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In a heterogeneous Cloud network scenario where a Cloud computing data center serves mobile Cloud 
computing requests, Cloud providers are expected to implement more innovative and effective solutions 
for a list of long standing challenges. Energy efficiency in the Cloud data center is one of the more 
pressing issues near the top of that list. Cloud providers are in constant pursuit of a system that satisfies 
client demands for resources, maximizes availability and other service level agreement metrics while 
minimizing energy consumption and, in turn, minimizing Cloud providers’ cost.
In this work, we introduce a novel mathematical optimization model to solve the problem of energy 
efficiency in a cloud data center. Next, we offer a solution based on VM migration that tackles this 
problem and minimizes energy efficiency in comparison to other common solutions. This solution 
includes a novel proposed technique to be integrated in any consolidation-based energy efficiency 
solution. This technique depends on dynamic idleness prediction (DIP) using machine learning classifiers. 
Moreover, we offer a robust energy efficiency scheduling solution that does not depend on live migration. 
This technique, termed Smart VM Over Provision (SVOP), offers a major advantage to cloud providers in 
the cases when live migration of VMs is not preferred due to its effects on performance. We evaluate 
the aforementioned solutions in terms of a number of critical metrics, namely, energy used per server, 
energy used per served request, acceptance rate, and the number of migrations performed.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Cloud providers are in continuing pursuit of solutions to adapt 
to the surge in cloud technology demand levels. The percentage 
of Internet of Things devices is gradually increasing on the cloud 
client side. This means cloud providers need to cater for requests 
from client devices from heterogeneous distributed and more di-
verse than ever. In a heterogeneous cloud network scenario where 
cloud computing data center serves mobile cloud computing re-
quests, major challenges with veracity are suffered [1]. The sheer 
volume of the connected devices along with the connection speed 
and user expectations for response from the server put a stress 
both on the network and on back end cloud data center to per-
form up to the required level [2].

Simultaneously, cloud providers are under a lot of pressure to 
manage costs in a way that the performance demands does not 
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cause unrealistic operational cost which could comprise the busi-
ness objectives [3]. The aim here for a cloud provider is to serve 
the high volume of requests which are received continuously from 
a diverse set of constantly changing (and moving) devices [4]. As il-
lustrated in Fig. 1, this is done by successfully receiving the request 
data from client device and then scheduling these requests to the 
corresponding virtual machine in the cloud data center based on 
the functionality or application required. From there, the computa-
tional part is done and then the results are sent back to the client. 
A major challenge in this scenario is how to serve these requests 
with the required performance while minimizing the energy the 
cloud data center uses.

To tackle this challenge, cloud providers are expected to im-
plement more innovative and effective solutions for a list of long 
standing challenges faced by the industry. Energy efficiency in the 
cloud data center (DC) is one of the more pressing issues near the 
top of that list [1–3,5–7]. As DCs expand, so does their energy con-
sumption. Electricity used by servers doubled between 2000 and 
2005, from 12 to 23 billion kilowatt hours [8]. This is not only due 
to the increasing amount of servers per DC, but also the individ-
ual server consumption of energy has increased too. The increase 
in energy consumption is a major concern to the data center own-

http://dx.doi.org/10.1016/j.vehcom.2017.02.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/vehcom
mailto:mabusha@uwo.ca
mailto:ashami2@uwo.ca
http://dx.doi.org/10.1016/j.vehcom.2017.02.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vehcom.2017.02.004&domain=pdf


200 M. Abu Sharkh, A. Shami / Vehicular Communications 9 (2017) 199–210
Fig. 1. Heterogeneous IoT clients sending diverse computational requests to the pub-
lic cloud.

ers because of its effect on the operational cost. It is also a major 
concern for governments because of the increase in data centers’ 
carbon footprint [9].

Cloud technology adoption rates are another factor to look out 
for. 78% of U.S. small businesses will have fully adopted cloud com-
puting by 2020, more than doubling the current 37% [10]. The 
percentage grows to 90% when looking at large businesses (larger 
than 1000 employees) [11]. The U.S. Small and Medium Business 
(SMB) cloud computing and services market will grow from 43 bil-
lion dollars in 2015 to 55 billion dollars in 2016 [10]. This trend is 
consistent in Europe as well. The percentages of small, medium 
and large businesses adopting cloud technologies in UK are 46, 
63 and 82% respectively. In Germany, the percentages are 50, 65 
and 86%.

Client demand growth shows promising potential as well. In a 
survey conducted by the rightscale.com team, 68% of enterprises 
indicated they run less than a fifth of their application portfolios 
in the cloud. 55% of enterprises report that a significant portion 
of their existing application portfolios are not in cloud, but are 
built with cloud-friendly architectures [12]. This is used to serve 
major functions like data protection (backup), business continuity 
(replication, disaster recovery), archiving and file services and of-
fice enablement (sharing, synchronization, collaboration).

Power consumption in cloud data centers is a pressing issue 
for cloud providers. Power costs represent between 25% and 40% 
of the operational expenses of a data center [13]. The Natural Re-
sources Defense Council (NDRC) published a data center efficiency 
assessment in Aug. 2014, as an attempt to depict the scale of data 
centers around the world [9]. The study mentions that “U.S. data 
centers are on track to consume roughly 140 billion kilowatt-hours 
of electricity annually by 2020, equivalent to the output of 50 large 
power plants (each with 500 megawatts capacity)” [9]. Another 
fact here is their assessment of energy efficiency. “An analysis by 
the NRDC in partnership with Anthesis finds that up to 30% of 
servers are obsolete or not needed and no longer needed, other 
machines are grossly underutilized” [9]. Persistent issues obscur-
ing efficiency include:

• Peak provisioning.
• Limited deployment of virtualization technology.
• Failure to power down unused servers,
• Challenges with efficiency incentive programs.
• Competing priorities: (keeping costs low and maintaining high 

levels of security, reliability, and uptime for their clients.)
These are 5 out of the 8 main factors cited that affect power 
efficiency and stand in the way of a staggering 40% potential im-
provement in power consumption (with the other 3 being: chal-
lenges with efficiency incentive programs, short sighted procure-
ment practices, and split incentives between the parties paying the 
power bills and those managing the IT equipment). These 5 factors 
are all largely affected by data center load planning and manage-
ment. An efficient scheduling energy – aware algorithm is in need. 
This algorithm should exploit the benefits that come from virtu-
alization technologies, optimal demand driven provisioning, and 
efficient load modeling.

