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Abstract— Network function virtualization (NFV) has been
introduced by network service providers to overcome various
challenges that hinder them from satisfying the growing demand
for networking services with higher return-on-investment. The
association of NFV with the leading technologies of information
technology virtualization and software defined networking is
paving the way for flexible and dynamic orchestration of the
VNFs, but still, various challenges need to be addressed. The
VNFs instantiation and placement problems on data center’s
(DC) servers are key enablers to achieve the desired flexible and
dynamic NFV applications. In this paper, we have addressed
the VNF placement problem by providing a novel mixed integer
linear programming (MILP) optimization model and a novel
heuristic solution, Betweenness centrality Algorithm for Com-
ponent Orchestration of NFV platform (BACON), for small- and
large-scale DC networks. The proposed solution addresses the
VNF placement while taking into consideration the carrier-grade
nature of the NFV applications and at the same time, minimizing
the intra- and end-to-end delays of the service function chain
(SFC). Also, the proposed approach enhances the reliability and
the quality of service (QoS) of the SFC by maximizing the count
of the functional group members. To evaluate the performance of
the proposed solution, this paper conducts a comparative analysis
with an NFV-agnostic algorithm and a greedy-k-NFV approach,
which is proposed in the literature work. Also, this paper
defines the complexity and the order of magnitude of the MILP
model and BACON. BACON outperforms the greedy algorithms
especially the greedy-k-NFV solution and has a lower complexity,
which is calculated as O((n3 − n2)/2). The simulation results
show that finding an optimized VNF placement can achieve
minimal SFCs delays and enhance the QoS accordingly.

Index Terms— Network function virtualization, network soft-
warization, cloud computing, mobile computing, service function
chain, high availability, next generation network, next generation
mobile networks, 5G mobile communication.

I. INTRODUCTION

THE demand for high-bandwidth network connectivity has
been growing significantly over the past few years. It has

gained further momentum with the surge in the number of
internet-connected mobile devices ranging from smartphones,
tablets, laptops to sensor networks and Machine-to-Machine
(M2M) connectivity. The network traffic has exceeded
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the capacities of the existing mobile service providers’
networks [1]. Since the network traffic is expected to increase
in the near future, Network Service Providers (NSPs) should
invest in bandwidth-oriented infrastructure to satisfy the
demand [2]. While studies show that the return-on-capital with
such investments is minimal [3], the network upgrading highly
depends on the network infrastructure. This dependency along
with the exponential cost of the network equipment may lessen
the revenue margins of the NSPs when an upgrade or new ser-
vice is released. NSPs’ challenges are not only bounded to the
cost of expensive hardware devices, but they are also affected
by the increase in the energy costs coupled with the shortage
of personnel with expertise to design, implement, and orches-
trate a progressively complex hardware-based infrastructure.
Moreover, maintenance of the network infrastructure is another
primary concern of the service providers. The scope of these
issues is not limited merely to the revenue loss but also to
the ripple effects that manifest through lags in time-to-market
as well as in the general hindrances to innovation within
the telecommunications industry. Therefore, network operators
seek to reduce or even forfeit their dependency on proprietary
hardware.

To achieve these targets, network service providers are
investigating the integration of virtualization technology within
the telecommunications industry. Virtualization technology
emerges as a mean for Information Technology (IT) specialists
to enhance the capital investments with higher returns-on-
capital. Virtualization also facilitates the hardware and soft-
ware decoupling process where multiple isolated software
programs can share the underlying hardware [4]. As an initial
step, a group of seven telecommunication operators established
an industry specification group for Network Function Virtual-
ization (NFV) under the European Telecommunications Stan-
dards Institute (ETSI). Once they proposed their solution in
October 2012, several telecommunication equipment providers
and IT specialists subsequently have joined the group [5].

NFV is the concept of migrating the network functions from
dedicated hardware equipment to software-based applications.
NFV is the technology that can exploit the advantages of
the IT virtualization evolution. Equipment and software com-
ponents are consolidated on standardized IT platforms (e.g.,
high volume servers, switches, and storage) while network
functions within the proprietary hardware can be simulta-
neously decoupled. Through NFV, Virtual Network Func-
tions (VNFs) can be instantiated at various locations, such as
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Data Centers (DCs), network nodes, and end users’ premises
depending on the network requirements [3]. Exploiting the
advantages of the cloud computing services, Software Defined
Networking (SDN), and NFV facilitates the opportunity to
design and implement scalable, elastic, and programmable
next-generation networks [6], [7]. However, the latter desired
networks introduce various deployment and orchestration
challenges that should be resolved to realize their benefits
and pave the way for wider commercial adoption by the
industry [8], [9].

ETSI defines the basic architecture standards for the
NFV Management and Orchestration (NFV-MANO) frame-
work. Each NFV networking service consists of one or
more VNF [10]. VNFs implement various functionalities that
provide the networking services defined by the Network
Service Descriptor (NSD). According to the NSD VNF For-
warding Graph (VNFFG), the logical path connecting the
VNFs is defined as a Service Function Chain (SFC). Having
well-defined standard interfaces for the VNFs provides the
NSPs with the freedom to design and implement their pro-
prietary services to meet the customers’ needs while avoiding
vendor lock-in of their NFV platforms. Moreover, it drives the
innovation and evolution of the NFV networking services and
provides the capability of flexible management and orchestra-
tion of the VNFs lifecycle based on functional/non-functional
constraints.

