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Abstract—Internet of Things (IoT) technology has been per-
vasively applied to environmental monitoring, due to the ad-
vantages of low cost and flexible deployment of IoT enabled
systems. In many large-scale IoT systems, accurate and efficient
data sampling and reconstruction is among the most critical
requirements, since this can relieve the data rate of trunk
link for data uploading while ensure data accuracy. To address
the related challenges, we have proposed an unmanned aerial
vehicle (UAV) enabled spatial data sampling scheme in this
paper using denoising autoencoder (DAE) neural network. More
specifically, a UAV-enabled edge-cloud collaborative IoT system
architecture is firstly developed for data processing in large-
scale IoT monitoring systems, where UAV is utilized as mobile
edge computing device. Based on this system architecture, the
UAV-enabled spatial data sampling scheme is further proposed,
where the wireless sensor nodes of large-scale IoT systems are
clustered by a newly developed bounded-size K-means clustering
algorithm. A neural network model, i.e. DAE, is applied to each
cluster for data sampling and reconstruction, by exploitation of
both linear and nonlinear spatial correlation among data samples.
Simulations have been conducted and the results indicate that
the proposed scheme has improved data reconstruction accuracy
under the sampling ratio without introducing extra complexity,
as compared to the compressive sensing based method.

Index Terms—Data sampling, spatial correlation, denoising
autoencoder (DAE), neural network, unmanned aerial vehicle
(UAV), large-scale Internet of Things (IoT) system.

I. INTRODUCTION

With the advantages of low cost and flexible deployment,
large-scale Internet of Things (IoT) systems have been widely
applied to environmental monitoring, including oceanic mete-
orology monitoring and forest fire surveillance [1]. A general
architecture of such system consists of a large number of
connected wireless sensor nodes and a cloud platform, where
the sensor nodes as data collection layer are pervasively
deployed in the target areas for environmental sensing and
sampling, while the cloud platform is utilized as the remote
data center for data processing and analysis [2].

However, considering the harsh environment of operation
fields, wireless communications between sensor nodes are
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vulnerable to different kinds of obstacles and interference.
Additionally, with the enlarging scale of IoT system, tremen-
dous amount of data uploading imposes a heavy burden on
the bandwidth requirement of trunk link. Thus, accurate and
efficient data sampling and reconstruction is among the most
critical technical demands for the design and operation in
the cloud-enabled IoT systems. In order to overcome this
challenge, unmanned aerial vehicle (UAV) has been introduced
into the large-scale IoT system as mobile edge computing
device [3]. Here the UAV-enabled edge device serves as
the intermediate layer of IoT system [4]. Given the special
location of intermediate layer, the UAV can support real-time
responses for the sensor nodes and offload tasks from the cloud
by preliminary data processing and analysis. Through the
deployment of UAV, an edge-cloud collaborative IoT system
architecture has been developed for data processing in large-
scale IoT monitoring systems.

Based on this system architecture, a novel spatial data
sampling scheme has been further proposed, which can reduce
the amount of data sampled at sensor nodes and relieve
the bandwidth requirement of the link between UAV and
cloud. The principle behind the proposed scheme is the spatial
and temporal correlation between sensor data. In a complex
environment, the correlation between different types of phys-
ical sensor data is not simple as linearity [5]. Therefore, a
neural network model, i.e. denoising autoencoder (DAE) [6], is
utilized in our work, which has the capability of compressing
both linearly and nonlinearly correlated data.

The proposed sampling scheme consists of three phases,
namely, system initialization, model training and data sam-
pling. During the first stage, a UAV hovers above the target
area served by the large-scale IoT system and the cloud. All
sensor nodes keep active and upload data to the cloud through
UAV. Based on the collected data, sensor nodes are clustered
by the newly developed bounded-size K-means clustering
algorithm. In the second phase, certain sensor nodes within
each cluster are selected as data sampling representatives. DAE
models for the clusters are trained in the cloud. Parameters of
encoders in DAE models are sent to the UAV, while parameters
of decoders are kept in the cloud. In the phase of data sam-
pling, data are sampled from selected representatives and then
encoded by the UAV before being forwarded to the cloud. The
full dataset is finally decoded and reconstructed in the cloud.
With the support of cluster formation and UAV, the efficiency
of data sampling can be improved. Performance evaluation is
conducted, where compressive sensing as a conventional data
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sampling method in IoT systems is utilized as the benchmark
method. According to the numerical results, the proposed
scheme has dramatically improved the data reconstruction
accuracy under the same sampling ratio without introducing
additional computational complexity.

