Evaluating High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud Scoring Selection Tool

Manar Jammal¹, Ali Kanso ², Parisa Heidari³, and Abdallah Shami¹

¹Western University, London ON, Canada
²IBM T.J. Watson Research Center, New York, USA
³Ericsson Research, Montreal, Canada

Different challenges are facing the adoption of cloud-based applications, including high availability (HA), energy, and other performance demands. Therefore, an integrated solution that addresses these issues is critical for cloud services. Cloud providers promise the HA of their infrastructure while cloud tenants are encouraged to deploy their applications across multiple availability zones with different reliability levels. Moreover, the environmental and cost impacts of running the applications in the cloud are an integral part of incorporated responsibility, where both the cloud providers and tenants intend to reduce. Hence, a formal and analytical stochastic model is needed for both the tenants and providers to quantify the expected availability offered by an application deployment. If multiple deployment options can satisfy the HA requirement, the question remains, how can we choose the deployment that satisfies the other providers and tenants requirements? For instance, choosing data centers with low carbon emissions can both reduce the environmental footprint and potentially earn carbon tax credits that lessen the operational cost. Therefore, this paper proposes a cloud scoring system and integrates it with a Stochastic Petri Net model. While the Petri Net model evaluates the availability of cloud applications deployments, the scoring system selects the optimal HA-aware deployment in terms of energy, operational expenditure (OPEX), and other norms. We illustrate our approach with a use case that shows how we can use the various deployment options in the cloud to satisfy both the cloud tenant and provider needs.

Index Terms—Availability, cloud scoring, carbon footprint, OPEX, Petri Net, stochastic failures, recovery, load balancing.

I. INTRODUCTION

With the cloud computing era, many business applications are offered as cloud services where they can be accessed anytime and anywhere. Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) are essential forms of cloud services provided for many enterprises. Depending on the cloud user’s needs, PaaS and IaaS provide the required web applications and computational resources in the form of virtual machines (VMs). With the widespread of on-demand cloud services, their availability, energy consumption, and other performance issues become paramount aspects for cloud providers and users [1]. Nowadays, cloud users and providers depend on affinity/anti-affinity policies, over-provisioning practices, and multi-zone/region deployments to achieve high availability rather than defining a comprehensive model to analyze the high availability (HA) of cloud applications’ deployments. For instance, OpenStack Nova schedulers use anti-affinity/affinity filters and availability zones to deploy applications in geographically distributed data centers (DCs) to maintain HA [2]. Although these notions minimize outage of cloud applications, they are still missing a quantitative model to analyze the applications HA, provide generic guidelines for HA-aware scheduling solutions, and minimize algorithms complexities. It is important to note that the service availability is the percentage of time where this service is available in a given time duration [3].

Although an evaluation model provides generic guidelines to maintain HA of cloud applications, there are still other concerns with respect to the energy, performance, and cost challenges associated with cloud. It is necessary to provide a solution that integrates the HA constraints with the other cloud challenges and provides integrated-aware deployments (e.g. HA and green-aware deployments). This paper proposes an approach that associates a cloud scoring tool with a comprehensive availability analysis model to select the best HA, energy efficient, and/or cost-aware deployments of applications. Fig. 1 summarizes this approach. First, a cloud scheduler generates a set of applications’ deployments. Then an availability analysis approach using Stochastic Petri Net model (SPN) is defined. The SPN model evaluates the deployments of different application’s components by considering the impact of cloud infrastructure and applications failures, recovery duration, applications redundancy and interdependency relations, load balancing delay, and processing time of the user’s request. Once evaluated, these deployments are then inputted to the cloud scoring tool to select the optimal one according to predefined policies, such as lower operational expenditure (OPEX) and/or low carbon footprint. The scoring system provides a policy-driven ranking system to weight the best HA-aware deployments and select the optimal ones accordingly. It is a generic approach where the evaluation criterion is determined based on the cloud providers preferences, and the selection process is modified accordingly.

The work of this paper is an extension of two other papers [4] [5]. Although [4] and [5] proposed an availability analysis approach of cloud-deployed applications, they discarded SPN practicality and other challenges associated with cloud applications deployments, such as energy and cost efficiency. It is necessary to design a system that integrates HA objectives with other cloud challenges. Therefore, we escalate that work to the following:

- Associate the SPN model with a policy-driven cloud
scoring system.
- Capture energy/OPEX as scoring policies to provide HA and green/cost-aware scheduling of cloud applications.
- Integrate the scheduling policies with the functionality and availability constraints to select best placements of application components to maximize HA and maintain energy/cost needs.
- Envision user needs and assess DCs capabilities to filter out best HA-aware deployments to minimize Greenhouse Gas (GHG) emissions and OPEX in DCs.
- Evaluate the deployments’ results of the SPN model using the scoring tool and comprehensive analysis.
- Provide an extensible scoring system that depends on the generic cloud environment.
- Modify the evaluation criterion based on the capabilities and preferences offered by the cloud providers, such as green and cost criteria to evaluate cloud DCs.
- Generate different patterns and/or guidelines to facilitate the selection between cloud deployment models (public, private, or hybrid) and to improve existing scheduling or DCs models.
- Use the defined guidelines as preliminary analysis to improve algorithms complexities.