In this work, we explore the possible venues to reach this ro-
bust energy efficiency solution for cloud environments.

Upon reviewing the available solutions as can be seen in detail 
in the following section, a need arises for a more complete solution 
for energy efficiency in cloud data centers. Each one of the solu-
tions surveyed – summarized in Tables 1 and 2 – despite covering 
a significant flavor of the problem, does not offer a comprehensive 
vision. A mathematical model would be crucial to provide the the-
oretical base for the solution. To achieve an outstanding solution 
for such a layered problem, we offer the following contributions:

1 – We first formulate the problem as mathematical optimiza-
tion problem with the objective of minimizing the energy con-
sumption.

2 – A new technique called Dynamic Idleness Prediction (DIP) 
is introduced where the future demands for VMs are considered 
when placing/scheduling the VM on a host. This technique is based 
on using an artificial intelligence classifier (in our case REPtree) 
to predict the nature of the load every VM will receive in a pre-
specified future period. A novel scheduling/placement technique 
was constructed by combining DIP and the resource based schedul-
ing technique we introduced in an earlier publication [14]. In this 
technique, DIP dictates VM initial placement and VM migration 
in order to reach more efficient consolidation-based energy effi-
ciency as opposed to traditional methods like first fit, round robin 
or greedy methods.

3 – We introduce a novel technique for energy efficient VM 
management that does not depend on Migration. The technique is 
called Smart VM Overprovision (SVOP). This technique depends on 
the DIP technique described earlier to dictate the overprovision of 
VMs by choosing the mostly idle VMS to be switched off and in 
turn minimize lost requests.

4 – We use a data set published by of Google (data center traces 
[15]) to evaluate the two proposed methods. The performance of 
these methods is compared to common scheduling algorithms in 
terms of critical energy efficiency metrics including: energy used 
per server, energy used per served request, service rate, and num-
ber of migrations performed.

The remaining sections are divided as follows. The related work 
is visited in Section 2. Section 3 presents the system model. The 
mathematical formulation for the energy efficiency problem in 
virtualized cloud data centers is presented in Section 4. In Sec-
tion 5, a consolidation-based energy efficiency solution is proposed 
and details are put forward. Section 6 presents our novel non-
consolidation-based energy efficiency solution: Smart VM Over 
Provision (SVOP). The experimental setup is described in Section 7
followed by analysis of the experimental results. Section 8 con-
cludes the paper.

2. Related work

2.1. Server consolidation

Classic solutions to the energy efficiency problem in the cloud – 
if we disregard cooling processes – stem primarily from two ideas: 
consolidating loads on fewer servers (hosts) or using variations of 
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Table 1
A comparison of energy efficiency virtualization based efforts in cloud environments – Part 1.

Technique Offer 
Optimization 
model

Scheduling considers 
network & 
computational 
resources

VM modeling Application layer Network model

[16] No No CPU and storage 
requirements

No No

[17] No No MIPs,ram,BW, VMs can be 
resized

No BW

[18] Not full No VM host applications of 
different types and up to 
one replica per VM

Yes No

[19] Yes No CPU & memory 
requirements (replicas of a 
VM share CPU), 1 client per 
VM

Yes No

[20] Yes Yes Fixed scheduling, no 
migration

No Full

[21] No No N/A N/A N/A

[22] No No CPU, storage, memory, 
BW,communication 
demands

Tasks request 
Comp+ network 
resource

BW +fixed source 
and destination 
network

This solution Yes Yes Detailed resources: User & 
workload profile

Yes BW

Table 2
A comparison of energy efficiency virtualization based efforts in cloud environments – Part 2.

Computational 
resources

Live migration (major method 
used)

Guaranteed 
reservation

Centralized/ 
decentralized

Scheduling algorithm

CPU (numerical) & 
storage Counting 
by usage not 
absolute

No migration, Best allocation at 
a desired utilization level vs. 
degradation considered

Yes C Bin packing modified +
maximize euclidean distance

CPU (multi-core) ram Live migration according to 
current utilization of resources

SLA violation D Multi-dimensional bin packing

CPU Yes (for replicas of Apps and for 
VMS)

Adaptable (affects 
performance)

C Multi-layer Bin packing, Looking 
for to satisfy power-performance 
while minimizing the number of 
hosts

CPU & memory No migration, Dynamic 
programming

Yes C Dynamic algorithm to place VMs 
and local search to check servers 
to be consolidated

No No Yes C Focused on traffic engineering 
(network optimization in the 
cloud)

CPU No N/A C No scheduling algorithm, CPU 
idle intervals dynamically 
predicted

CPU, Mem, storage Enabled enabling DVFS using
multiple power models

Yes C Green-scheduling and round 
robin scheduling

CPU, Memory, 
storage, user 
defined resources

Migrated VM chosen via VM 
idleness estimator

Yes C or D First fit scheduling + Dynamics 
prediction
dynamic voltage and frequency scaling (DVFS). The latter includes 
algorithms that exploit dynamic power management in servers. 
Server computational power/speed can be toned down and thus 
energy consumption decreases. Server consolidation can be seen 
in early papers like [16]. The algorithm proposed in [16] executes 
the consolidation of different applications on cloud computing data 
center servers. The idea is to consolidate VMs on the least amount 
of servers and then switch the unused servers off or to an idle 
state. That problem is modeled as a bin-packing problem with the 
assumption that the servers are the bins and they are full when 
their resources reach a predefined optimal utilization level. This 
utilization level is calculated and set beforehand. The optimal uti-
lization is a level where the a balance is reached between the 
resource utilization and performance degradation caused by pres-
suring the resources. The issues faced by over utilization are cache 
contentions, conflicts of CPU functional units, desk scheduling and 
desk write buffer issues and that is only from the computational 
side of things.
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The final objective is to minimize energy consumption per 
transaction. Resources used are processor and disk space. The 
heuristic algorithm is then used to allocate workloads to servers 
or bins. This heuristic tries to maximize the Euclidean distance 
between the current allocations of the servers and the optimal uti-
lization point of each server. There were no comparisons to the 
optimal solution. Also, power consumption by network compo-
nents is not considered. Another issue here is that it is debatable 
whether finding an optimal point for each server is only based on 
utilization without considering other factors like the type of the 
application.