The contributions of this paper are summarized as follows:
• A UAV-enabled edge-cloud collaborative IoT system ar-

chitecture is developed for data processing in large-scale
IoT systems, which overcomes the critical challenges
of cloud-enabled IoT systems, including high latency,
bandwidth overload and unstable connection to the cloud.

• A novel spatial data sampling scheme has been proposed
for efficient data sampling and reconstruction in the
large-scale IoT monitoring systems. In order to fully
exploit the spatial data correlation, DAE neural network
has been selected as the fundamental data sampling and
reconstruction model. With DAE, the sampled data can
be precisely reconstructed in the cloud. In the meantime,
by locating the encoder in DAE at the UAV, the amount
of data uploaded to the cloud is dramatically reduced and
thus the burden on the trunk link is relieved.

• A novel bounded-size K-means clustering algorithm has
been developed specifically for cluster formation and
the cluster-based spatial data sampling in the proposed
scheme. In the novel clustering algorithm, the lower and
upper bounds of cluster size are predetermined, which
considers the effect of cluster size on the intra-cluster
communications and data sampling.

The remaining of this paper is organized as follows. Section
II summarizes the related works on spatial data sampling in
IoT systems. In Section III, DAE neural network model is
explained in details. The architecture of UAV-enabled edge-
cloud collaborative IoT system is developed in Section IV,
and the novel spatial data sampling scheme is then proposed
in Section V. Performance evaluation is conducted in Section
VI. Finally, the work is concluded in Section VII.

II. RELATED WORK

Spatial correlation based data sampling in remote sensing
field has been well studied in recent years. According to the
different fundamental models used, related works are classified
into the following categories.

Compressive Sensing (CS) is a data compression technique
that can map high-dimensional data into sparse domain by
utilizing random sensing matrix. In CS-based methods, the
sensing field is considered as sparse domain, where data are
sparsely sampled from the field and fully recovered at the
receiver. Compressive data gathering (CDG) was the first CS-
based method proposed for large-scale wireless sensor net-
works (WSNs) [7]. WSNs were deployed as the data collection
layer of IoT systems. Data were converted to the sparse
domain by DCT (discrete cosine transform) and compressed
along multi-hop routing path. In [8], the authors proposed a
well-developed CS-based framework for data sensing, sam-
pling and recovery, where PCA (principal component analysis)
was used to generate the sparse domain. A cluster-based
random sampling algorithm was proposed in [9]. The sparse

matrix was generated at the sink by random sampling at both
intra-cluster and inter-cluster levels.

As stated, several research efforts have been spared on CS-
based data sampling in IoT systems, while the weaknesses of
these methods are mostly due to the intrinsic constraints of CS
technique. Application of CS is limited by the restricted isom-
etry property (RIP). However, sparse domain sometimes may
not exist for data sampled from complex circumstances. Ad-
ditionally, although mapping data into special sparse domain
can further compress data, the complexity of data recovery
algorithm will be dramatically increased as a result.

Principal Component Analysis (PCA) is a linear corre-
lation based feature extraction model. Therefore, PCA and
variations of PCA based spatial data aggregation has been
widely used in WSNs and IoT systems. In [10], distributed
compressive-project PCA was proposed in cooperation with
second-order data-coupled clustering algorithm for efficient
data collection in large-scale WSNs. Similarly, the authors in
[11] proposed a cluster-based framework as well, aiming at
outlier-free data aggregation in IoT systems. The difference
was that recursive PCA was used in [11] for adaptively
updating PCA models.

Autoencoder (AE) is a neural network model for feature
extraction, which can be considered as nonlinear PCA. Given
the outstanding performance on data modeling and processing,
neural network models have attracted attentions from both
industrial and academic institutions. In terms of spatial data
sampling in large-scale IoT systems, AE has been used in
replace of PCA given the nonlinear processing capability. In
[12], the authors proposed a data compression algorithm with
error bound guarantee, where data were spatially compressed
by AE-based nonlinear feature extraction.

However, both PCA and AE based methods sample full
dataset from the sensing field, and then spatially compress
data at a cluster head or fusion center. By contrast, CS-based
methods have the capability of sparsely sampling from the
sensing field directly, so that both sampling and communi-
cation related processing and cost can be further saved. By
exploitation of DAE, our proposed scheme can sample subset
of data directly from the sensing field as well. As compared to
CS, the data reconstruction accuracy has been improved under
the same sampling ratio.

III. DENOISING AUTOENCODER NEURAL NETWORK

The fundamental mathematical model behind our proposed
scheme is DAE, which is a neural network model that can be
used to reconstruct full dataset from sampled subset [6]. In
this section, DAE is explained based on the introduction to
basic AE.