The rest of this paper is organized as follows. Section II defines the problem background where it presents the need for SPN models and scoring selection system for deployments of cloud applications. Section III describes the cloud stack, its failures, the proposed SPN model, and the scoring selection approach. Section IV describes the evaluation and results of the SPN model and the scoring selection tool. Section V presents some related works for availability analysis as well as green- and cost-aware scheduling. Finally, Section VI concludes the paper and describes the future work.

II. BACKGROUND
HA, energy efficiency, and OPEX are gaining a lot of interest in information and communication technology sector and cloud market. With the high energy consumption, DCs are supposed to have performance- and energy-aware configuration measures that can lessen the power use and save OPEX, all aimed at having HA, green, and cost-aware solutions. This section explains the HA-aware scheduling challenges, the need for an appropriate dependability analysis model to handle them, and the necessity to associate the analytical model with a cloud scoring selection tool.

A. Stochastic Petri Nets in cloud:
The stochastic nature of service failures and the urgent need for availability solutions require an availability evaluation model that identifies failures and mitigates the associated risks and service outages. It has been shown that analytical models, such as SPNs and Markov chains have been used to analyze the availability of many complicated IT systems [6]. However, the complicated nature of cloud infrastructure configurations and dynamic state changes require a comprehensive and analytical availability-centric model [7]. Petri Nets (PNs) are widely used to model the behavior of different Discrete Event Systems [8]. They are graphically presented as directed graphs with two types of nodes: places and transitions. Deterministic Stochastic Petri Nets (DSPN) are one of PNs extensions for modeling the systems with stochastic and deterministic behaviors [9]. DSPN is presented as a tuple of \((P, T, I, O, H, G, M_0, \tau, W, \Pi)\) where \(P\) and \(T\) are the non-empty disjoint finite sets of places and transitions, respectively. \(I\) and \(O\) are the forward and backward incidence functions. \(H\) describes the inhibition conditions. \(G\) is an enabling function that given a transition and a model state determines whether the transition is enabled. \(M_0\) is the initial marking. The function \(\tau\) associates timed transitions with a non-negative rational number. The function \(W\) associates an immediate transition with a weight (relative firing probability). Finally, \(\Pi\) associates an immediate transition with a priority to determine a precedence among some simultaneously firable immediate transitions.

TimeNET is a powerful PN analysis tool that is maintained regularly, and therefore, it is used to simulate and analyze the SPN model [10]. TimeNET evaluates DSPN, Automata, and SCPN models. Although DSPN imposes the restriction of only one enabled deterministic transition in each marking and does not support random delays distributions, TimeNET provides transient and stationary analysis of Stochastic Colored Petri Net (SCPN) without any restriction on the number of concurrently enabled transitions. SCPN supports both stochastic and deterministic events, and it is a class of DSPN models where the tokens can have different colors (types) [11]. Also, SCPNs allow random distributions of transitions including “global guards”, “zero delays”, “time guards”, and “complex types of tokens”. With this in mind, the paper uses SCPN to model the behavior of an application running on the cloud with stochastic failures and deterministic recovery events, but it does not make use of the token type feature. Although the SCPN model captures the cloud characteristics and translates them into elements of an availability model, it overlooks the other challenges associated with the cloud. In the following, we explain the need for a policy-driven scoring system that weights the HA-aware deployments and select the optimal one according to a predefined policy (i.e., green/cost).

B. Why a cloud scoring system is needed?
Nowadays, the size of DCs has increased significantly to satisfy the migration to the cloud and the growth in the usage

![Fig. 1: SPN and scoring selection approach.](image-url)
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE Transactions on Services Computing

...of internet services [12]. Besides, many telcos are selling their DCs and moving to the cloud, such as Verizon and AT&T [13]. With more DCs being built, more services will be provided to the cloud users, and additional investments and incentives will be brought to the market. This increase in the rate of DCs construction is accompanied by a significant growth in energy consumption that might exceed in some scenarios the thresholds introduced by the power delivery and cooling systems. DCs are also going to face an increase in operational costs due to the high energy consumption [14].

To mitigate the above challenges, one solution could be a migration to the cloud and adoption of virtualization concept. The VMs, containers, and consolidation concepts can eliminate idle servers and reduce OPEX while providing 75% increase in server efficiency [14] [15]. With the migration to the cloud, its providers are searching for alternative solutions to reduce the high energy consumption and expenditures. They adopt multiple approaches, such as using renewable energy and building DCs in cooler areas to reduce cooling cost and earn carbon tax credits. Facebook has announced the construction of one of the most sustainable and reliable DC, Lulea [16]. It has been shown that power and cooling solutions in DCs can reduce power bills, capital investments for power plants, and GHG emissions, but one major impediment is raised regarding the reliability and performance. It is necessary to delineate an approach that can compromise between the availability, cost, and green requirements. To ensure redundancy and workload proximity, cloud providers should have multiple geographically distributed DCs, each with a different OPEX. Having a profitable cloud necessitates a scoring mechanism that distributes the workload while satisfying the HA requirements (different availability zones, service level agreement (SLA) level) and minimizing DCs energy consumption and OPEX.

Note that the scoring selection tool can use objectives other than green and cost efficiency depending on the predefined options of the cloud providers.

III. APPROACH

To address the challenges of HA, cost, and green-aware scheduling discussed in the previous section, we need first to elaborate a behavioral model that can capture the stochastic nature of different failures in a system and then associate it with an energy- and cost-aware scoring selection tool.