Another approach can be seen in [17], where methods for live 
migration of VMs according to the current utilization of resources 
are introduced. Each node has a CPU, which can be multi-core, 
with performance defined in Millions of Instructions Per Second 
(MIPS). Besides that, a node is characterized by the amount of 
RAM and network bandwidth. The aim is to prevent service level 
agreement (SLA) violations which occur when a VM cannot get 
the requested amount of resource, which may happen due to VM 
consolidation. A decentralized resource allocation system is offered 
containing a dispatcher, global and local managers.

Only utilization of CPU is considered. “The main idea of the 
policies is to set upper and lower utilization thresholds and keep 
total utilization of CPU created by VMs sharing the same node be-
tween these thresholds” [17] using live migration. A challenge here 
is to determine values of the utilization limits (thresholds).

In [18], the authors offer a migration algorithm that depends on 
copying the VMs and dividing the original CPU allocation among 
the copied VMs while keeping the memory allocated at the same 
level. This would cause an additional resource consumption. Allo-
cation is done using dynamic programming and a local search is 
run after to find opportunities for consolidation. This algorithm is 
run periodically to improve performance. The period the algorithm 
is run can have a great impact on the success of the method. The 
balance between the running cost and the running gain along with 
the workload change period should be investigated.

2.2. Adaptive allocation

Consolidation is far from a standalone solution though. For 
changing workload patterns, the cost of moving VMs in and out of 
a server in terms of performance and power could be worse than 
keeping them where they are. A careful consideration of the amor-
tization period of the migration costs is required for a successful 
decision. The authors of [19] consider this when presenting their 
solution. They propose a central controller (termed Mistral) that 
balances steady state performance and power with the dynamic 
adaptation costs under changing workloads.

The authors assume workloads from multi-tiered applications 
are being scheduled on cloud VMs. Each application type is associ-
ated with a set of transaction types through which users access its 
services. Each transaction type corresponds to a unique call graph 
of some of the application types. The mean request rates for trans-
action types are combined in a vector to specify the workload of 
applications. Mistral controllers are called periodically to impact 
the VM locations and their CPU allocations.

“Costs of these adaptation actions are measured experimentally 
offline for different workloads and VM placements, and are stored 
in tables used at runtime” [19]. This includes adaptation duration, 
change in response time for the application being adapted as well 
as co-located applications, and change in power consumption dur-
ing the adaptation. A model is introduced to predict workloads of 
each component and define the stability interval following the cur-
rent adaptation. No details are offered as for the structure or oper-
ation of the workload predictor. Experimental results were shown 
for data centers of up to just 8 servers. Also, calculating the costs 
offline sacrifices precision and often would not take interactions 
into account as it assumes that every time the decision will cost 
the same in terms of power and performance for example.

2.3. Methods focusing on CPU utilization

We can see a detailed discussion of the network resource en-
ergy consumption in the cloud data centers in sources like [20]. 
VMs are assigned to servers with the objective of reducing the 
amount of traffic and generating favorable conditions for traffic 
engineering. Moreover, the number of active switches and balance 
traffic flows is decreased depending on the relation between power 
consumption and routing, to achieve energy conservation.

There are a few existing schemes that transition a CPU into var-
ious low-power and sleep states to reduce its idle power. One of 
the more recent efforts using this approach is in [21]. The paper 
offers a method to predict which CPUs will be idle based on an-
alyzing the reading of each CPU hardware parameters. This helps 
the decision making process in order to achieve intelligent sleep 
states. This means that a more accurate prediction of the period 
a CPU might be idle reflects on the choice of which sleep state 
the CPU is moved into. The CPU performance metrics monitored 
are IPC, cache miss rates, structure occupancies, branch predictor 
statistics, and others. These readings are used as an input to an ex-
pert system based on classifiers like boosted regression trees. The 
output is the length of the CPU idle interval. The cost of monitor-
ing here could be a decisive factor. Decision based CPU readings 
are on different level of speed to processes like running a VM on a 
server or switching off the server.

As one of the most detailed cloud simulators available [22–26,
30,31], Greencloud arises as a powerful tool to evaluate energy effi-
ciency in cloud environments. GreenCloud was developed as a sim-
ulator with a focus on energy efficiency and fine grained network-
ing capabilities. The prime purpose cited for building GreenCloud 
is mitigating overprovision issues [22]. Overprovision happens in a 
data center due to the loads constantly changing on the compu-
tational and communication resources. The average load can be as 
low as 30% of the data center server and network capacity [22]. 
This, in turn, causes the data center to systematically use more 
power than the optimal value. In GreenCloud, solutions imple-
menting server consolidation and dynamic server power manage-
ment are simulated with an option to expand to a hybrid solution 
containing both.

GreenCloud offers simulation capabilities including multiple 
topology choices (2 layers and 3 layers) and it offers communica-
tion through packets using the underlying NS-2 simulator features. 
GreenCloud also offers the choice of scheduling tasks (user re-
quests) on hosts directly or on virtual machines which reside on 
hosts. Tasks are modeled as unit requests that contain resource 
specification in the form of computational resource requirements 
(MIPs, memory and storage) in addition to data exchange require-
ments (task size variable representing the process files to be sent 
to the host the task scheduled on before execution, data sent to 
other servers during execution and output data sent after execu-
tion).