A. Basic Autoencoder (AE)

AE is a neural network model for feature extraction. The
difference to PCA model is that AE has the capability of
dealing with nonlinear data. As a neural network model, AE
is also consisted of input, hidden and output layers, while the
special case is that the target output of AE is its input. A
general structure of AE with single hidden layer is shown in
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Fig. 1: Autoencoder neural network with single hidden layer.

Fig.1, where the projection from input layer to hidden layer
is termed as encoder and hidden to output is decoder.

The mapping function of encoder is expressed as

y = fθ(x) = f(W · x + bf ) (1)

where x is the input vector in n dimensions, while y is the
hidden layer readout with k units. f(·) is a nonlinear activation
function, and sigmoid function is generally adopted. W[k×n]

is the input weight matrix, and bf is the input bias vector.
Correspondingly, the decoder is given by

z = gθ′(y) = g(V · y + bg) (2)

where z is the output vector with the same dimension as input
x. g(·) is the activation function of the decoder. Both identity
and sigmoid function are frequently used. V[n×k] is the output
weight matrix, and bg is the output bias vector.

To find out the optimal parameter sets θ = {W,bf} and
θ′ = {V,bg}, the cost function of basic AE is given by

Jθ,θ′ =
1

m

m∑
i=1

‖z(i) − x(i)‖22 (3)

which penalizes the squared error between input x and output
z. m is the size of training dataset.

B. Denoising Autoencoder (DAE)

Based on the basic AE, DAE is further proposed by P.
Vincent et al. [6] to extract features and reconstruct original
data from corrupted data as shown in Fig.2.

Fig. 2: Structure of denoising autoencoder.

Original data x is corrupted to x̃ by

x̃ = qD(x) (4)

where qD is corruption function. In our data sampling scheme,
qD is defined as a mask function that makes x̃ a subset of x.

As shown in Fig.2, the corrupted data vector x̃ is encoded
to y and then decoded to z by

y = fθ(x̃), z = gθ′(y). (5)

Since the objective of DAE is to recover the original data
x from the corrupted data x̃, the cost function is defined as
the squared error between original x and reconstructed z as

Jθ,θ′ =
1

m

m∑
i=1

‖z(i)−x(i)‖22 =
1

m

m∑
i=1

‖gθ′(fθ(x̃(i)))−x(i)‖22.

(6)
Mini-batch based gradient descent algorithm [13] is used

to solve the problem and learn the parameters. Though the
training procedure occupies certain computational load and
memory, it is executed in the cloud platform and does not
impose additional burden on the sensor nodes nor the UAVs.

IV. UAV-ENABLED EDGE-CLOUD COLLABORATIVE IOT
SYSTEM ARCHITECTURE
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Fig. 3: UAV-enabled edge-cloud collaborative architecture for
data processing in large-scale IoT monitoring systems.

A UAV-enabled edge-cloud collaborative IoT system ar-
chitecture for data processing in large-scale IoT monitoring
systems is developed as shown in Fig.3, which consists of
three major components, namely, wireless sensor nodes as end
devices, UAVs as mobile edge devices and IoT cloud platform.
Details of each component are given below.
• IoT cloud platform is the remote data and control center

for the IoT system, leveraging cloud computing to achieve
complex data processing and analysis, cluster formation for
wireless sensor nodes, as well as coordination of UAV flight
paths. Particularly, since the training process of the DAE
models is too complex to be loaded on either sensor nodes or
UAVs, the parameter sets are learned through the training in
the cloud. The parameters of encoders in DAE models are then
sent to UAV for data encoding. The parameters of decoders
are kept in the cloud for data reconstruction.
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Fig. 4: Dataflow in UAV-enabled spatial data sampling scheme.

• UAVs are utilized as mobile edge computing devices,
which can support both local processing for the local events
with critical real-time requirements and preliminary processing
to offload the computational tasks from the cloud and relieve
the bandwidth requirements of the underlying trunk link. In
terms of wireless communications, UAVs are able to carry
different RF modules and support different protocols. For
instance, UAVs have the capability of communicating with
sensor nodes in a self-organized way through ZigBee modules,
and possibly serve as relays to forward the information to the
cloud. Therefore, in the proposed scheme, UAV is utilized to
collect and encode the sampled data before uploading them to
the cloud. Depending on the service area of the large-scale IoT
system, one or multiple UAVs could be used. Multiple UAVs
can improve the efficiency of data sampling and encoding.
However, exploitation of multiple UAVs adds more cost on
device management and also introduces the issue of multiple-
UAV cooperation into the system in the meantime.
• Wireless sensor nodes are the fundamental components