In the following, we explain the transformation from a cloud system to the corresponding SCPN model. Then we describe the the scoring selection tool and its evaluation mechanism.

A. Cloud stack, failures, and UML model

The cloud consists of a set of geographically distributed DCs hosting multiple servers and set of applications with multiple software component types. Each type consists of one or more components that might depend on different sponsor component(s). Each type is associated with a redundancy model that determines the number of active, standby, and/or spare components. Using the appropriate placement solution, the components are hosted on the servers that best fit their requirements using VE (VM or container) mapping. Different forms of failures can occur in the cloud and can be envisioned as planned and unplanned downtimes. Unplanned downtime is the worse failure causes because it is a result of unexpected failure event, and consequently neither the cloud provider nor the users are notified of it in advance. Unplanned downtime can happen at the cloud infrastructure (i.e. faults in memory chips), application’s components (i.e. hypervisor malfunctioning or software bugs), or both (i.e. natural disasters). Each of the previous failure states is associated with a failure rate or mean time to failure (MTTF) and mean time to repair or recover (MTTR). Due to the stochastic nature of the corresponding failure events, it is assumed that they are generated using certain probabilistic distribution functions. However, there is no restriction or specific consent on the distribution type of every failure event. It can follow exponential, Weibull, normal, or any other stochastic model. The exponential failure distribution has been used in many previous failure analysis and availability related work [17], [18], and [19]. Therefore, in this paper, the exponential failure distribution is used to reflect failure rate or MTTF of DCs, servers, and applications/VEs. Such distribution is applied on all the stochastic failure transitions of the proposed SCPN model. As for the repair/recovery timed transitions, there is usually a predictable average time that can be estimated to replace a faulty node [20]. Therefore, deterministic distribution is used to trigger any repair or recovery behavior for the DCs, servers, and VMs/applications. It should be noted that our approach also supports other failure rates, as our model does not depend on a specific probability distribution.

Many modeling approaches are developed to describe the heterogeneity of cloud architectures. General-purpose languages are widely used to describe cloud environment. For instance, Unified Modeling Language (UML) can describe the platform, infrastructure, and software artifacts to reflect the characteristics of different cloud components [21]. It can also reflect the service availability features, but as a semi-formal model, it cannot simulate the behavior of the system or measure the availability of a service while different stochastic failures are happening [21]. Creating the SCPN model manually can be a tedious, time-consuming, and error-prone task. To mitigate this complexity, a UML model is designed to describes the above cloud stack and their availability metrics.
Filters receive unstructured data and remove redundant/useless data. In the middle, Analysis Engines analyze the data and generate structured data form. At the back end, Databases store the structured data produced by the Analysis Engine. The proposed SCPN model defines a plurality of components of the multi-tier cloud application and a stochastic model including representations of the plurality of components, VEs executing the components, servers executing one or more VEs, and one or more DCs hosting the one or more server. The model generates a dependency graph to reflect the intercommunication between different tiers of the application’s components. It identifies a number and order of tiers of the multi-component cloud application. In each tier, it defines a load balancer sub-model, a component sub-model for each of the plurality of redundant application’s components, a VE sub-model for the components’ VEs, a server sub-model for the components’ servers, and a DC sub-model for the components’ servers.

In this section, we assume that the VE is a VM, and each VM, server, and DC has its own MTTR and MTTF. Then the SCPN model evaluates different deployment possibilities of the multi-component cloud application. This evaluation generates different service availabilities of the multi-component cloud application that is calculated in terms of number of served requests during a given time interval.

Since the SCPN model is evaluating the service availability of a given cloud deployment, each transition is associated with the guards that reflect the transitioning from a healthy to failure state, the failover of the workload between redundant components in the same tier, and the workflow of the requests between different application’s components’ tiers. Although some literature studies provide same conditions for DC, server, and VM states, they overlook the modeling of multi-tier applications’ components, fair round robin load balancing, and request workflow and their associated guards, such as failover state that is triggered when a software component or its host(s) fails. In the following, each sub-model and its guard conditions are described to reflect the above states.

1) Data center model: Fig. 3a shows the data center model. A data center has two states: healthy (the place DC_h) and failed (the place DC_f). Failure is modeled using an exponential timed transition ($T_{DC_f_fail}$) whereas the recovery is a deterministic one ($T_{DC_h_cup}$) [20].

2) Server model: Fig. 3b presents the server model. The server also has two states: healthy (S_h) and failed ($S_\text{f_fail}$). The server can fail, and the failure is an exponential transition ($T_{s_f_fail}$). It can also fail immediately due to the failure of
3) VM model: A VM (Fig. 3c) can fail through an exponential transition \((T_i, fail) \) or can fail immediately due to the failure of its hosting server or data center \((T_i, Hfail) \). We refer to the server and DC hosting the VM with \(V M(i) Server \) and \(V M(i) DC \), respectively. \(T_i, Hfail \) is guarded with:

\[
G_{T_i, Hfail} = (V M(i) DC == 0 \lor V M(i) Server == 0)
\]

The recovery happens after a deterministic delay \((T_i, up) \). In this case, a VM cannot be recovered unless its hosting data center and server are healthy. Thus, \(T_i, up \) is guarded with:

\[
G_{T_i, up} = (V M(i) DC == 1 \land V M(i) Server == 1)
\]