A comparison of the most prominent methods and techniques 
this problem has been approached with is introduced in Ta-
bles 1 and 2. We depict whether each work offers and optimiza-
tion model, resource types considered, VM modeling, application 
layer modeling, network model, computational resource modeling, 
whether live migration is used, whether users are offered guaran-
teed reservation, whether the method is centralized or decentral-
ized, and the scheduling algorithm in brief.
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3. System implementation scenario

A typical cloud data center contains hosts that are available for 
clients with multiple lease terms on offer. Every client profile is 
tailored based on their budget, applications and general portfo-
lio. For every rented VM, a client specifies the time scale (or at 
least the start time), the resource requirements in terms of com-
putational and network resources, and operating systems in some 
of the cases. While the VM is alive in the data center, a continu-
ous stream of requests arrive at the data center. Requests (tasks or 
Cloudlets) Tasks are modeled as unit requests that contain resource 
specification in the form of computational resource requirements 
(MIPs, memory and storage) in addition (sometimes) to data ex-
change requirements. The power consumption in the data center 
amounts to the total power consumption of all the resources re-
siding in it. As the computational resources – specifically the hosts 
– consume most of the data center power, we will focus our opti-
mization efforts on optimizing the power consumed by hosts not 
the network resources like switches, routers, etc. Power calculation 
models used in the literature are mostly utilization based [16,19,
22]. We will introduce the formula in detail in the following sec-
tion. Therefore, workload distribution on available hosts and VMs 
has a prime impact on the energy efficiency. This includes, VM 
initial placement, migration decision management in terms of mi-
gration frequency and the choice of the migrated VM and also the 
scheduling of Cloudlets (requests) on the corresponding VMs. Re-
gardless weather the Cloudlets belong to one client or multiple 
clients, efficient scheduling that focuses on energy efficiency is a 
demand. In the following section, we offer a substantiation of this 
problem in the form of mathematical formulation. This is a pre-
ceding step to discussing a more scalable solution in Section 5.

4. System model

To solve the problem of scheduling tasks in a cloud computing 
environment while minimizing energy consumption, we introduce 
an analytical model where we formulate the problem as a mixed 
integer linear problem. The optimization problem is modeled fo-
cusing on two objectives, namely, minimizing the required power 
to serve a specific load of tasks and minimizing the load that needs 
to be migrated/recovered in case of a data center component fail-
ure. This model’s purpose is to demonstrate the major constraints 
imposed on the problem and the potential search space size.

4.1. Notations

Environment parameters are described below. A set of resource 
providers (servers or VMs) are represented by S . C LT is a set of 
tasks (Cloudlets) sent by cloud clients. These tasks demand spe-
cific amounts of resources to run as per the scenarios discussed 
in earlier sections. C A P sm represents the amount of resources (e.g. 
memory) available on a server (resource provider) where s ∈ S and 
m ∈ {memory(me), C P U unit(c), storage(st)} such that C A P sMem =
30 indicates that available memory on server s or memory capac-
ity is 30 GB. D E M is used to represent the demand matrix or the 
amount of resources needed for every requested task (Cloudlet). 
Memory and storage requirements are measured by GB while CPU 
requirements are measured by the task size shown in Million in-
structions (MI) or million instruction per second (MIPs) and dura-
tion. They could alternatively be measured by the fraction of pro-
cessor power required. Moreover, the same model could be applied 
when using other common metrics for processing demand like the
amount of employee data processed per hour (employee/hour) or 
Java server side operations per second (JOPs). D E MCletC P U = 700
indicates that the task (Cloudlet) Clet ∈ C LT demands computa-
tional power to run 700 Million instructions, v ∈ V requires 7 GB 
of memory assuming that m denotes memory resource on a server.
The matrix D contains the deadline of every Cloudlet (denoting 
request lifetime). DC let = t means that Cloudlet Clet ∈ C LT has to 
be served before time unit t . All the specification of a Cloudlet 
could in the same way be applied to VMs. This depends whether 
the problem is just scheduling Cloudlets on VMs (servers) or it 
includes scheduling both VMs on servers and Cloudlets on VMs. 
The parameters P idles and Pmaxs indicate the amount of power 
consumed by server s at the idle state and at maximum utilization 
respectively.

4.2. Optimization problem formulation

The formulation is based on two decision variables. YsClet is a 
binary decision variable such that YsClet = 1 if Cloudlet Clet ∈ C LT
is scheduled on server (resource provider) s and 0 otherwise. XtClet
is a binary decision variable such that XtClet = 1 if Cloudlet Clet ∈
C LT is served at time unit t and 0 otherwise.

The problem is formulated as a mixed integer linear program-
ming (MILP) problem with two possible objectives. The first one 
is to minimize power consumption needed to perform a specific 
load (minimize the kilo watt hours required to run a specific set 
of tasks (requests)). The second objective is more high availability-
oriented. The goal is to minimize the potential migration load in 
case of a failure to any server (or by extension to any component 
in the data center hierarchy). Scheduling the tasks in a way that 
minimizes the migration load affects the performance positively as 
it decreases the performance hiccup induced by failures and aids 
in reaching a more seamless failure event handling. This decreases 
the amount of resources dedicated to maintain high availability as 
the work load is less.

4.2.1. Power consumption
Formulating power consumption in severs is a standing chal-

lenge in the literature. Some of the commonly used efforts can be 
seen in [16,22] where linear models are proposed. These models 
are based on the assumption that servers consume minimal power 
when idle and that level of consumption increases linearly while 
the computational capacity increases. Thus, power consumption at 
a specific processor utilization percentage u is calculated as:

Pu = Pidle + (Pmax − Pidle) × u (1)

Hence, power consumption can be minimized by directly minimiz-
ing the average utilization.

M I N Z1 (2)

Z1 = ∑
t∈T

∑
s∈S(P idles + (Pmaxs − P idles)×

(
∑

Clet∈C LT XtClet YsClet D E MCletCpu) ÷ C A P sC P U )
(3)

4.2.2. Migration load
It is desirable to minimize the load to be migrated in case of 

component failures. That translates to the data load on the server 
at the moment of failure. To minimize that we use a min max 
approach where we try to minimize the maximum computational 
load on any of the servers in the data centers. This is calculated 
based on the computational capacity of Cloudlets (tasks) scheduled 
on servers. However, it can be easily adjusted to accommodate 
other components (VMs, racks, etc.) or to take into consideration 
other resources when calculating the load (like memory, storage, 
bandwidth).