Despite all the significant literature studies on NFV, VNFs
deployment and orchestration still need to be further investi-
gated and exploited to satisfy the carrier-grade requirements
for the networking services [11]–[14]. Researchers have been
addressing various aspects of NFV challenges. For instance,
VNFs orchestration and management challenges have been
addressed in many literature studies [15]–[22]. They pro-
pose different optimization models and heuristic solutions
for managing the VNFs placement problem. Besides, other
researchers direct their efforts to realize the development of the
NFV management platforms [23]–[26]. However, the literature
studies discard the fact that the VNFs are running as software
applications on commodity servers that provide them not
only with the flexibility and programmability of a distributed
software application but with the benefits of the microservices
architecture as well. Although the majority of the research
projects have considered the carrier-grade nature of the NFV,
their solutions do not reflect the carrier-grade requirements of
cloud-based application, such as performance, fault resilience,
high availability, scalability, QoS, VNF Components (VNFCs)
structure, and governments’ geo-restrictions [27]–[30]. VNFs
are the building block of NFV and are constructed by chaining
various VNFCs to provide the desired services. The VNFCs
take advantage of microservices architecture and the emerg-
ing implementation of Service-Oriented software Architecture
(SOA). Each VNFC is foreseen as a microservice by itself,
which enables heterogeneous VNF structures and allows more
flexibility in terms of hosting environment and manageability.
However, the intra-connections of VNFCs are directly affected
by their placements, which affect and define the performance
of a VNF service. Moreover, the interconnections of the
VNFs that represent the logical container of the VNFC are

directly affected by the VNFs’ logical placements, which
in return affect the service chain performance. With this
in mind, VNFs’ placement and service chaining are still
important challenges that need further investigation to achieve
the anticipated benefits of NFV, such as lower Operation and
Capital Expenditure (OPEX and CPEX), on-demand scaling,
and real-time network programmability while satisfying the
above carrier-grade requirement.

To address the inadequacies of VNFs placement and SFCs
orchestration, this paper introduces a novel VNF place-
ment orchestration using a Mixed Integer Linear Program-
ming (MILP) optimization model and associates it with a
heuristic solution, Betweenness centrality Algorithm for Com-
ponent Orchestration of NFV platform (BACON). The VNF
placement orchestration is based on capturing all the
carrier-grade requirements of an NFV application, such as the
functionality, latency, and availability constraints. The main
objective of the orchestration is finding the VNFs placements
that satisfy the functional and non-functional constraints while
minimizing the intra-communication delays between the VNF
instances and enhancing the Quality of Service (QoS) of the
computational path (SFC). The main contributions of this work
can be summarized as follows:

i) Propose an intelligent orchestrator that selects the best
placement for the VNFs in a given NFV application to
minimize the intra-communication delays between the
VNF instances and enhance the QoS of the computational
path (SFC). The optimized placement achieves higher
number of VNF instances participating in a service chain
with different serving components. This outcome gener-
ates more active redundant computational paths that can
be optimally used to achieve the desired QoS in terms of
performance and high availability of service chains per
request.

ii) Capture the carrier-grade’s functionality constraints that
affect the SFCs of the NFV application, such as the
application’s availability.

iii) Capture the VNFs’ dependencies constraints to generate
a successful interacting SFCs.

iv) Minimize the end-to-end delay of the SFC.

The rest of this paper is structured as follows. Section II
presents the related work for the NFV placement approaches.
Section III discusses the problem motivation. In Section IV,
the problem formulation, modeling, and constraints are
defined. Section V defines the optimization model of the pro-
posed NFV placement approach and its computational com-
plexity. Section VI presents the heuristic algorithm, BACON.
Section VII presents the simulation setup, its results, and com-
parative analysis. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

NFV is the technology that promises to revolutionize the
telecommunication industry by providing substantial benefits
to the next-generation networks. As NFV captures the interest
of the leading telecommunication industrial equipment/service
providers and academic researchers, intensive research projects
are focusing on this technology.
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Evolved Packet Core (EPC) is one of the basic network
entities that are considered for virtualization. Taleb et al. [31]
implement virtualized EPC (vEPC) using the cloud comput-
ing environment and demonstrate the feasibility of providing
vEPC as a service. The authors also propose a comparative
analysis of various architectures. Baba et al. [32] present
and implement a vEPC architecture based on the VNFs.
The architecture satisfies the requirements of the machine-
to-machine service computing with reduced resources. The
authors achieve 27% CPU time reduction with the proposed
architecture. A smart VNF placement to deploy multi-tier
cloud applications is proposed by PACE [33]. However, PACE
overlooks many of the requirements that affect the VNF
placement to achieve the desired QoS in multi-tier cloud-based
applications. These requirements include the VNF dependency
hierarchy, delay tolerance, and anti/co-location constraints.
An efficient and scalable VNF provisioning framework is
proposed in E2 [34]. E2 is a framework that manages the
VNFs by combining traffic engineering and the best VNF
placement. It is suitable for a private cloud that serves a single
type of applications and provides specific functionalities, such
as traffic offloading to proprietary switches. E2 has discarded
the various placement constraints, such as the instances’ inter
and intra-dependency and the delay tolerance between com-
ponents. Bari et al. [35] propose an optimization algorithm
for the VNF placement with a simplified set of constraints.
The latter only considers the deployment cost, the resources
requirement, and the processing delay. This optimization
algorithm discards the placement constraints that satisfy the
carrier-grade requirements of the VNF applications, such as
the VNF chaining, reliability, and delay tolerance constraints.