4) Container model: A VE (Fig. 3d) can also be a container hosted directly on a server deployed on a DC or hosted on a VM deployed on a server. The container can fail through an exponential transition \((T_i, ctfail) \) or can fail immediately due to the failure of its host or DC \((T_i, hfail) \). We refer to the host and DC of the container with \(C T(i) H \) and \(C T(i) DC \), respectively where \(C T(i) H \) can be \(C T(i) VM \) or \(C T(i) Ser \). If the container is hosted on a VM then \(T_i, hfail \) is guarded with:

\[
G_{T_i, ctfail} = (C T(i) DC == 0 \lor C T(i) Server == 0) \lor C T(i) VM == 0
\]

If the container’s host is a server then \(T_i, hfail \) guard is:

\[
G_{T_i, ctfail} = (C T(i) DC == 0 \land C T(i) Server == 1)
\]

The recovery happens after a deterministic delay \((T_i, healthy) \). That is, once this container cannot be recovered unless its underlying infrastructure are all healthy. Its \(T_i, healthy \) is guarded with:

\[
G_{T_i, healthy} = (C T(i) DC == 1 \land C T(i) Server == 1)
\]

5) Load balancer model: Load balancing distributes traffic among multiple compute instances. It is an effective way to maintain the availability of a given cloud system. It provides fault tolerance policy in a given application deployment [22]. Upon failure of some instances, load balancer seamlessly replace them while maintaining the normal operation of other nodes/instances.

Fig. 4 illustrates the load distributor and round robin load balancer sub-model. The place \(LoadDistributor \) has a fixed number of tokens, and the load balancer transitions \((T, LB_i, and T, LB_0) \) distribute the workload among the active replicas of the same component. Each component has a queue place \((C_i, queue) \) to represent the number of requests it can queue for processing and a flushing place \((C_i, flushing) \) for the load balancing mechanism to ensure a round robin distribution. The transitions \(T, LB_i \) and \(T, flush \) are guarded such that they model a round robin policy. When a component \(C_i \) receives a token in its queue, its flushing place is marked, and the component will not receive another token until its flushing place is unmarked. Let the round robin order be \(C_1, C_2, C_3, \ldots C_M \) where \(M \) is the number of replicas \(numberOfReplicas \), and then the same order repeats. The transition \(T, LB_1 \) is the first one that becomes enabled, and its clock starts elapsing. Once it is fired, one token is produced in \(C_1, queue \), and one token is produced in \(C_1, flushing \). As long as \(C_1, flushing \) is marked, \(C_1 \) cannot receive another token. On the other hand, \(T_i, flush \) cannot be fired until all other components have received their share. As soon as \(C_1 \) receives a token, the transition \(T, LB_2 \) becomes enabled, and its clock starts elapsing. Then, \(T, LB_2 \) fires, and \(C_2, queue \) and \(C_2, flushing \) receive a token. The same way other components receive their share until \(C_M \) receives a token. At this time, \(T_i, flush \) is enabled, and \(C_1, flushing \) is unmarked. Subsequently, \(T_2, flush, T_3, flush, \ldots T_M, flush \) also fire. According to the nature of workload arrival of the system, \(T, LB_i \) can have different distributions. Table I lists the timed transitions of the load balancer sub-model.

Note that if a component is not available due to a full queue or a failure in the underlying stack, it should give its turn to the next available component. For \(M \) being the number of replicas, \(L \) being the maximum capacity of a component queue \((queueSize) \), \(V M(i) Server \) and \(V M(i) DC \)
being the host server and DC of VM_i, we define $VSD_{H(i)}$ and $VSD_{F(i)}$ as follows:

$$VSD_{H(i)} = \left[VM_i == 1 \land VM_{i,Server} == 1 \land VM_{i,DC} == 1 \right]$$ \hspace{1cm} (10)

$$VSD_{F(i)} = \left[VM_i == 0 \lor VM_{i,Server} == 0 \lor VM_{i,DC} == 0 \right]$$ \hspace{1cm} (11)

Transition T_{LB_0} is guarded with:

$$G_{T_{LB_0}} = \bigwedge_{i=1:M} ((VM_i == 0) \lor (VM_{i,Server} == 0) \lor (VM_{i,DC} == 0) \lor (C_i queue \geq L))$$ \hspace{1cm} (14)

An alternative solution to model the load distribution is the loop back arcs from T_{LB_i} and T_{LB_0} to the place $LoadDistributor$ to continuously re-enable the load balancer transitions and regenerate the workload infinitely. Note that with this alternative approach, we can over-flood the model with tokens if their request arrival rate is faster than the the processing rate of the requests (tokens). To avoid this issue, we fix the number of tokens in the place $LoadDistributor$ and do not consider the feedback input arcs. The transitions and their guards remain the same to model the round robin policy.

We include both techniques in the paper so that the reader can select the one that best fits their simulation needs.

6) Component model: Fig. 5 illustrates the model of a component including partially the load balancer delivering the workload to the component. Each component has a queue ($C_i queue$) to model the maximum capacity of the requests waiting to be processed and also a buffer to model the maximum number of requests a component can process in parallel ($C_i processing$), such as multi-threaded components.