in IoT systems, which are normally deployed in the target
areas in random or predetermined way to sense and sample
environmental information. For instance, in forest fire surveil-
lance system, temperature, smoke and humidity sensors are
utilized for fire detection. These nodes are able to be self-
organized into WSNs. Furthermore, a WSN is modeled as an
undirected graph G = (V,E) here. Sensor nodes are modeled
as vertices V , and wireless communication links between
nodes are modeled as edges E. Degree of a vertex is modeled
by the number of valid neighbors of a sensor node. Only
the nodes with valid wireless communication capability are
defined as valid neighbors.

V. UAV-ENABLED SPATIAL DATA SAMPLING SCHEME
USING DENOISING AUTOENCODER NEURAL NETWORK

A UAV-enabled spatial data sampling scheme for large-scale
IoT monitoring systems is proposed in this section. As stated
in Algorithm 1, the scheme consists of three phases, namely,
system initialization, model training and data sampling. The
dataflow in three phases is shown in Fig.4. More details are
given in the following paragraphs.

Algorithm 1 UAV-Enabled Spatial Data Sampling Using DAE
1: System Initialization:
2: set up UAV-IoT communication system
3: construct the physical topology of WSN in the cloud
4: UAV hovers above the target area as mobile relay and

forwards raw data samples from sensor nodes to the cloud
5: cluster sensor nodes by Algorithm 2
6: Model Training:
7: rank the link quality based on RSSI and LQI at UAV
8: select communication and data sampling representatives
9: send dissociation notification to the remaining ones

10: train {θ, θ′} with random masks qD in the cloud
11: send θ = {W, bf} to UAV for data encoding
12: Data Sampling:
13: collect data x̃ from representatives to UAV
14: if RSSI or LQI is below threshold then
15: trigger model training procedure
16: else
17: encode data by y = fθ(x̃), and forward y to the cloud
18: end if
19: the original data is reconstructed by gθ′(y) in the cloud

A. System Initialization

Wireless communications between the components in IoT
system are set up first. More specifically, wireless sensor nodes
embedded with ZigBee RF modules are randomly deployed
in the target area and self-organized into WSNs. UAV hovers
above the target area, and wirelessly communicates with the
nodes and the cloud through ZigBee and Wi-Fi, respectively.

1) Physical Topology Construction: Considering the ran-
domness and self-organization features, physical topology of
the WSN cannot be known in advance, which needs to
be constructed in the cloud by exploitation of the physical
topology discovery scheme proposed in our previous work
[14]. Physical topology provides the physical locations of
sensor nodes and logical topology of the WSN.

2) Raw Data Collection: UAV keeps hovering above the
target area and broadcasting beacon signal. According to
IEEE802.15.4, sensor nodes would passively scan the channel,
and send association request to the UAV once the beacon
signal is detected [15]. After the association is set up, raw
data packets are transmitted from the sensor node to the UAV.
UAV measures and records the RSSI (received signal strength
indicator) and LQI (link quality indicator) of the received data
packet, and then forwards the packet to the cloud.

3) Clustering: Based on the physical locations and raw
data obtained in the first two steps, sensor nodes are clus-
tered by the newly proposed bounded-size K-means clustering
algorithm in the cloud. Pseudocode is listed in Algorithm
2. In the proposed clustering algorithm, sizes of generated
clusters are bounded in range [MIN CZ, MAX CZ], which
are predetermined lower and upper bounds respectively.

Physical distance between locations and Euclidean distance
between data are jointly utilized as the clustering criterion,

‖li − lCj
‖2 + β‖di − dCj

‖2 ≤ ε (7)
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where li and di are location and data of sensor node i, while
lCj and dCj indicate average location and data centroids of
cluster j. β is the weight to balance these two metrics and
ε is the threshold. All collected data are normalized first to
remove the impact of different scales.

Algorithm 2 Bounded-Size K-means Clustering Algorithm
1: Input: node set S, lower bound MIN CZ, upper bound

MAX CZ, initial value and offset of ε (εINI , εOFFSET )
2: initialize K = 1, ε = εINI , S1 as centroid of cluster 1
3: while minimal cluster size < MIN CZ do
4: for each node Si in S do
5: for cluster j = 1 : K do
6: if Eq.(7) satisfied and size of j <MAX CZ then
7: assign Si to cluster j, update centroids of j
8: break
9: end if

10: end for
11: if Si is not assigned to existing clusters then
12: K = K + 1, and Si as centroid of cluster K
13: end if
14: end for
15: ε = ε + εOFFSET
16: end while
17: Output: K and generated clusters

The procedure of cluster formation using Algorithm 2 is
further explained as follows.