Mohammadkhan et al. [36] formulate a mixed integer linear
programming optimization model for VNFs placement and
traffic flow routing while minimizing the resource utilization.
However, the proposed solution has focused on minimiz-
ing computational resources while ignoring non-functional
constraints such redundancy, dependency, and availability.
Sahel et al. [37] focus on the network service chaining prob-
lem by formulating an integer linear programming model
and a heuristic algorithm. The proposed solution is based on
two segments: a decomposition selection with backtracking
phase and a mapping phase; leading consequently to sub-
optimal solutions. Nguyen et al. [38] formulate a quadratic
programming model and propose a heuristic solution for the
VNF placement and routing problems. However, the latter
does not consider the VNF chaining and dependencies in
their solution. The authors also consider that the networking
service is provided by one VNF. Gadre et al. [39] propose an
agile VNF placement solution based on a divide-and-conquer
algorithm. The formulation considers that the VNFs are hosted
on network switches. Hosting VNFs on virtual switches could
accelerate the processing of the user’s service chain request,
but it contradicts with the principles of SDN and NFV.

Eramo et al. [20] propose an integer linear programming
model for VNF migration and placement that minimizes the
total expenses and revenue loss. The proposed work has
overlooked various constraints in there considerations, such
as the delay tolerance and dependencies between components.

Ahvar et al. [40] formulate an integer linear programming
for the VNF placement to minimize the cost of the NSP.
However, the proposed ILP has considered the resources con-
straints, such as the decision variables without including other
functional and non-functional constraints. Gupta et al. [41]
introduce “COLAP”, a predictive framework to place the
participating VNFs of a SFC in a cloud environment while
optimizing the service latency. In summary, this work has
considered the service latency as the main metric while
overlooking the VNF instances’ dependencies and availability
metrics. Zhang et al. [42] formulate the VNF placement
problem as bin-packing and open Jackson network problems
to achieve better resource utilization. The proposed solution
has considered computational utilization as main metric while
ignoring non-functional constraints such redundancy, depen-
dency, and availability. Ayoubi et al. [21] propose a cut-and-
solve approach for the VNF placement problem. The approach
consists of two sub-problems and maximizes the policy-aware
traffic flows count. This work has considered the service chain
latency as the main metric while overlooking the dependencies
and availability metrics. Qu et al. [43] formulate a MILP
model and a heuristic approach to overcome the scalability
of an optimization model while maximizing the reliability
and minimizing the SFC end-to-end delays. The authors have
proposed an algorithm that selects a subset of VNFs that are
needed to generate a SFC and its redundant. The user traffic in
the proposed algorithm is managed through the main SFC and
its redundant, simultaneously, which results in a costly SFC
deployment. The redundant path has a longer SFC leading
to higher delay and thus affecting the QoS, in the case of
SFC request’s migration or failure. Despite the high demand
of resource allocation for the proposed algorithm, the authors
have discarded the delay tolerance between components.

Hantouti et al. [44] have discussed SDN architectures
for SFC and provided an analysis of the traffic steering
techniques in the context SDN-based SFC approaches. The
work has presented a comprehensive analysis while identi-
fying relevant research challenges and classifying the traffic
steering techniques according to their efficiency in real-life
networks. Bagaa et al. [45] have proposed an algorithm to
define the optimal number of core network virtual elements
to meet the demand of the mobile traffic while maintaining
the QoS and maximizing the profits of the cloud operators.
Furthermore, the authors have developed an algorithm to
place the core network virtual instance in a federated cloud.
Benkacem et al. [46] have formulated a VNF placement algo-
rithm to minimize the cost while maximizing the Quality of
Experience (QoE) of the virtual streaming service. The authors
have applied the bargaining game theory to achieve an optimal
tradeoff between the cost efficiency and QoE in the proposed
solution.

Laghrissi et al. [47] have addressed the problem of
non-uniform distribution of signaling messages in irregular
network topologies. They have proposed a solution to map the
non-uniform distribution of signaling messages in the physical
domain into a new uniform environment through the utilization
of Schwartz-Christoffel conformal mappings. Taleb et al. [48]
have proposed a VNF placement algorithm to cope with the
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Fig. 1. Service function chain and computational path of NFV of different
VNF types.

surging mobile traffic while minimizing the cost in terms of the
total number of instantiated VNFs to build a Virtual Network
Infrastructure (VNI) in a cloud environment. The proposed
algorithms objective functions are minimizing path between
users and their respective data anchor gateways and optimizing
their sessions’ mobility. Bagga et al. [11] proposed a place-
ment algorithm for the mobile network functions over feder-
ated cloud. The proposed algorithm instantiate the Packet Data
Network Gateways (PDN-GW) virtual instances and select
the adequate virtual PDN-GWs for user equipment receiving
specific application service. Laghrissi et al. [49] developed a
tool that facilitates the development of spatio-temporal models
of mobile service usage over a particular geographical area.
Furthermore, the tool help in defining the mobile users’ behav-
ior in terms of mobility patterns and service consumption.

Most of the aforementioned approaches propose solutions
through private cloud interfaces, which are completely owned
and controlled by the cloud service providers. Also, the previ-
ous literature studies discard the fact that different applications
can be hosted within the VNF entities in the cloud platform.
So far, the proposed solutions for the NFV-SDN framework
are mostly applicable to small-scale networks within a private
cloud. Private clouds are groups of data centers owned by
the network service providers. The latter has full control
over the entire infrastructure (physical servers, underlying
core networks, virtual environments, and orchestrators). These
solutions overlook multi-tenant support and co-existence with
variant applications that are already using the cloud. Addi-
tionally, most of the above literature studies have focused on
the VNF functionalities and placements from the perspective
of single-tier applications (services) where a single type of
VNFs is responsible for serving the users’ requests (traffic).
However, most NFV applications (services) are multi-tier
applications (services) where a set of different types of VNFs
work collaboratively to serve users’ requests (traffic).