The requests stored in the queue can enter the buffer only if the component, its corresponding server, and VM are healthy, and the number of tokens already in the buffer is below the maximum. When a component fails, all the requests in its buffer are lost and transferred to the place $Lost$ in phase i where

If all the components fail or their queues are full, the requests are dropped and sent to the place $DeniedService$. Transition T_{LB_0} is guarded with:

$$G_{T_{LB_0}} = \bigwedge_{i=1:M} ((VM_i == 0) \lor (VM_{i,Server} == 0) \lor (VM_{i,DC} == 0) \lor (C_i queue \geq L))$$ \hspace{1cm} (14)
 loses to the place over to the other healthy components. This behavior simulates the behavior of a load balancer where the requests already stored in its component queue are transferred again to the load distributor to be failed. When a component fails, the requests already stored in its component queue are transferred again to the load distributor to be failed.

In addition, in each tier, all the replicas fail at the same time, all the tokens stored in the component queue are transferred to the place LostReq. The transition \(T_{\text{Lost}} \) is guarded with:

\[
G_{T_{\text{Lost}}} = \big((VM_i == 0) \lor (VM_{(i)Server} == 0) \lor (VM_{(i)DC} == 0)\big)
\]

When a component fails, the requests already stored in its queue are transferred again to the load balancer to be failed over to the other healthy components. This behavior simulates a multi-attribute stateful redundancy where each component is equally backed up by the other components. The transition \(T_{\text{failover}} \) is guarded with:

\[
G_{T_{\text{failover}}} = \big((VM_i == 0) \lor (VM_{(i)Server} == 0) \lor (VM_{(i)DC} == 0)\big)
\]

The tokens successfully processed are stored in the place \(C_{\text{mid}} \). Note that in a multi-tier system, the tokens successfully processed in one tier are carried to the next tier where they are load balanced among the replicas of the next tier. The tokens successfully processed in all the tiers are stored in a final place. The availability of the system is only determined by those tokens that reach this final place. In the latter case, the above container sub-model and its complementary guards can be added to the SCPN model to perform availability analysis and quantification.

These building blocks are combined to form the complete SCPN model. Fig. 6 illustrates a snapshot of the SCPN model of a 3-tier application running in a cloud environment with 3 active replicas in each tier. The depicted model is using only VM as VE, but it can be easily modified to include containers. In the latter case, the above container sub-model and its complementary guards can be added to the SCPN model to perform availability analysis and quantification.

C. Transformation algorithm of the UML to the SCPN model

In TimeNET, the PN classes are built from an Extensible Markup Language (XML) schema. Taking this into consideration, the transformation algorithm performs a one to one mapping to generate a solvable SCPN model. Fig. 7 summarizes this approach. It starts with defining an an instance of the UML model (an object model) that represents a certain cloud deployment scenario. It then parses and wraps this instance into the XML data format supported in TimeNET that builds the application’s components dependency graph to identify the number of tiers and their orders. Once the XML schema is generated, it is imported to the TimeNET SCPN analysis tool. Fig. 8 shows the XML schema for creating the places, transitions (timed/immediate), and the arcs and measures/expressions that connect each place to its corresponding transitions. In the XML schema, the transformation algorithm creates the places and transitions that are common in all SCPN models, such as the LoadDistributor, LostReq, and DeniedService places. Then the algorithm iterates over each tier creating the load balancer, all the component replicas, their VMs, and their corresponding servers. For instance, if the model includes five VMs, the VM building block is replicated five times. However, the transition and guards of each building blocks may be different. Then, in the final stage, the DCs are created, the transitions are annotated with the proper rates, and the guards are annotated with the corresponding conditions. It is the annotation phase that glues the model together reflecting the actual deployment and the failure cascading effects. The overall transformation algorithm is described in Fig. 9. Then the approach analyzes this SCPN model using TimeNET to quantify the expected availability of the application.

D. Cloud scoring approach:

Multiple HA-aware deployments might be eligible for the application components with certain MTTF and MTTR values of examined DCs. For instance, if the cloud user is looking for HA-baseline greater than 90%, SCPN evaluation can end up with more than one satisfactory solutions. Therefore, a scoring selection tool is needed to add weights to the selected deployments and select optimal ones among them. The scoring selection tool is extensible and can address different preferences of cloud providers. It has an evaluation criterion with multiple options to allow scoring the deployments. In order to determine a pragmatic evaluation methodology, some afores steps are considered:

1) **User Requirements Envisioning:** The scoring approach envisions the user requirements and usage patterns to generate certain groupings of the application components. For instance, if the deployment of a 3-tier web application is evaluated using the scoring tool, the envisioning process should consider the interdependencies between components and examine tolerance time of the dependent ones to generate the possible groupings.

If the Hypertext Transfer Protocol (HTTP) of a 3-tier web application cannot tolerate the absence of the business logic application (App) component, both components should share
same host. In this case, the envisioning process eliminated the maximum distribution deployment option for both HTTP and App. In this work, we focus on green and cost objectives as the evaluation criterion to select optimal placement of the applications components.