• The first cluster is formed up by regarding the location
and data of the first sensor node as cluster centroids.

• For the remaining nodes in the network, if a node satisfies
the clustering criterion of a cluster and the cluster size
is not beyond the upper bound MAX CZ (line 6 in
Algorithm 2), the node is assigned to such cluster and
the cluster centroids are updated with the new average
values of location and data. If a node cannot be assigned
to any existing clusters, a new cluster is formed with the
location and data of such node as cluster centroids.

• The proposed bounded-size K-means clustering algorithm
is an iterative algorithm, the stopping condition is that the
minimal cluster size of the generated clusters is larger
than or equal to the lower bound MIN CZ.

For the generated clusters, the dataset of cluster j at time t,
x

(t)
j , is the concatenation of data from member sensor nodes,

which is considered as the original data vector in DAE.

B. Model Training

Within each cluster, two types of representatives are selected
for communication with the UAV and data sampling, respec-
tively. Communication representatives are chosen by the UAV
according to link quality, while data sampling representatives
are determined by the cloud. Based on the selections, corre-
sponding DAE models are trained for the clusters.

1) Communication Representative Selection: During the
stage of system initialization, RSSI and LQI are measured
and recorded at UAV as shown in Table I.

TABLE I: Record of Link Quality

Device ID MAC Address RSSI LQI Cluster ID

RSSI and LQI are jointly used to evaluate the link quality,
which is calculated as

quality =
RSSI

RSSI MAX
+

LQI

LQI MAX
(8)

where RSSI and LQI indicate the power strength of received
signal and the success of received packet demodulation re-
spectively. In communication protocols such as IEEE802.11
and IEEE802.15.4, RSSI and LQI are both defined in range
0x00∼0xFF, namely, RSSI MAX=0xFF, LQI MAX=0xFF,
where higher value indicates better quality. In practical ap-
plications, chipset manufacturers can self-define the value of
RSSI MAX and LQI MAX. However, by scaling RSSI and
LQI, the quality defined in (8) always ranges from 0 to 2 and
2 indicates the best link quality.

Based on the ranking of quality, the sensor node with the
best link quality in a cluster is selected as the communication
representative. The working mode of the selected node is
converted to coordinator. The remaining sensor nodes within
the same cluster upload data through the coordinator instead
of communicating with UAV directly. By this way, the time
duration of UAV-enabled data sampling can be reduced.

2) Data Sampling Representative Selection: Given a cluster
j (j = 1, 2, . . . ,K), NCj sensor nodes are contained. NRj
out of NCj sensor nodes are selected as representatives for
data sampling. Based on the knowledge of logical topology,
degree of each sensor node can be calculated. Within each
cluster, order the member sensor nodes according to node
degree. Node with the highest degree and the lowest (NRj−1)
ones are selected as data sampling representatives.

The communication representative only communicates with
the selected sampling representatives for data uploading, and
sends disassociation notification to the remaining ones.

… ...

Random Mask

Fig. 5: Masks are randomly generated.

3) Model Training: Random masks are generated to project
original data vector x

(t)
j to subset x̃

(t)
j , as shown in Fig.5.

In terms of the masks, a fraction of original x
(t)
j would be

dropped off, namely, (NCj − NRj) out of NCj in x
(t)
j

would be replaced by nan (not a number). Taking Fig.5 as
an example, the original data vector is

x
(t)
j = [d

(t)
1 ;d

(t)
2 ; . . . ;d

(t)
5 ] = [d

(t)
1,1, d

(t)
1,2, . . . , d

(t)
1,p1

,

d
(t)
2,1, d

(t)
2,2, . . . , d

(t)
2,p2

, . . . . . . , d
(t)
5,1, d

(t)
5,2, . . . , d

(t)
5,p5

]
(9)
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and the sampling subset is

x̃
(t)
j = [nan;d

(t)
2 ;nan;d

(t)
4 ;d

(t)
5 ]

= [nan, . . . , nan, d
(t)
2,1, d

(t)
2,2, . . . , d

(t)
2,p2

, nan, . . . ,

nan, d
(t)
4,1, d

(t)
4,2, . . . , d

(t)
4,p4

, d
(t)
5,1, d

(t)
5,2, . . . , d

(t)
5,p5

]