Majority of the stated research has discarded various
carrier-grade requirements, such as the performance, fault
resilience, high availability, scalability, QoS, and governments’
geo-restrictions. In order to achieve the desired objectives of
NFV, further studies should be conducted on the VNF’s func-
tionalities and placements from the perspective of multi-tier

applications orchestration while satisfying the carrier-grade
requirements. To mitigate the above inadequacies and pave the
way for advancing NFV, SFC realization, and wider adoption
within NSPs, this paper proposes an intelligent VNF place-
ment orchestrator. The latter proposes a MILP model and a
heuristic solution, BACON, and satisfies various carrier-grade
requirements of NFV platforms. The MILP model acts as a
solver for small-scale NFV platforms and a benchmark for
BACON that addresses large-scale NFV platforms.

III. MOTIVATION

VNFs are hosted in a cloud environment where they are
executed either within Virtual Machines (VMs) or within con-
tainers. The allocation of the VNFs’ execution environment on
the hosting servers in data centers directly affects the quality of
service provided by these VNFs [50]–[53]. Therefore, having
an optimal allocation for the VNFs is essential to satisfy the
carrier-grade requirements.

A. VNF Placement Requirements

The ETSI defined framework does not provide a defin-
ition for the VNFs’ placement management entity. Mainly,
the mapping of the VNFs to their hosts is managed by the
cloud service provider or is delegated to the users (VNFs’
owners). Furthermore, NFV is associated with service function
chains that are directly affected by the VNF placement. At the
Infrastructure as a Service (IaaS) level, the cloud service
provider may offer a certain level of guaranteed resources
performance and availability of the VMs assigned to the
tenants. However, this approach does not guarantee the QoS
of the VNFs deployed on these VMs. In fact, tenants would
have to deploy and manage their VNFs in an efficient manner
to achieve the desired quality of service. Netflix utilization
of the Amazon Web Services (AWS) is an example on how
tenants deploy and manage their cloud applications to meet
the QoS requirements [54]. Netflix has contributed to various
open source software entities that integrate with AWS and
other cloud services to enhance and achieve the desired quality
of service.

VNF schedulers that are agnostic of the intricacies of
the tenant’s application may result in inefficient placements.
In these placements, computationally chained VNF compo-
nents may be placed where the delay constraints can be
violated, which hinders the application’s functionality in terms
of scalability and traffic offloading. A carrier-grade-aware
(NFV-aware) application architecture that defines the com-
putational paths, the participating components (VNFs), and
the prospected service function chains is needed to enhance
the scalability and traffic offloading of the application compo-
nents (VNFs) [55]. It is necessary to note that the prospected
service chain represents the path that should be generated to
process the users’ requests. The main objective of designing a
carrier-grade application-aware (NFV-aware) architecture is to
ensure that the system and its services are capable of serving
various workloads with insignificant or zero degradation in
QoS while maintaining the carrier-grade requirements with
minimal SFC delay.
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IV. PROBLEM FORMULATION

In order to take advantage of NFV technology, it is neces-
sary to understand the architecture of its VNFs, their corre-
sponding SFCs, and QoS requirements. This section describes
the VNFs architecture and proposes the constraints to satisfy
the requirements of QoS and meet the SLA.

A. VNF Architecture

NFV services (applications) are typically developed using
a VNF-based architecture where each service consists of one
or more VNFs. These VNFs are chained logically to create
the service chain as described in the VNFFG. The VNFs’
functionalities are combined to provide high-level abstracted
services. As described by the VNFFG, the participating VNFs
in the service function chain are configured to represent the
functional dependencies and form the service computational
paths. Fig. 1 illustrates the VNFs’ service function chain.

The dependency relation is captured at the service repre-
sentation level where the delay tolerance and communica-
tion bandwidth attributes are defined. The delay tolerance
determines the maximum latency at which a VNF instance
can maintain communication with its dependent ones without
declaring any service or computational path outage or degra-
dation.

B. Requirements of VNFs Scheduler

Each VNF instance of the service is scheduled on a server
in the cloud using VMs mappings. Each VM can be hosted
on one server and can have at least one VNF instance running
on it. Sudden demand spark or failure events can occur in the
cloud, such as natural disasters, run-time failures, and global
broadcasting events. In order to deal with these events, users’
requests/traffic are balanced between various computational
paths, or soft failovers to the redundant computational paths
groups are triggered. Therefore, increasing the number of the
computational paths is translated in better quality of service.
The number of computational paths can be increased by adding
VNFs on various tiers of the NFV service. However, adding
more VNF components can overwhelm the OPEX and CAPEX
of the users’ investment. Besides, increasing the number of the
VNF components while overlooking their optimal placements
can result in underutilized VNFs. To address these challenges,
this paper proposes a novel NFV-aware scheduling technique
to achieve the carrier-grade QoS of an NFV service. The
scheduler finds the optimal physical server to host the VNF
component while minimizing the delay between the VNFs’
components of the service function chain. This technique
allows the maximum number of the VNFs to communicate
without violating the functional and non-functional constraints.
In other words, this technique generates the maximum number
of computational paths to serve the users’ requests while
satisfying the quality requirements.