2) Cloud Infrastructure Assessment: It is necessary to measure the DCs capabilities in terms of OPEX, carbon footprint, governmental regulations, usage patterns, etc [23]. With these measures, DC workloads can be evaluated, and consequently, the overload factor can be calculated for each DC. Overload represents the increased load that a DC can handle upon a sudden failure, slashdot effect, or any other growth in workload. Therefore, each DC is associated with its overload factor to help select best DC upon load distribution or redirection process. In order to determine the overload factor, it is necessary to select a baseline DC. The baseline DC, DC_b, is the DC that has the highest GHG emissions and OPEX. Therefore, we have assumed that DC_b does not improve OPEX, GHG emissions, or other metrics preference compared to other DCs with higher metrics. Once the baseline is determined, it is assigned an overload factor OL_b of 1. Then the overload factors of remaining DCs, DC_{r_i}, are calculated accordingly. For example, if DC_{r_1} has low carbon footprint, it is assigned up to $x\%$ overload. Subsequently, its overload factor is calculated as follows:

$$OL_{r_i} = OL_b + \frac{x}{100}$$

Generally, the $x\%$ overload is determined by the cloud provider during the DC planning strategy. This overload percentage is affected by DC size, CPU, network, storage, memory, and power modeling in the corresponding DC [24]. This paper uses carbon footprint and OPEX as DCs assessment metrics. The assessment phase is not only bounded to green and cost metrics, it can be extended to other objectives based on the capabilities and choices of the cloud providers.

3) Evaluation Criteria Extraction: The envisioning process is integrated with the assessment phase, and the suitable criterion is generated accordingly. For instance, if the cloud user requires HA-aware deployments for interdependent application components while taking into consideration energy efficiency, the evaluation criterion will have low, medium, and high carbon footprint options. Then the overload factors of the DCs are evaluated. Also, an evaluation criterion can be a combination of multiple features/preferences.

E. Scoring selection system of cloud deployments

The proposed scoring tool consists of evaluation criteria with multiple options and a scoring methodology. Fig. 10 shows the different modules of the scoring selection tool.

1) Evaluation Criteria: The scoring algorithm consists of user requirement and assessment modules to determine the measures that add the scores to the deployment solutions. Multiple measures can be used as evaluation criteria. In order to inject cost and green objectives into the proposed approach, the evaluation criterion assesses the cloud infrastructure in terms of OPEX and carbon footprint. During the assessment process, each DC is examined, and its overload factor is calculated subsequently. For a given OPEX or carbon footprint baseline, or a combination of both, the examined DC operates at a higher load factor, the overload factor, compared to default/baseline DC. This increase in the load factor gives preference for one DC over the others.

2) Scoring Methodology: Once the evaluation criterion is determined, the scoring methodology selects the optimal one.
The scoring selection algorithm is depicted in Fig. 11. Each DC is characterized by a distance metric that represents its available capacity before reaching the allowed load. Also, each deployment is characterized by a distance attribute that refers to its corresponding DCs’ distances. For the initial deployment, a default preference is defined as the baseline. For subsequent deployments, the algorithm evaluates each eligible deployment distance and selects the one offering the largest distance. In other words, the scoring tool selects the deployment that has one or more DC(s) with the highest capacity to process new workload.

Let NumDC be the total number of available DCs and CL_i the current load of corresponding DC$_i$, then the relative average utilization (RU_i) of DC$_i$ is calculated as follows:

$$\text{DC}_i, \text{RU}_i = \frac{\sum_{j=1: \text{NumDC}, j \neq i} \text{DC}_j \cdot \text{CL}_j}{\text{NumDC} - 1} \quad (19)$$

Let OL_i be the overload factor of each DC, the maximum allowed workload (AL_i) is calculated as follows:

$$\text{DC}_i, \text{AL}_i = \text{DC}_i, \text{RU}_i \times \text{DC}_i, \text{OL}_i \quad (20)$$

Then the distance (dist_i) for each DC is calculated as follows:

$$\forall i \in \text{NumDC} \quad \text{DC}_i, \text{dist}_i = \text{DC}_i, \text{AL}_i - \text{DC}_i, \text{CL}_i \quad (21)$$

Suppose Dep is the set of DCs used in a deployment, and DepN is the number of elements in the set Dep. Then for every eligible deployment, its distance (Deployment.dist) is calculated as follows:

$$\text{Deployment.dist} = \frac{\sum_{\forall i \in \text{Dep}} \text{DC}_i, \text{dist}_i}{\text{DepN}} \quad (22)$$

Then the eligible deployment that corresponds to the maximum deployment distance is chosen as the optimal solution. The maximum distance measure captures the imbalance between the examined DCs and the preferences of cloud providers (low OPEX/carbon footprint).

The proposed scoring tool is an automated extensible module that can be easily modified to include another evaluation module.

IV. CASE STUDY

The system under study is a three-tier web application, such as Amazon Web application deployed using AWS Elastic Beanstalk [25]. In each tier, the software component is running on a VM that is hosted on a server. The server, in turn, is hosted on a DC. Each tier is replicated three times using an active/active redundancy model. In each tier, an elastic load balancer distributes the workload among the replicas based on a round robin policy.

To investigate different application inter or intra DC deployments, we have considered three deployments cases: the first deployment maximizes the distribution among the DCs, such that in each tier at least one of the replicas is on DC$_1$, one is on DC$_2$, and one is on DC$_3$ (named Dep.1-2-3). In our case, we have assumed that DC$_1$, DC$_2$, and DC$_3$ are located in Virginia, Oregon, and California respectively [26]. In the second deployment, we put one replica of each tier on DC$_2$ and two other replicas of each tier on DC$_3$ (called Dep. 2-3). In the third deployment, all the replicas are hosted by the most reliable DC, which is DC$_3$ (Dep.3 afterward). Fig. 12 shows the case study to be evaluated.