(10)

where d
(t)
i is the data vector generated by sensor node i in

cluster j at time t, and pi is the number of measured physical
variables. Namely, the dimension of d(t)

i is pi.
DAE model parameter sets {θj , θ′j} of cluster j are learned

by minimizing the cost function,

Jθj ,θ′j =
1

m

m∑
t=1

‖gθ′j (fθj (qDt(x
(t)
j )))− x

(t)
j ‖

2
2 (11)

where qDt is the mask randomly generated at time t. f(·) is
sigmoid function, and g(·) is linear function. m is the amount
of historical data samples memorized in the cloud for training.
Mini-batch gradient descent algorithm is applied to solve (11).
θ = {W,bf} is sent to the UAV for data encoding. θ′ =
{V,bg} is maintained in the cloud for data reconstruction.

C. Data Sampling

Dataflow of spatial data sampling and reconstruction has
been shown in Fig.4. Data processing at each component is
specifically provided as follows.

1) Data Sampling: Based on the clusters setup and rep-
resentatives selected in Subsection V-A and V-B, data are
collected from the data sampling representatives to the com-
munication representative and then forwarded to the UAV.

2) Data Encoding: The collected data samples are encoded
at the UAV by

y(t) =
1

1 + e−(Wx̃(t)+bf )
(12)

where W and bf are the parameters obtained from the training
in Subsection V-B3. y(t) is forwarded to the cloud.

Simultaneously, RSSI and LQI of received data packet are
evaluated as well. If either RSSI or LQI is below a pre-defined
threshold, a warning is sent to the cloud. The model training
procedure is re-triggered cooperatively by UAV and cloud.

3) Data Reconstruction: In the cloud platform, data from
each cluster is reconstructed by

z(t) = Vy(t) + bg (13)

where V and bg are the parameters learned and maintained
from the training in Subsection V-B3.

VI. PERFORMANCE EVALUATION

Simulations are conducted in this section to analyze the
clustering result and accuracy of final data reconstruction,
based on the simulation settings given in Subsection VI-A.
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Fig. 6: Geographical distribution (a) and temporal variance (b)
of temperature field.

A. Simulation Settings

1) Fundamental Settings: Fig.6 shows both the geograph-
ical distribution and temporal variance of temperature field.
Fig.6(a) is a 100m×100m field, where temperature varies
continuously. The temporal trend in Fig.6(b) indicates the
variance of mean value of the geographical temperature field
within 10 days. The unit of horizontal axis in Fig.6(b) is
hour. 100 sensor nodes are randomly deployed in the area
(not shown). The altitude coordinate of a sensor node is the
height of the deployed location. The transmitting power of
sensor nodes is homogeneously set to -10dBm and the receiver
sensitivity is -90dBm.

UAV flight path is also demonstrated in Fig.6(a). UAV
hovers above the target area with an even interval. Hovering
interval has direct influence on the localization accuracy [14],
but does not have much effect on the following investigations.
Hence, the interval is set to 10m without losing generality. The
hovering height is 20m above the field. The hovering bias is
±1.5m in latitude and longitude and ±0.5m in altitude.

2) Wireless Communication Channel Models: For the sig-
nal propagation from UAV to sensor nodes, and peer-to-peer
channels among sensor nodes, two-ray ground and free-space
outdoor models are respectively used, considering the different
signal propagation environments.

For the air-to-ground signal propagation from UAV to
sensor node, two-ray ground model is commonly used, which
considers both the line-of-sight (LOS) and ground-reflected
rays. For wireless communications among sensor nodes, the
signal propagation channel quality is worse, given the potential
near-ground scatters. Instead of two-ray ground model, free-



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876695, IEEE Internet of
Things Journal

7

space outdoor model is thus adopted. This is a channel
model designed specifically for WSNs in the outdoor open
areas, which jointly considers the effect of the free-space
propagation, ground reflection, RSS uncertainty and antenna
radiation impact.

Two-ray Ground Model: For large distance d, the re-
ceived power Pr (in dBm) can be derived by the two-ray
ground model as [16],

Pr(dBm) = Pt + 10log(GtGr) + 20log(HtHr)− 40log(d)
(14)

where Pt is the transmitting power. d is the horizontal distance
between transmitter and receiver. Gt and Gr are the antenna
gains of transmitter and receiver, Gt = Gr = 1. Ht and Hr

are the antenna heights of transmitter and receiver.
Free-Space Outdoor Model: The received power is mod-

eled as [17],

Pr(dBm) =Pt + 20log(
λ

4πd
) + 10log(K2

1 +K2
2Γ2

+ 2K2Γcos(
2π

λ
∆L)) +Xσ

(15)

where λ is the propagation wavelength, and K1 and K2 are
coefficients irregularity in antenna radiation pattern. ∆L is the
path difference between LOS and ground-reflected rays. Xσ

is the RSS uncertainty that follows Gaussian distribution. Γ is
the ground reflection coefficient,

Γ =
sin θ −

√
(ε− jxΓ)− cos2 θ

sin θ +
√

(ε+ jxΓ)− cos2 θ
(16)

where parameters of average ground are used without losing
generality, ε = 15, xΓ = 3.75×10−2. θ is the reflection angle.