To consider a successful generation of computational paths,
VNFs should be hosted on servers that can satisfy their com-
puting requirements (CPU, memory, storage and networking
resources) in the service chain without violating the delay

tolerance among their dependent ones. In order to achieve the
optimal count of the computational paths, this paper proposes
a mixed integer linear programming model to schedule the
VNFs while minimizing the traffic delays between the VNFs
constituting the service chain. The MILP model provides
an NFV-aware placement solution that generates mappings
between the cloud physical servers and the VMs on which
the tenants’ VNFs are hosted while satisfying the following
constraints:
(a) Capacity constraints: These constraints generate a

servers’ list that satisfies the resource demands of each
VNF to meet the Service Level Agreement (SLA). In the
proposed scheduler, the computational resources consist
of CPU and memory.

(b) Network-Delay constraints: These constraints prune the
above list to generate another servers’ sub-list that satis-
fies the latency requirements to avoid any service degra-
dation between the communicating VNFs.

(c) Availability constraints: These constraints prune the can-
didate servers generated by the capacity and delay
requirements according to the following constraints:
i) Co-location constraint: It requires that the dependent

VNFs should be placed on the same server of their
sponsor if the delay tolerance of these dependent VNFs
is ephemeral.

ii) Anti-location constraint: It requires that the dependent
VNFs should be placed on different servers if their
delay tolerances can compensate the communication
cost.

iii) Redundancy constraint: With this constraint, VNFs of
the same type cannot reside on the same server. In this
case, these VNFs should be placed as far as the delay
tolerance allows.

(d) Dependency constraints: These constraints define the
structure of the computational path between the defined
VNFs.

V. MATHEMATICAL FORMULATION

In the MILP model, the set of VNFs participating in the SFC
is denoted as V . V A denotes a subset of V where its VNFs
should satisfy the anti-location constraint. V C denotes a subset
of V where its VNFs should satisfy the co-location constraint.
For each VNF, a subset of V is defined as dependent VNFs
and denoted as V D. v and v’ represent a single VNF instance
that belongs to a given VNF set. V D

v is defined as the set
of dependent VNFs of VNF v. The available set of servers
in a given DC is denoted as S while the total number of
servers in this set is denoted as NS . s and s’ represent a
single server that belongs to a given server set. R denotes
the set of computational resources types (CPU and memory).
r represents a resource type in the computational resources
set (CPU or memory). The computational resources r of a
specific VNF v are denoted as V Res

vr . The available resources
r of a server s are denoted by SRes

sr . The communication delay
tolerance between the VNF components v and v’ is defined
as Tvv′ . The communication delay between servers s and s’
is denoted by Dss′ . The delay between two dependent VNFs
v and v’ is defined as Dvv′ .
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Pvs is the binary decision variable that defines the place-
ment state of a VNF v on server s as follows:

Pvs =

{
1 if V NF instance v is placed on server s

0 otherwise

(1)

A. Model Formulation

The objective function and the constraints of the proposed
MILP model are formulated as follows:
Objective function:

Minimize

V D∑
v′

Dvv′ ∀ v ∈ V (2)

Subject to:
Availability/Dependency Constraints:

0 ≤ Pvs ≤ 1 ∀ v ε V, ∀sεS (3)
NS∑
s=0

Pvs = 1 ∀vεV (4)

Pvs + Pv′s ≤ 1 ∀v, v′εV A, ∀sεS (5)

Pvs + Pv′s ≥ 2 ∀v, v′εV c, ∀sεS (6)

Capacity Constraints:

V∑
v=0

Pvs × V Res
vr ≤ SRes

sr ∀rεR, ∀sεS (7)

Network Delay Constraints:

Dss′ × (Pvs + Pv′s′ − 1) − Dvv′ ≤ 0 ∀v ∈ V, v′ ∈ V D
v ,

∀s, s′ ∈ S (8)

Dvv′ ≤ Tvv′ ∀v ∈ V, v′ ∈ V D
v (9)

As shown above, the NFV-aware placement constraints are
grouped into availability, dependency, capacity, and network
connection constraints. Constraint (3) defines the decision vari-
able of the VNFs placement as a binary variable. Constraint (4)
ensures that the defined VNF instance can only reside on one
server at most. The anti-location constraint is defined in (5)
and the co-location constraint is defined in (6). The capacity
constraint (7) ensures that the candidate servers should have
enough resources to host the assigned VNFs. Constraint (8) is
defined as a network connection constraint. The latter ensures
that a counted connection is established after the successful
placement of the connected VNFs. Constraint (9) reflects the
delay tolerance between the VNF types and maps the delay
of the hosting servers to their VNFs instances.

B. Model Complexity

In order to determine the complexity of the proposed MILP
model, we use reduction method. In this section, we reduce the
problem to a bipartite matching one in order to build our model
accordingly [56]. Any scheduling problems can be interpreted
as a triplet a | b | c, where a represents the problem environ-
ment, b represents the problem constraints, and c represents

the objective function of the problem [57]. These triplet fields
vary depending on the scheduling problem nature. Since the
proposed placement approach addresses the allocation problem
of a VNF components set (V ) on the available servers (S) with
an objective function to minimize the communication delay
between the dependent components, it can be formulated as a
special case of the transportation problem. The formulation for
the problem can be represented as Ss | Vv | ∑

D(x) where
the Ss is the problem environment consisting of s different
parallel servers, Vv defines the VNF job v that can proceed on
a single server s, and D(x) represents the objective function
to be optimized. In this special case, the problem is known
as a constrained bipartite matching problem. G = (V, S, a)
represents the bipartite graph that consists of VNF components
nodes as set V , server nodes as set S, and arc a connecting
the two sets. The arc a = {v, s} assigns the VNF component
v of set V to server s of set S, and it represents the decision
variable Pvs defined in the previous section. Said that and
using the Hopcroft-Karp algorithm, the bipartite maximal
matchings are determined in polynomial time to the number of
edges and vertices [58]. Thus, this type of bipartite matching
problem that is formulated using linear programming models
is categorized as NP-hard problem, and by reduction, the pro-
posed MILP model is NP-hard. Therefore, the proposed MILP
model would be solvable for small-scale DC networks [59].
With this in mind, this paper proposes a heuristic approach,
BACON, to address the large-scale DC networks.