M I N M A X Z2 (4)

Z2 = ∑
Clet∈C LT XtClet YsClet D E MCletCpu

∀s ∈ S ∀t ∈ T
(5)

This model assumes an equal Mean Time To Fail (MTTF) for all 
servers in the data center. A weighted function based on the MTTF 
would be added in case of using varying values for servers.
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The objective function is subjected to the following constraints:
∑

t∈T XtClet >= D E MCletCpu/CapCletCpu,

∀Clet ∈ C LT
(6)

∑

s∈S

YsClet = 1, ∀Clet ∈ C LT (7)

∑
Clet∈C LT XtClet YsClet D E MCletm <= C A P sm,

∀t ∈ T , s ∈ S,m ∈ {me, c, st} (8)

XtClet .t <= DClet
∀Clet ∈ C LT ,∀t ∈ T

(9)

XtClet, YsClet,∈ {0,1} (10)

In Constraint (7), we ensure that a Cloudlet (request) will be 
assigned exactly to one server (service provider). In Constraint (6), 
we ensure that a Cloudlet is scheduled for enough time units to 
satisfy its computational demand given the server computational 
capacity. In Constraint (8), we guarantee that Cloudlets will be 
allocated on servers with enough capacity of the computational re-
sources required by the Cloudlets. In Constraint (9), we ensure that 
a Cloudlet is served before its deadline. Constraint (10) guarantees 
the binary constraints of the problems.

5. Consolidation-based energy efficiency

Moving to more practical solutions, we start by proposing a 
consolidation-based solution. Then, we move to discussing the im-
pacts of consolidation-based solutions and live migration leading 
to the proposal of a novel non-consolidation-based solution.

5.1. VM dynamic idleness prediction (DIP)

The challenge of choosing which VM to move or migrate is cen-
tral to any consolidation technique and therefore crucial to energy 
efficiency policies. A core activity of consolidation-based energy ef-
ficiency is migrating VMs in order to empty a machine so it can be 
switched off or moved to an idle state. This decision affects the 
performance highly, first by specifying the amount of data to be 
moved and the nature/amount of resources required at the des-
tination host. In addition, regardless of how much algorithms are 
able to minimize the live migration time, there will always be a 
certain amount of delay or performance degradation. This means 
that depending on the load expected of the VM and SLA agree-
ment, an SLA violation is highly possible. This way, the priority 
should be given to VMs with more strict SLAs, and critically, with 
less activity when the migrated VMs are chosen. We propose to 
tackle this challenge by introducing a scoring system for the VMs 
to decide which ones to shut down and move based on the use of 
an expert system. The hypothesis here is that with the successful 
prediction of which VMs will be idle (or least active) and for how 
long, we will have a clear advantage in terms of migration decision 
management and the consolidation process in general. This step, 
which we termed dynamic idleness prediction (DIP) will make an 
instant impact in terms of the total power consumed by the data 
center with all the other factors unchanged.

5.2. Classification parameters

The classification parameters are the parameters used by the 
system to predict the state of the VM for a preset future period. 
They include variables that would affect the system’s expectation 
of the VM future behavior. Some of these variables would affect 
the VM activity directly (for example: redundancy models spec-
ifies the frequency of backup/redundancy activities). Some affect 
the VM indirectly and contribute to behavior patterns than are not 
specified explicitly (for example: User location or the type of ap-
plication served by the VM). The more parameter values that can 
be collected for the VM, the more reflective the profile built by the 
classifier will be. In turn, the results will be more reflective of the 
VM activity level. It is critical in this type of experiments to gain 
an insight into the demanded resources by the request (CPU and 
memory, for example) as well the time bounds if any. However a 
more coherent profile for the VM can be constructed by collecting 
parameters like: User ID, User location, User VMs, Type of con-
tract (rental term), VM reserved resources, VM start time/reserved 
time, Redundancy model, Redundancy activity frequency, Compo-
nent type, Request types and frequency, Communication/data ex-
change request Dependencies, and response time required.

5.3. How DIP works

First, the classifier is fed a list of records containing the param-
eter readings or values for the VMs and their resulting states for 
a certain time period. This would be the training data set Then 
the classifier uses this training data set to build behavioral mod-
els for the VMs in question. Alternatively, cross validation method 
can be used. These behavioral models would depend on the classi-
fication method used (for example: decision trees, Naive Bayes or 
Support vector machines). From now on, the Classifier would be 
able to predict (classify) the number of requests sent to the VMs 
in a fixed future period. Next, this information can be used by the 
scheduling component (centralized to for the whole data center or 
decentralized) to rank the VMs and either:

A – Choose the VM with predicted least received requests in 
time period t2–t1.

B – Set a cutoff threshold (CO) such that VMs with incoming 
future request in a pre-specified period less than CO are considered 
idle.

Once the idle VMs list is generated, the list is used in the con-
solidation step as explained in the flowchart in Fig. 3.

5.4. The proposed consolidation-based algorithm

The proposed method is illustrated in the flowchart in Fig. 2. 
First, the algorithm starts by initializing the major parameters in-
cluding parameters in Table 3. VMs are placed based on one of 
the following 3 methods: first fit scheduling, round robin or the 
resource based scheduling technique with the variation proposed 
in [14]. Then, as the requests for resources keep arriving, these 
request are scheduled based on the availability of host and VM 
resources. Periodically, and based on a preset consolidation trig-
ger parameter, the VM shuffle process starts. This trigger defines 
the period or the frequency of revisiting the VM placement and 
running the shuffle process and the consolidation function. The 
shuffle process starts by constructing a list of VMs to be switched 
off. These VMs are chosen based on VM choice method parameter 
(or in other words, idle VMlist construction technique). We chose 
4 options to test in our experiment. These options are choosing 
the VMs randomly, choosing the VMs based on a greedy method 
that chooses VMs hosted on the least used server(s), exploiting 
the proposed technique DIP as explained in the previous subsec-
tion and finally, we set the fourth option to be keeping the VMs 
running without any switching off. This would aid us in calculat-
ing how much of an improvement these techniques are offering 
as opposed to not using any technique. Next, after constructing 
the Idle VMlist, these VMs are switched off and the data center 
loads are consolidated into fewer servers. This shuffle process is 
repeated on a periodical basis depending on the trigger parameter 
mentioned earlier. Another step that is done periodically is swap-
ping the VMs that are switched off in order not to starve a certain 
VM and to ensure fairness. In the following section, we propose 
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Fig. 2. Consolidation-based energy efficiency flowchart.

Table 3
Energy efficiency problem – major parameters.