B. Clustering Analysis

The proposed bounded-size K-means clustering algorithm
is analyzed in this subsection. Since the proposed algorithm
is threshold-based, the traditional threshold-based clustering
algorithm [18] is selected as benchmark. The improvement of
the proposed clustering algorithm as compared to the bench-
mark method is firstly provided. Influence of the parameters
including lower bound, upper bound, εINI and εOFFSET on
the clustering results is further investigated.

With the traditional clustering algorithm, when the threshold
ε is set to 3, the number of sensor nodes in each of the
generated clusters is shown in Fig.7(a), which illustrates that
eleven clusters are generated and three of them contain only
a single node as highlighted in red. When ε = 5, five clusters
are generated and there is one cluster containing a single node
as shown in Fig.7(b). The results in Fig.7(a) and (b) indicate
that with the increment in threshold ε, the number of clusters
with single node decreases indeed. However, it may result in
some “huge” clusters in the meantime. The huge cluster refers
to the cluster with extremely large amount of sensor nodes,
for example, in Fig.7(b), cluster 1 containing 55 sensor nodes.

In our proposed data sampling scheme, the communication
representative in each cluster is functioned as a coordinator and
directly communicates with the UAV, while the other cluster
members communicate with the coordinator locally. Therefore,
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Fig. 7: Comparison between traditional threshold-based clus-
tering algorithm (a) ε=3 (b) ε=5 and the proposed bounded-
size K-means clustering algorithm (c) [5, 15] and εINI=3.
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Fig. 8: Influence of parameters on clustering results.

in the “huge” clusters, the intra-cluster communications would
be overload with multiple hops and also vulnerable to the
environmental interference of the wild fields. In addition to
the “huge” clusters, in the cluster with single node, the single
node has to be regarded as both data sampling representative
and communication representative in the meantime, which
can result in the early death of such node. Hence, we have
added new attributes in the proposed clustering algorithm,
namely, the upper and lower bounds of cluster size [MIN CZ,
MAX CZ]. As shown in Fig.7(c), when the bounds are set
to [5, 15], εINI = 3, and εOFFSET = 0.01, sizes of the
generated clusters are more balanced.

Influence of the parameters on clustering results is shown
in Fig.8, where (a) shows the effect of the lower and
upper bounds [MIN CZ, MAX CZ] with εINI = 3 and
εOFFSET = 0.01, while (b) shows the influence of εINI and
εOFFSET with MIN CZ=2 and MAX CZ=15. From Fig.8(a)
it can be seen that with the increment in MIN CZ, the number
of clusters generated (namely, K in Fig.8) decreases, which
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Fig. 9: Original, sampled and reconstructed temperature values
(◦C) from 15 sensor nodes within a cluster.

is due to the iteratively increased threshold ε. In addition,
given the fixed MIN CZ, with the increment in MAX CZ,
the number of clusters generated reduces, which is because the
clustering result is mainly affected by the setting of MAX CZ
in such condition. From Fig.8(b) we can notice that with the
increment in εINI , the number of clusters generated decreases.
In the meantime, with the increasing εOFFSET , the value of
K converges faster. The reason is that with higher threshold ε,
more sensor nodes would satisfy the threshold and be gathered
into the same cluster and the “huge” clusters are then bounded
by MAX CZ. Overall, the clustering result is jointly affected
by these parameters, which need to be seriously predetermined
by the requirements of specific applications.

C. Data Reconstruction Analysis

Data reconstruction accuracy is investigated in this subsec-
tion. Bounds in the clustering algorithm are set to [2,15],
εINI = 3, εOFFSET = 0.01 and β = 0.1, and 10 clusters
are generated. DAE model of each cluster is trained by mini-
batch gradient descent algorithm, where the batch size is set
to 48. The length of training dataset is 480 (about 20 days),
while the length of testing dataset is 120 (5 days).