VI. BACON: NFV-AWARE PLACEMENT ALGORITHM

Due to the computational complexity of the proposed MILP
model (NP-hard) and given the available computing processing
power, the optimization model imposes a limitation on scaling
to large-scale data center network. Therefore, this section
proposes a novel heuristic solution, Betweenness centrality
Algorithm for Component Orchestration of NFV platform
(BACON). BACON is based on the betweenness centrality
of a node in a graph that works around the complexity and
the time-consuming execution of the MILP model. Given a
set of servers S and a set of VNFs participating in a SFC,
BACON finds a feasible near optimal VNF placement solu-
tion compared to the MILP optimal solution. The generated
solution satisfies the previous constraints while relaxing the
objective function. BACON executes different subroutines to
find the placement solutions.

Prior to the placement subroutine, BACON analyzes the
types of the participating VNF in a given SFC. The VNF types
are then divided into sub-groups according to their inherited
dependency from the VNF Forwarding Graph (VNFFG). Each
sub-group consists of three VNF types and is assigned a
criticality attribute based on the communication delay tol-
erance of the participating VNF types. If BACON finds an
undercount group, it shares VNF types from another sub-
group. It is necessary to note that a group is considered as an
undercount one when it contains less than three VNF types.
After the grouping step, BACON builds a graph to represent
the model system. The graph is built while considering that all
the available servers in the data center are connected through
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a logical communication link in a mesh topology. BACON
constructs the weighted graph G(V, E, w) where the vertices
V represents the set of available servers in a given data center,
the edges E(v, v′) represents the logical communication link
between the servers, and the weights w(v, v′) represents the
data communication delay between the servers. Since the SFC
is divided into sub-groups of three components, the count of
the vertices is triple the number of the servers. Thus, BACON
covers all the placement possibilities of a sub-group. Once the
graph is built, BACON calculates the Betweenness Centrality
(BC) of the vertices (servers).

A. Calculation of Betweenness Centrality

The calculation of the betweenness centrality is based on
the number of the shortest paths from the source node (s) to
sink node (t) that passes through a specific node. Betweenness
centrality:

B(v) =
∑ αst (v)

αst
∀v �= s, v �= t

where

⎧⎪⎨
⎪⎩

αst (v) = Number of shortest paths from s to t

passing through v

αst = Total number of shortest paths from s to t

(10)

Calculating the BC identifies the servers that can be anchors
for the median nodes in the defined sub-groups. Median nodes
are the VNF instances of the mediator VNF type in a given
sub-group. For example, in Fig. 1, the mediator VNF type
in the given sub-group is VNF type 2. The placement of
the median nodes of the sub-group is based on the critically
attribute. BACON starts by placing the most critical VNF
components of the sub-groups’ median VNF types on the
servers with the highest BC while satisfying the functional
constraints. This placement criterion guarantees that the high-
est critical VNF components in a sub-group are placed in
the most branched servers with the minimal communication
delays. It also guarantees that the critical component has
the maximum count of the computational paths between
the sub-group members without violating the communication
delay tolerance.

Once the median VNF components of the sub-group are
placed on the servers, BACON hosts the members of the other
sub-group on the servers. The group members that interconnect
the sub-groups are placed on the servers with the highest BC.
These servers belong to the intersection subset of the candidate
servers of the interconnected sub-groups median as follows:

Sm = SSG′ ∩ SSG′′

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm = A set of candidate servers to place the

sub-group members

SSG′ = A set of candidate servers to place the

sub-group SG′ median members

SSG′′ = A set of candidate servers to place the

sub-group SG′′ median members

(11)

BACON ensures that the group members have the best-fit
servers with the most branching communication paths without

Fig. 2. BACON: The proposed heuristic algorithm.

violating the communication delay tolerance not only between
the members of a sub-group but also between the intercon-
nected members of the other sub-groups. Finally, BACON
returns the VNF components set where each component is
associated with a host. The generated placement is considered
the best effort to achieve the minimum delay between the
VNF components while maximizing the count of the possible
computation paths. BACON is represented in Fig. 2.

The highest order of magnitude in BACON is the subroutine
that calculates the betweenness centrality of the vertices nodes.
Examining the subroutine closely, the worst-case scenario
can be calculated by finding all the combinations of the
sub-groups while holding the median node then calculating
the betweenness centrality of the median nodes. The results in
order of magnitude are as follows:

O(
n!

(n − 2)! × 2!
) = O(

n2 − n

2
) (12)

Iterating n times over the median node, the worst case is then:

O(
n2 − n

2
) × n = O(

n3 − n2

2
) (13)
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Given n as the total number of available servers “S” in a given
data center then

O(
S3 − S2

2
) (14)

is the highest order of magnitude for BACON.

VII. NFV-AWARE PLACEMENT SIMULATION

At the root level, the cloud consists of data centers dis-
tributed across various geographical areas. Each data center
consists of multiple racks communicating through aggregated
switches. Each rack has a set of shelves hosting servers, which
can have different resources capacities. Servers residing on
the same rack are connected with each other through the
same network device, such as the Top Of the Rack (TOR)
switch. Finally, the VMs/containers are hosted on the servers.
This tree structure determines the network delay constraints
and consequently, the delay between the communicating
VNFs. This architecture divides the cloud into different latency
zones. For the simulation, we have considered 3-tier data
center with:

• Access Switches or TOR Switches: Connecting the
servers in the same rack.