Parameter Description

Placement method How are VMs initially scheduled on hosts 
round robin
First fit or Resource based scheduling 
proposed [14]

Switched off (consolidated) VM 
choice method (Idle VMlist 
construction technique)

No switch off, DIP, random, greedy-servers

Cutoff limit (CO) The amount of requests in the future 
below which the VM is considered idle

Consolidation trigger The frequency of revisiting the VM 
placement and running consolidation 
function

Migration allowed If migration is used for this experiment or 
fixed VM placement is imposed

a solution based on a technique using DIP that is not dependent 
of live migration. Then, we present the experimentation results for 
both migration-based and non-migration based techniques. Fig. 3
shows the pseudo code for the Idle VMlist construction function. 
The algorithm processes a set of virtual machines VM, a specific 
future period (FP) and a cutoff limit of requests (CO). The algo-
rithm then decides which VMs will be allowed to run and which 
will be idle.
1: Algorithm: Construct Idle List
2: Input: V irtual machine set V M,

3: F P , C O
4: Output: V M state values assigned correctly
5: for V Mi ∈ V M do
6: V Mi .state = running
7: end for
8: for V Mi ∈ V M do
9: if ( getClassi f ier PredictedV alue(v, F P ) <= C O ) then

10: V Mi .state = idle
11: end if
12: end for

Fig. 3. Idle VMlist construction function using Dynamic Idleness Prediction tech-
nique (DIP).

6. Non-Consolidation-based energy efficiency

6.1. Live migration: why not?

Taking migration as automatic solution is far from agreed upon. 
Migration typically imposes performance degradation to the extent 
of having an off time which is not welcome by the clients. This 
time could span through an unexpected range based on the ef-
ficiency of the process and the network bottlenecks in the data 
center at the time and the amount data included. VMware, for ex-
ample, offers live migration as major feature introduced in vMotion 
where a VM can be moved from a host to another without having 
to shut it down. Larger providers like Amazon, for example, do not 
depend on this. Reasons, cited in [27], include the fact that AWS 
(and Rackspace as well) keep the VM data in the local disk. This 
makes it harder to send all the data across the network. “Evac-
uating a given host, particularly one at capacity can take hours” 
[27]. This casts doubts over the practicality of using live migration 
in principle. More so, it casts doubts on using migration with the 
freedom and frequency suggested in some of the energy efficiency 
solutions, where VMs are to be consolidated periodically in fewer 
servers. Finding a solution that does not depend on live migration 
or at least minimizing the number of migrations performed is a 
pressing requirement.

6.2. Smart VM overprovision (SVOP)

We introduce a novel technique for energy efficient VM man-
agement that does not depend on migration. The technique is 
called Smart VM Overprovision (SVOP). This technique depends on 
the DIP technique described earlier to dictate the overprovision of 
VMs by choosing the mostly idle VMS to be switched off and in 
turn minimize lost requests. SVOP is illustrated in the flowchart 
Fig. 4. This method works in two phases. First, the initial VM pro-
file building phase. Then, the regular VM operation phase. The first 
phase starts by the initializing the parameters then scheduling the 
VMs on the corresponding host based on RB scheduling explained 
the previous section. Next, a test batch of requests is scheduled to 
build each VM’s profile. These requests can be real requests de-
manded by the VM or client. They can alternatively be a training 
set of request constructed based on the client and VM profile in 
order to be used for the following steps. After that, the classifier 
builds a profile for the VM and a predicted value of the future de-
mand is calculated. Then the overbook-shuffle process is started. 
An idle VMlist is constructed using the DIP technique discussed 
previously. The list of idle VMs are separated from the active VMs. 
They are scheduled on a separate set of hosts where the concept of 
overbooking is applied. An overbooking factor is used to define the 
overbooked load on each of these overbooked hosts. For example, 
if the host’s capacity is 4 VMs and the overbooking factor is 150%, 
then the Overbook-idle-list function will book up to 6 VMs on this 
host (assuming all VMs have requested equal amounts of resources 
in that case). From here, these VMs can alternatively share the 
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Fig. 4. Consolidation-based energy efficiency flowchart.

1: Algorithm: O verbook Idle List
2: Input: V irtual machine set V M,

3: where V Mi .state is either ′ idle′ or ′running′
4: with states assigned based on
5: Constructidlel ist f unction()

6: (O B F ) as overbooking f actor
7: Output: V Ms with idle state are
8: scheduled using S V O P method
9: host S = leastU sedServer()

10: for V Mi ∈ V M do
11: if (V Mi .state = idle) then
12: ScheduleV M(i, S, O B F )

13: if (isHost f ull(S, O B F ) then
14: S = leastU sedServer()
15: end if
16: end if
17: end for

Fig. 5. Idle VMlist overbooking function.

overbooked resources (which is the concept we used in our im-
plementation). Another technique that can alternatively be used 
here is dividing resources between the VMs in a way that each 
one would have reduced capacity. In the second phase of the SVOP 
technique, the operation phase, the incoming requests are served 
based on the setup in the first phase. Another step that is done pe-
riodically is swapping the VMs that are switched off in order not 
to starve a certain VM and to ensure fairness. Fig. 5 contains the 
pseudo code for Idle VMlist overbooking function included in the 
SVOP method.
7. Performance evaluation

7.1. Data set

To perform the experiment, we used a data set taken from 
Google’s cluster workload traces. These are traces of workloads 
running on Google compute cells. The dataset provides traces from 
a Borg cell that were taken over a 7 hour period. The workload 
consists of a set of tasks, where each task runs on a single ma-
chine. Tasks consume memory and one or more cores (in fractional 
units). Each task belongs to a single parent; a parent may have 
multiple tasks (e.g., mappers and reducers). In our work, the par-
ent is represented by the VM the task belongs to. “The data have 
been anonymized in several ways: there are no task or job names” 
[15], just numeric identifiers; timestamps are relative to the start 
of data collection; the consumption of CPU and memory is ob-
scured using a linear transformation. The data are structured as 
blank-separated columns. Each row reports on the execution of a 
single task during a five minute period.