Fig.9 is demonstrated as an example, which shows the
original temperature readings from 15 sensor nodes within a
cluster (labeled 1∼15), and also the sampled and reconstructed
values. It indicates that with 12 sensor nodes selected as data
sampling representatives, the reconstructed data can have an
accurate approximation of the original data.

In order to quantatively evaluate the reconstruction accuracy,
data reconstruction error is defined by the average squared l2-
norm of difference between reconstructed and original data,

error =
1

T

T∑
t=1

‖z(t) − x(t)‖22 (17)

where z and x are reconstructed and original data vectors,
respectively. T is the length of testing dataset.
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Fig. 10: Comparison on data reconstruction error between
DAE and CS under different sampling ratios.

1) Data Sampling Representative Selection Analysis: As
proposed in Subsection V-B2, the node with the highest degree
and the nodes with lowest degrees in each cluster are selected
as the data sampling representatives. Data reconstruction error
generated by using the proposed selection criterion is evaluated
here, as compared to other selection criteria, including the
selection of nodes with highest degrees, selection of nodes
with lowest degrees and random selection. Comparison under
different sampling ratios is listed in Table II, where the sam-
pling ratio refers to the ratio of the number of representatives
over the total number of sensor nodes in the cluster.

TABLE II: Comparison on Data Sampling Representative
Selection Criteria

Method Proposed Highest Lowest Random
Sampling Ratio = 0.6 0.0943 0.1056 0.1003 0.1206
Sampling Ratio = 0.7 0.0217 0.0277 0.0241 0.0249
Sampling Ratio = 0.8 0.0137 0.0140 0.0146 0.0165

It can be seen that the data reconstruction error dramatically
decreases with the increment in the sampling ratio, while for
different selection criteria the difference in error is trivial. The
reason is that during the training procedure of DAE model,
random masks are used. Therefore, from the perspective of
data reconstruction, there is minor difference between these
selection criteria. The proposed scheme mainly concerns the
physical meanings of the data samples in the actual applica-
tions. In the clusters of sensor nodes, the node with the highest
degree is located at the hot spot of the cluster and can represent
its densely distributed neighbor nodes, while the nodes with
lowest degrees are possibly located at the edge of the cluster
or the area with sparse node distribution which can hardly be
represented by others. That is the reason why the data samples
measured by these nodes are collected.

2) Comparison with Compressive Sensing (CS): Compar-
ison on the error generated by two methods under different
sampling ratios is shown in Fig.10, where DAE represents our
proposed scheme and CS refers to the CS-based benchmark
method. It can be seen that with the increment in the sampling
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ratio, the data reconstruction error decreases. The reason is
that with higher sampling ratio, the uncertain proportion of
collected data is less, which further improves the reconstruc-
tion accuracy. Additionally, the error curves of “DAE” and
“CS” indicate that the proposed scheme outperforms CS-based
method, especially when the sampling ratio is low.

In terms of the complexity analysis, the computational
complexity of CS-based method is dominated by the recovery
algorithm. Therefore, the overall complexity is determined by
the selection of recovery algorithm. In our simulation, iterative
reweighted least squares (IRLS) algorithm is exploited for data
recovery [19]. While for DAE-based method, the computa-
tional complexity of the proposed method is dominated by the
model training procedure, where mini-batch gradient descent
(GD) algorithm is used to learn the parameters. IRLS and
mini-batch GD are both iterative algorithms. IRLS algorithm
needs fewer iterations to converge, while the cost of IRLS at
each iteration is higher [20]. Therefore, the comparison on the
computational complexity between IRLS and mini-batch GD
is determined by the features of data.

VII. CONCLUSION

In order to address the challenge of accurate and efficient
data sampling and reconstruction in large-scale Internet of
Things (IoT) systems, we have proposed a cluster-based
spatial data sampling scheme using denoising autoencoder
(DAE) neural network, by exploitation of the spatial data
correlation. UAV was utilized as the mobile edge device
and an edge-cloud collaborative data processing architecture
was then developed, where wireless sensor nodes and cloud
platform were involved for environmental sensing and complex
data analysis respectively. In achieving the cluster formation
for the proposed data sampling scheme, a novel bounded-
size K-means clustering algorithm was proposed. A neural
network model, DAE, was exploited to fully extract the spatial
data correlation and perform data sampling and reconstruction
for each cluster. Specifically, the encoders in DAE models
were deployed at the UAV for encoding data collected from
sampling representatives, while the decoders were located in
the cloud for data reconstruction. Simulations were conducted
and numerical results indicated that our scheme improved the
data reconstruction accuracy under the same sampling ratio,
as compared to the compressive sensing based method.
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