed: Jun. 12, 2018. [Online]. Available:
https://github.com/google/cluster-data/blob/master/TraceVersion1.md

[54] R. Miller. (Sep. 2015). Inside Amazon’s Cloud Computing
Infrastructure. Accessed: May 24, 2018. [Online]. Available:
https://datacenterfrontier.com/inside-amazon-cloud-computing-
infrastructure/

[55] DataCenter Knowledge. (Aug. 2011). Report: Google Uses About
900,000 Servers. Accessed: Jul. 11, 2018. [Online]. Available:
http://www.datacenterknowledge.com/archives/2011/08/01/report-
google-uses-about-900000-servers

Manar Jammal received the B.Sc. degree in
electrical and computer engineering from Lebanese
University, Beirut, Lebanon, in 2011, the M.E.Sc.
degree in electrical and electronics engineering from
the Ecole Doctorale des Sciences et de Technologie,
Beirut, and the University of Technology of
Compiègne, France, in 2012, and the Ph.D. degree
in High Availability of Cloud Applications from
Western University, London, ON, Canada, in 2017,
where she is a Post-Doctoral Associate. Her research
interests include cloud computing, virtualization,

high availability, cloud simulators, machine learning, software defined
network, and virtual machine migrations. She is the Chair of IEEE Canada
Women in Engineering and the Past Chair of IEEE Women in Engineering,
London, ON, Canada.

Hassan Hawilo received the B.E. degree in com-
munication and electronics engineering from Beirut
Arab University, Lebanon, in 2012 and the M.E.Sc.
degree in computer and software engineering from
Western University, Canada, in 2015, where he is
currently pursuing the Ph.D. degree in computer
networks and cloud computing virtualization tech-
nologies. His research interests include cloud com-
puting, virtualization technologies, software defined
network, network function virtualization, distributed
systems, and highly available software. He is the

Vice Chair of IEEE London Computer Society, London, ON, Canada.

Ali Kanso received the master’s and Ph.D.
degrees in electrical and computer engineering from
Concordia University, Montreal, Canada, in 2008
and 2012, respectively. He is a Senior Cloud
Software Engineer with IBM T. J. Watson Research
Center working on the IBM next generation con-
tainer Cloud. He is also an Adjunct Research
Professor with Western University. He holds to his
credit over 50 publications including 12 patents
granted and several pending. He was a Senior
Researcher with Ericsson research Cloud technolo-

gies. He has over a decade of industrial research experience where his research
interests are focused on distributed systems and lightweight virtualization in
cloud computing environments.

Abdallah Shami (SM’09) received the B.E.
degree in electrical and computer engineering from
Lebanese University, Beirut, Lebanon, in 1997 and
the Ph.D. degree in electrical engineering from
the Graduate School and University Center, City
University of New York, New York, in 2002.
In 2002, he joined the Department of Electrical
Engineering, Lakehead University, Thunder Bay,
ON, Canada, as an Assistant Professor. Since 2004,
he has been with Western University, Canada, where
he is currently a Professor with the Department of

Electrical and Computer Engineering. His current research interests are in
the area of network optimization, cloud computing, and wireless networks.
He is an Editor of IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

and has served on the editorial board of IEEE COMMUNICATIONS LETTERS

from 2008 to 2013. He has chaired key symposia for IEEE GLOBECOM,
IEEE ICC, IEEE ICNC, and ICCIT. He is an IEEE Distinguished Lecturer
and is the Elected Chair of the IEEE London Section and the Chair of IEEE
Communications Society.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 13,2021 at 14:09:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