A. SCPN evaluation and results

The failure of hosting DC has a cascaded impact where its servers, corresponding VMs, and applications’ components fail as well. Also, each DC has different OPEX, energy, and other capabilities. Therefore, in this case study, we are particularly interested to compare inter- and intra-DC deployments.

Analyzing the service availability can be done either by (1) quantifying the percentage of time a given service is in a healthy state, or (2) by analyzing the percentage of served requests in comparison to the total number of received requests. We used the latter technique and fixed the number of tokens in the initial LoadDistributor place. In each tier, the served requests are stored in a place, which serves as

![Fig. 10: Modules of scoring selection tool.](image-1)

![Fig. 11: Scoring selection algorithm.](image-2)
The VMs and servers can fail due to DC failure through immediate transitions. The model presented in the SCPN results of the deployments of multi-tier applications and redundancy-agnostic deployment of a monolithic application. Fig. 15 shows the results of the comparative analysis. In case of multi-tier cloud application, we assume DCs have same MTTF and same MTTR. The MTTF value changes from 30 to 90 weeks, the MTTR is measured as a ratio of 'x’ ranges from 30 to 90 weeks, the MTTR is measured as a ratio of ‘x’ where MTTR values are x/3, x/10, and x/30 hours, and the request processing time ranges between 0.1 to 1 second. The MTTF and MTTR are instantiated to maintain their within the allowed downtime for cloud providers [25] [27]. Fig. 13 shows the results for the above three deployments. When the DCs have the same MTTF, we should go for a maximum distribution as it reduces the probability of the service outage due to multi-DC failures.

In the second step, we change the MTTF of DC1, DC2, and DC3 to x/3, x/10, and x/30. The results are presented in Fig. 14. Based on these results, when the reliability of DCs differs, we can opt for the most reliable ones instead of maximum distribution. A single DC deployment is not the optimal choice. In the last experiment, a comparative analysis is performed between the SCPN results of the deployments of multi-tier application’s components and redundancy-agnostic deployment of a monolithic application. Fig. 15 shows the results of the comparative analysis. In case of multi-tier cloud application, we assume DCs have same MTTF and same MTTR. The MTTF value changes from 30 to 90 weeks, and MTTR is the same DC due to the monolithic architecture. Since the redundancy-agnostic deployment does not support any redundancy model, a failure can then brings the whole application down. Therefore, it shows the lower number of served request as shown in Fig. 15. As for multi-tier cloud application, the maximum distribution shows the highest number of served requests because the DCs have same MTTF. In this comparison, the analysis of the SCPN model can improve the redundancy-agnostic deployment by extract the following guidelines:

- Reschedule the application and deploy it in the DC with...
the highest MTTF, or
- Migrate from a monolithic architecture to a multi-tier one
- Scale up the application to include redundant one(s).

The proposed SCPN approach is a framework providing HA-aware placement guidelines where these inferred clues can be applied to different scheduling scenarios. Note that solving a model may take some hours due to the complicated stochastic analysis.

B. Scoring selection system evaluation and results

To select the optimal deployment, the scoring selection algorithm is applied to the above SCPN evaluation results. Since we focus in this paper on the DC failures impact on HA, the evaluation criterion is applied to DCs. Two cases are presented to evaluate the selected deployments against different policies. In the first case, the criterion is OPEX and carbon footprint while in the second case only carbon footprint is considered. The scoring selection algorithm is applied to the above SCPN evaluation cases: (same MTTF, different MTTR) and (different MTTF and MTTR) using Dep.1-2-3, Dep.2-3, and Dep.3 deployments. We aim to select the best deployment if multiple eligible ones are chosen by the SCPN model.

1) First scoring case: In this case, each DC is examined in terms of OPEX and carbon footprint, and its corresponding overload factor is generated. Table II shows an example of metrics that characterize each DC, such as current load (CL), overload factor (OL), OPEX, and carbon footprint improvement options. The option can be either high, medium, low, or none where “high” represents high improvement in OPEX or carbon footprint reduction, and “none” reflects the opposite state.

2) Second scoring case: In this case, each DC is examined in terms of carbon emission based on the U.S. energy report [28]. Table VI shows the carbon emissions of industrial sectors in California, Oregon, and Virginia where the above three DCs are located [28]. Since Virginia has highest carbon emissions, its DC, DC3, is considered the baseline one, and consequently its (OL) is one. The deployments evaluation is based only on the carbon emission factor. Similarly, the option can be either high, medium, low, or none.

<table>
<thead>
<tr>
<th>DC</th>
<th>OPEX option (%)</th>
<th>Carbon footprint option (%)</th>
<th>OL factor</th>
<th>CL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC1</td>
<td>medium</td>
<td>none</td>
<td>20</td>
<td>1.2</td>
</tr>
<tr>
<td>DC2</td>
<td>none</td>
<td>low</td>
<td>10</td>
<td>1.1</td>
</tr>
<tr>
<td>DC3</td>
<td>none</td>
<td>none</td>
<td>0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE III: Deployment distances of the first case</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>DC1</td>
</tr>
<tr>
<td>DC2</td>
</tr>
<tr>
<td>DC3</td>
</tr>
</tbody>
</table>

The scoring selection algorithm is applied to the three cases introduced in Subsection IV-A. The results are shown in Table V. In the first case (same DCs MTTF, different DCs MTTR), Dep.1-2-3 and Dep.2-3 are the eligible solutions for MTTF (x) and MTTR of (x/10 and x/30) if the desired HA-baseline is greater than 80%. In the second case, Dep.1-2-3 and Dep.2-3 are the eligible solutions for MTTF of (x, 2x, and 3x) and MTTR of (x/3, x/10, and x/30) if the desired HA baseline is greater than 80%. Once the eligible solutions are selected, the scoring algorithm calculates the (RU), (AL), and (dist) for each DC. With these parameters, the Deployment.dist is calculated, and consequently, Dep.1-2-3 is the optimal deployment since it has maximum distance compared to the others.