• Aggregation Switches (AS): Connecting the TOR
switches.

• Core Switches: Connecting the AS and acting as gateways
to the external networks.

In order to generate the delay data-set of the servers in
the simulation, we distribute the servers among the DC’s
racks and their data flow throughout the 3-tier DC network.
Each DC network tier represents a specific delay with each
unique server-to-server connection. The delays are generated
randomly and follow a normal distribution with a specific
predefined 99th percentile latency for each tier [60]–[62].

A. Simulation Results and Evaluation

The proposed MILP model and BACON are compared
to two greedy algorithms. The first greedy algorithm is an
NFV-agnostic algorithm. The other one is an NFV-aware
algorithm, “Greedy-k-NFV algorithm” that is proposed
by Qu et al. [43]. This comparison shows the impact of
NFV-aware placement on the computational paths’ delays
that affect the validity of these paths. It also evaluates the
performance of BACON. During the simulation, we have used
the vEPC as the simulation use case [12]. The 3rd Generation
Partnership Project (3GPP) group introduces the EPC as all-
Internet-Protocol (IP) core network architecture [63]. It is
designed to unleash the full potentials of mobile networks
to provide broadband services. In the simulation, the four
major components of the EPC have been considered; Mobile
Management Entity (MME), Home Subscriber Server (HSS),
Serving Gateway (SGW), and Packet Data Network Gateway
(PGW or PDN-GW). Each component represents a VNF type
in the input data-sets of the simulation.

The simulation testbed is implemented and deployed on
SharcNet computing platform [64]. Wobbie-142 computing
server is used to execute the simulation. Wobbie-142 com-
puting server has 24 core-48 thread Intel Xeon E5-2690 v3

TABLE I

SMALL-SCALE DC NETWORK DATA SET

TABLE II

LARGE-SCALE DC NETWORK DATA SET

(2x sockets configuration) and 768.0 GB of memory. The
simulation is executed in two phases:

• Phase 1: Small-scale DC network simulation
In this phase, the data-set of a small-scale DC network
is the input of the MILP model, BACON, and the
greedy algorithms in the testbed. The input data is shown
in Table I, and the evaluation results are shown in Fig. 3,
Fig. 4, Fig. 5, and Fig. 6.

• Phase 2: Large-scale DC network simulation
In this phase, the data-set of a large-scale DC network is
the input of BACON and the greedy algorithms in the
testbed. The input data is shown in Table II, and the
evaluation results are shown in Fig. 7.

B. Components Intra-Communication Delay
Comparative Analysis

This section provides a comparative analysis between the
proposed NFV-aware MILP model, BACON, and the other
greedy placement algorithms for small- and large-scale DC
networks.

1) Small-Scale Network Simulation: Fig. 3 shows the con-
nection delays between the VNF instances of types MME
and HSS. Fig. 4 shows the connection delays between the
VNF instances of types MME and SGW. Fig. 5 shows the
connection delays between the VNF instances of types SGW
and PGW. As shown in the figures, the MILP model generates
the connections with the optimal minimum delay of the
intra-connectivity between the entities. BACON achieves a
near optimal minimum delay where it deviates slightly from
the MILP results. However, BACON has the lowest delays
when compared to the other two greedy algorithms especially
the “greedy-k-NFV” algorithm [43], which minimizes the
communication delay of the SFC entities. The proposed MILP
model and BACON do not only minimize the communication
delay of the intra-links, but they also provide the best count of
the links that satisfy the delay tolerance constraints between
the VNFs instances. However, the other greedy algorithms
generate placement decisions that violate the delay tolerance
constraints between the VNFs instances. Any violation of the
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Fig. 3. Intra-connection delay between VNF instances of types MME and HSS.

Fig. 4. Intra-connection delay between VNF instances of types MME and SGW.

Fig. 5. Intra-connection delay between VNF instances of types SGW and PGW.

delay tolerance constraints terminates the connection between
the VNF instances, and the link is considered as an invalid
one for a computational path. The computational paths delays
are shown in Fig. 6.

The benefits of increasing the number of computational
paths can be quantified by assessing how many members
are participating in a functional group of a VNF instance.
All group members should share the same VNF type and
reside in the same orbital area. The orbital area is defined by
the area where the functional group members can maneuver
without violating any of the previous constraints. Fig. 8
shows the VNF orbital area. The boundaries of an orbital
area are defined by the delay tolerance constraints of the

dependent VNF instances. The higher the number of partici-
pating members in the functional group, the better its perfor-
mance and reliability. The SFC performance and availability
can be enhanced by the functional group members. From a
performance perspective, user data traffic can be offloaded
between the functional group members. The traffic offloading
process is mainly managed by the health check entities in
a system. The health check entities constantly monitor and
collect various metrics from the active VNFs instances and
balance the traffic to achieve the desired performance. From
an availability perspective of the SFC, the functional group
members are considered as redundant components that can
mitigate the failure of the VNF instances due to a sudden
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Fig. 6. The end-to-end delays of SFCs in small-scale DC network.