• Time (int) – time in seconds since the start of data collection
• parentID (int) – Unique identifier of the job to which this task 

belongs (may be called ParentID)
• TaskID (int) – Unique identifier of the executing task
• Type (0, 1, 2, 3) – class of job (a categorization of work)
• Normalized Task Cores (float) – normalized value of the aver-

age number of cores used by the task
• Normalized Task Memory (float) – normalized value of the av-

erage memory consumed by the task Using classifiers

7.2. Classifier and classification tool

Machine learning (ML) classifiers automatically analyze a large 
data set composed of several attributes and decide what informa-
tion is most relevant. This builds the classifier’s ability to predict 
the values of a specific preselected attribute. This value (which 
could be qualitative or quantitative) is the classification. Classifiers 
are used in many application fields. A commonly used tool that 
has a variety of the most common classifiers readily implemented 
is Weka [28].

Weka is a software workbench that includes several ready to 
use ML techniques [28]. Once the data is formatted in the format 
readable by Weka (.arff format) which defines what is the relation 
name, the attributes and their possible values and the data rows 
themselves, the tool can pre-process and classify. The relation de-
fined for this work to predict the number of future requests is 
VM-predictor. We have tested multiple classifiers to find the clas-
sifier most suitable to our DIP technique and the energy efficiency 
problem. Table 4 contains the classifier names as in Weka and 
the classification precision measured using root absolute error. It 
is seen from the table that classifiers differ in their achieved pre-
cision. The highest performing classifiers for this specific case is 
REPtree with a root absolute error of 7.8% and then meta bagging 
and KStar classifiers. Fig. 6 shows a sample of the visual results 
gained for individual prediction using the REPtree classifier. Most 
of the values lie in or around the line which has a slope of 1. This 
indicates the equality of the predicted and the actual values of the 
number of future requests.

7.3. Simulation parameters

A discrete event simulator was built in C++ to evaluate and 
compare the aforementioned techniques. As for the VM resource 
specification, we based it on some of the offered VMs by Amazon 
AWS [29]. The simulated time reached 6500 time units. The power 
calculation model used is a linear power consumption model as 
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Fig. 6. VM prediction results using REPtree classifier.
Table 4
Classifier prediction precision comparison.

Classifier (as named in Weka) Relative absolute error

Decision Table 18.5557%
MSRules 18.9886%
Conjunctive Rule 55.0279%
Gaussian Processes 52.0167%
Multi-Layer perception 34.8747%
IBK 17.3399%
KStar 11.9271%
LWL 44.7885%
meta bagging 10.0447%
Random sub-space 16.1515%
Regression by discretization 13.0296%
MSP tree 17.2206%
REPtree 7.7719%

in [22]. This could easily be swapped with any other model as 
per the cloud provider’s preference. Each request was considered 
a fixed-duration request for the corresponding memory and CPU 
values that are taken from the Google data trace. This helps in 
eliminating any distortion caused by the request duration distri-
bution and increasing the dominance of the evaluated parameters 
over the results. More details on the specifications of each of the 
evaluated techniques are presented in the following section.

7.4. Comparing placement methods

We start analyzing the results by a comparison of the place-
ment methods used in the VM initial placement step. A look at 
Fig. 7 shows the major advantage each of FF and RB methods has 
over RR when either of these methods are combined with any of 
the idle list construction (switch off factor) methods. This is due 
to the fact round robin mainly focuses on distributing the load on 
as many hosts as possible. This means starting many unnecessary 
hosts and while this method has advantages in terms of high avail-
ability and minimizing network bottlenecks, it is not really suitable 
for energy efficiency purposes. Moreover, the other two techniques 
perform comparatively mainly because of their tendency to fill the 
hosts before looking at using new ones. This happens in a greedy 
way (FF) or in resource oriented way (RB).
Fig. 7. Comparing request acceptance rate for different placement methods.

7.5. Evaluated methods (energy efficiency solutions)

Next, we evaluate the aforementioned solutions in terms of a 
number of critical metrics, namely, energy used per server, energy 
used per served request, request acceptance rate, and number of 
migrations performed. It can be seen that the multiple factors con-
sidered in this problem and the possible methods employed can 
yield a high number of solution permutations. Due to space con-
straints, we will show the results for the 9 methods with high 
performing or significant results for any of these metrics. Table 5
explains each method in terms of nature and the techniques used 
in it. The table specifies if the method is consolidation-based or 
not (depends on migration or not), which placement method is 
used for the initial placement, how the idle VM list (mentioned 
in flowcharts 1 and 2) is constructed, if the VM switch off act is 
permanent (until the end of the experiment) or temporary and in-
terchangeable between VMs as explained in the previous section 
and finally, it discusses the frequency the VM consolidation tech-
nique is called whenever it is used. The last factor was added to 
show the effect of increasing the frequency of calling the VM con-
solidation method on the evaluated metrics. From this point on, 
we will refer to each of the evaluated methods with the abbrevi-
ated name used in Table 5.
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Table 5
Evaluated methods (energy efficiency solutions).

Method Consolidation-
Based?

Placement 
method

IdleList construction 
technique

Switch off 
duration

VM consolidation
frequency

FF-DIP-PermSW Yes FF DIP Perm Normal
RB-DIP-TmpSW Yes RB DIP Temp Normal
RB-DIP-TmpSW-Hfreq Yes RB DIP Temp High frequency
RB-Greedy-PermSW Yes RB Server greedy Perm Normal
RB-Greedy-TmpSW Yes RB Server greedy Temp Normal
RB-Rnd Yes RB Random Temp Normal
RR-NoSW No RR No switch off - Normal
FF-NoSW No FF No switch off - Normal
SVOP No RB DIP Temp Normal
Fig. 8. Request acceptance rate for different energy efficiency methods.

Fig. 9. Power consumed per request for different energy efficiency methods.

7.6. Consolidation frequency

Consolidation frequency defines how often the consolidation 
function is called to look for space on the hosts to be saved. 
The effect of increasing the consolidation frequency can be seen 
by comparing the metric readings for RB-DIP-TmpSW and RB-DIP-
TmpSW-Hfreq in Figs. 8 to 12. It can be inferred that increasing the 
consolidation increases the acceptance rate significantly. However, 
this increase is paid in the form of system load. RB-DIP-TmpSW-
Hfreq scores highest in terms of the number of migration per VM 
(in Fig. 11) and in terms of the total number of servers used for 
a fixed load (in Fig. 12). A balanced level of frequency needs to 
be reached for each specific case to reach a trade off between the 
load caused by the high number of migrations might cause the 
gain in accepted requests caused by updating the system to reflect 
the momentarily loads states of the VMs.
Fig. 10. Power consumed per for different energy efficiency methods.

Fig. 11. Number of migrations per VM for different energy efficiency methods.

Fig. 12. Percentage of used servers for different energy efficiency methods.



M. Abu Sharkh, A. Shami / Vehicular Communications 9 (2017) 199–210 209
7.7. Permanent vs. temporary switch off

As seen in Figs. 9 and 10, using permanent switch off for in-
active VMs will yield significant power savings. This applies re-
gardless of the Idle list construction technique. In Fig. 10 for ex-
ample, FF-DIP-PermSW consumes 7251.6 compared to the 18811 
consumed by RB-DIP-TmpSW while RB-Greedy-PermSW consumes 
21672 compared to the 26616 consumed by RB-Greedy-TmpSW. 
However, the acceptance rate losses caused by the permanent 
switch off of idle VMs are very high. As in Fig. 8, both FF-DIP-
PermSW and RB-Greedy-PremSW gain largely discounted accep-
tance rates (58.35% and 80.80%) compared to their counter part 
methods (79.39 % and 100%). This confirms the notion that using 
permanent switch off even for the most idle VMs is not effective 
in terms of scheduling fairness and general acceptance rate. There-
fore, using permanent switch of should be saved only for cases 
where the data center cannot serve the load for all the VMs re-
quested at a certain moment.

7.8. DIP technique’s impact on the consolidation based techniques

Looking at DIP’s impact when it is introduced as the tech-
nique of choice to construct the Idle List during any consolida-
tion based technique, it is found that this impact is significant. In 
Fig. 10, we notice that FF-DIP-PermSW and RB-DIP-TmpSW have a 
clear advantage in terms of power consumed per server specially 
compared to the other consolidation-based techniques. This is sup-
ported by an advantage in terms of power consumed per request 
where these two methods ranked 1 and 2 again. RB-DIP-TmpSW 
specifically performs favorably in terms of energy efficiency and 
acceptance rate (81% of request). However, when looking at the 
number of migrations per VM, we notice that this technique re-
quires a relatively high number. In the cases where migration is 
not a preferred option, there is a critical need for another method 
which performs comparatively to RB-DIP-TmpSW and that does not 
depend on migrations.

7.9. Smart VM over provision (SVOP) as a method that is not dependent 
on migration

Two methods which serve as a benchmark for our solution are 
the No switch off methods (RR-NoSW and FF-NoSW). In these two 
methods, the initial placement of the VMs is the only step per-
formed. All VMs are given high priority for the resource allocation. 
No Vm is switched off or migrated. Naturally, this means that most 
or even all requests are accepted. However, the energy efficiency is 
far from optimal. Also, the initial placement method is the domi-
nant factor that affects the method performance. A look at Figs. 9
and 10 shows that RR-NoSW method has the highest value for 
power consumed per request and power consumed per server met-
rics and by a distance. Fig. 12 (as discussed earlier) shows that 
the same method used a higher percentage of the data center 
servers even than some of the methods that use migration. This 
leaves as with FF-NoSW. When comparing our proposed method 
SVOP with the best performing non-consolidation-based method 
(which is FF-NoSW), encouraging results are seen. Although SVOP 
does not quite reach 100% acceptance rate, SVOP consumes lower 
power per server than FF-NoSW and comes third for that metric 
only after FF-DIP-Perm and RB-DIP-TmpSW. Both of those meth-
ods are consolidation-based and both achieved lower acceptance 
rates than SVOP. As for the power consumed per request metric, 
SVOP comes in third and consumes lower power than all methods 
with 80% acceptance rate or higher. SVOP consumed power per 
request is close to the value achieved by the best consolidation-
based technique RB-DIP-TmpSW. SVOP also offers the advantage of 
not needing any migrations in the operation phase and using con-
siderably lower number of servers on average than RB-DIP-TmpSW.

Therefore, from combining the previous results, the consolida-
tion-based method RB-DIP-TmpSW (which depends on the pro-
posed DIP technique) is the best performing method in terms of 
energy efficiency with a viable acceptance rate. However, the pro-
posed non-consolidation-based method SVOP comes very close in 
terms of energy efficiency while offering the added advantage of 
less/no migration load.

8. Conclusion

In a heterogeneous cloud network scenario where a cloud com-
puting data center serves mobile cloud computing requests from 
diverse IoT devices, major challenges with performance are faced.

A prominent objective in this scenario for cloud providers is 
how to serve these requests with the required performance while 
minimizing the energy the cloud data center uses. To satisfy 
clients’ demands, cloud providers are in constant pursuit of a sys-
tem that satisfies client demands for resources, maximizes avail-
ability and other service level agreement metrics while minimizing 
energy consumption and, in turn, minimizing cloud providers’ cost.

We introduced a novel mathematical optimization model to 
solve the problem of energy efficiency in a cloud data center. Next, 
we offered a solution based on VM migration that tackles this 
problem and minimizes energy efficiency in comparison to other 
common solutions. This solution includes a novel proposed tech-
nique to be integrated in any consolidation-based energy efficiency 
solution. This technique depends on dynamic idleness prediction 
(DIP) using machine learning classifiers. Potential classifiers were 
evaluated and a recommendation with regards to the most suitable 
classifiers was made. Moreover, a robust energy efficiency schedul-
ing solution that does not depend on VM consolidation or live 
migration was introduced. This solution, termed Smart VM Over 
Provision (SVOP), offers a major advantage to cloud providers in 
the cases where live migration of VMs is not preferred. 9 can-
didate solutions with multiple energy efficiency techniques were 
evaluated for a number of critical metrics, namely, energy used 
per server, energy used per served request, acceptance rate, and 
number of migrations performed.

The experimental results gained from testing these methods 
on data taken from the Google trace data set showed that the 
consolidation-based method RB-DIP-TmpSW (which depends on 
the proposed DIP technique)was the best performing method in 
terms of energy efficiency with a viable acceptance rate. How-
ever, the proposed non-consolidation-based method SVOP came 
very close in terms of energy efficiency while offering the added 
advantage of less/no migration load.

In future work, we will strive to build on SVOP’s success and 
improve the energy efficiency gain while increasing the achieved 
acceptance rate.
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