Fig. 7. The end-to-end delays of SFCs in large-scale DC network.

interruption that affects the QoS of the SFC. The proposed
MILP model and BACON generate the best count of func-
tional group members. The results of Table III represent
the VNF instances count in each VNF-type functional group
for the small-scale DC simulation. The results show that
the proposed heuristic “BACON” and the MILP model have
achieved the best count of VNF members in each VNF-type
functional group. BACON and the MILP model have achieved
count of two, three, two, and three group members for
the following VNF-types; MME-VNF-type, HSS-VNF-type,
SGW-VNF-type, and PGW-VNF-type, respectively. In con-
trary, Greedy-k-NFV algorithm has achieved one, two, one,
and one and the Greedy algorithm has achieved one, one,
one, and one for these VNF-types; MME-VNF-type, HSS-
VNF-type, SGW-VNF-type, and PGW-VNF-type, respec-
tively. Achieving higher member counts (higher VNF count
of different types) in a specific functional group enhances
the QoE for the service users. QoE is determined by the
perception and evaluation of a service from user viewpoint.
With the increase in the member counts in a functional
group, the number of possible computational paths increments
accordingly. These paths can be optimally used by services
to facilitate the migration of data traffic between different
computational paths in case of any degradation in performance
or to migrate any errors while providing a seamless service to
the user and maintaining the desired level of QoE.

Fig. 8. The placement zones of VNFs depending on their sponsors and
dependent VNFs (of different types).

2) Large-Scale Network Simulation: The MILP model has
a high order of magnitude that hinders the results gen-
eration within a reasonable time given the available com-
puting processing power. Therefore, it is not evaluated on
the large-scale network simulation. BACON, the greedy
NFV-agnostic, and the greedy-k-NFV algorithms are evaluated
on the large-scale network. The simulation results are shown
in Fig. 7, and the functional group counts are represented
in Table IV. Similar to the small-scale network simulation,
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TABLE III

THE MEMBERS’ COUNT OF FUNCTIONAL GROUP FOR DIFFERENT
VNF TYPES IN SMALL-SCALE DC NETWORK

TABLE IV

THE MEMBERS’ COUNT OF FUNCTIONAL GROUP FOR DIFFERENT

VNF TYPES IN LARGE-SCALE DC NETWORK

BACON achieves the lowest delays of the SFC computa-
tional paths and the highest count of the functional group
members when compared to the other two greedy algorithms.
The results in Table IV show that the proposed heuristic
“BACON” has achieved the best count of VNF members
in each VNF-type functional group. BACON has achieved
members’ count of 18, 22, 24, and 30 group members for
the following VNF-types MME-VNF-type, HSS-VNF-type,
SGW-VNF-type, and PGW-VNF-type, respectively. However,
the Greedy-k-NFV algorithm has achieved 12, 13, 16, and
21 and the Greedy algorithm has achieved 3, 7, 4, and 9 for
the following VNF-types MME-VNF-type, HSS-VNF-type,
SGW-VNF-type, and PGW-VNF- type, respectively.

BACON outperforms the other two greedy algorithms espe-
cially the greedy-k-NFV. The greedy-k-NFV is proposed to
overcome the scalability of an optimization model while
maximizing the reliability and minimizing the SFC end-to-end
delays [43]. When compared to the greedy-k-NFV algorithm,
BACON has a lower order of magnitude, which allows bet-
ter scalability of the algorithm. The greedy-k-NFV has the

following order of magnitude:

O(kN(M + N log N))

where

⎧⎪⎨
⎪⎩

k = Initial set of paths

M = Number of edges

N = Number of nodes in network

(15)

The simulation environment consists of DCs with multiple
commodity servers to host the NFV applications. Given this
simulation setup, the greedy-k-NFV algorithm variable can
then be represented as follows:

• k = S, the number of servers in a given DC since the
VNF instances can be hosted on any server in the DC.

• M = S2, since all servers are connected to each other
with a logical mesh network.

• N = S, since the node in a network represents a server
in the DC.

To this end, the order of magnitude of the greedy-k-NFV
algorithm can be represented as:

O(S4 + S3 log S)) (16)

where S = Number of servers in a given data center
This shows that BACON has a lower order of magnitude:

O(
S3 − S2

2
) (17)

Thus, BACON outperforms the greedy-k-NFV algorithm as
shown earlier.

C. SFC End-to-End Delay Comparative Analysis

The proposed MILP model and BACON do not only
increase the count of the functional group members, but
their placements’ results show that the computational paths’
delays are minimized when compared to the other two greedy
algorithms. The computational paths’ delays are shown in
Fig. 6 and Fig. 7 for small- and large-scale networks respec-
tively. Minimizing the computational paths’ delays is a
necessity for the SFC orchestration and management entities
because time difference between the delay tolerance and
computing paths’ delays allow the orchestration and the man-
agement entities to apply various policies on the systems.
These policies vary according to the intent of the network
service providers. For example, network service providers
can introduce policies to achieve green or security analysis
networks.

VIII. CONCLUSION

NFV has been introduced by the leading NSPs as a
technology to revolutionize the information and communi-
cations technology industry. It has transformed the network
functions from proprietary hardware to software-based appli-
cations where virtualization can be exploited. The academic
and industrial researchers are investigating the possibilities
of integrating NFV with the virtualization platforms. This
step paves the way to unleash the full potentials of the
NFV technology. Therefore, various NFV challenges should
be resolved to achieve a wider adoption of this technology.
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In this paper, we presented a novel approach to address
the placement problem of VNFs and their associated SFCs.
An MILP model and a heuristic algorithm, BACON, were
proposed to minimize the communication delay between the
VNF instances and enhance the end-to-end QoS of the SFC.
The proposed MILP model and BACON are implemented to
capture the carrier-grade requirements of an NFV application.
They are also evaluated on small- and large-scale DC net-
works data-set. In both cases, the proposed MILP model and
BACON outperform the greedy NFV-agnostic and NFV-aware
algorithms.
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