<table>
<thead>
<tr>
<th>TABLE V: Optimal deployments of first case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep</td>
</tr>
<tr>
<td>Eligible Dep(s)</td>
</tr>
<tr>
<td>Optimal Dep</td>
</tr>
</tbody>
</table>

If the desired HA baseline is greater than 87%, first case generates one eligible solution, Dep.1-2-3 for MTTF of (x) and MTTR of (x/3). With the same HA-baseline applied to the second case, Dep.1-2-3 and Dep.2-3 are the best placements for MTTF of (x, 2x, 3x) and MTTR of (x/10 and x/30). Therefore, the scoring algorithm is only applied to the second case where DCs have different MTTF of (x, 2x, 3x).

<table>
<thead>
<tr>
<th>TABLE VI: DC carbon metrics in 2013 used in second case</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>DC1</td>
</tr>
<tr>
<td>DC2</td>
</tr>
<tr>
<td>DC3</td>
</tr>
</tbody>
</table>
Table VII and Table VIII show the calculated (RU), (AL), (dist), and deployment distances for each DC and evaluated placements using (19)-(22).

<table>
<thead>
<tr>
<th>DC</th>
<th>RU(%)</th>
<th>AL(%)</th>
<th>dist(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC1</td>
<td>17.5</td>
<td>17.5</td>
<td>-37.5</td>
</tr>
<tr>
<td>DC2</td>
<td>40</td>
<td>55.6</td>
<td>45.6</td>
</tr>
<tr>
<td>DC3</td>
<td>32.5</td>
<td>33.15</td>
<td>-8.15</td>
</tr>
</tbody>
</table>

TABLE VIII: Deployment distances of the second case

<table>
<thead>
<tr>
<th>Dep</th>
<th>Deployment Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep.1-2-3.dist</td>
<td>0.016</td>
</tr>
<tr>
<td>Dep.2-3.dist</td>
<td>18.725</td>
</tr>
</tbody>
</table>

The scoring algorithm is applied to the three cases introduced in Subsection IV-A. The results are shown in Table IX. In the first case (same DCs MTTF, different DCs MTTR), Dep.1-2-3 and Dep.2-3 are the eligible solutions for MTTF of (x) and MTTR of (x/10 and x/30) if the desired HA-baseline is greater than 80%. In the second case, Dep.1-2-3 and Dep.2-3 are the eligible solutions for MTTF of (x, 2x, and 3x) and MTTR of (x/3, x/10, and x/30) if the desired HA-baseline is greater than 80%. The scoring algorithm calculates the (RU), (AL), and, (dist) for each DC of the eligible deployments. Then, the Deployment.dist is calculated, and consequently, Dep.2-3 is the optimal deployment since it has maximum distance compared to the others.

TABLE IX: Optimal deployments of the second case

<table>
<thead>
<tr>
<th>Dep</th>
<th>HA-baseline ≥ 80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible Dep(s)</td>
<td>Dep.1-2-3 & Dep.2-3</td>
</tr>
<tr>
<td>Optimal Dep</td>
<td>Dep.2-3</td>
</tr>
</tbody>
</table>

Note that a change in the DC workload, its OPEX, or carbon footprint option affects the (RU), (AL), and, (dist) calculation. Consequently, different deployment might win the scoring test since Deployment.dist of the eligible solutions will be modified.

C. Approach discussion

The understandability and practicality of both the SCPN model and the cloud scoring tool are discussed below.

1) SCPN discussion

The Petri net model is used to perform the following:

- Provide guidelines to improve HA-schedulers. It provides a preliminary analysis that allows eliminating some of the deployment options when executing the algorithm. Consequently, the complexity of an HA-aware scheduling algorithm is reduced. For instance, let us assume we have a scheduling algorithm with 3 DCs of different reliability values, and each DC hosts 100 servers. Since the DCs have different reliability, the proposed SCPN model indicates that the maximum DCs distribution option can be eliminated from the scheduling search. If we assume that the scheduling algorithm has O(n²) complexity, the latter is reduced to O((n - nₑ)²) where n is number of servers and nₑ is number of eliminated servers. In this case, the best case scenario is O((n - (nₑdc - 1) * nₑdc))²) and the worst case scenario is O((n - nₑdc)²) where nₑdc is number of eliminated servers in one DC. In both cases, the assessment and the guidelines extracted from the SCPN model can enhance the scheduling complexity.

- Evaluate existing deployments of cloud applications in terms of HA objective. Once assessing the deployments, it can be determined if they meet the SLA.

In this paper, the focus of the SCPN model is to extract different directives to improve the availability of cloud applications’ deployments and reduce the complexity of the scheduling algorithms. In other words, if a deployment setting has large number of DCs, servers, and VMs, there is no need to evaluate the model with this setting. It would be enough to sample a number of VMs and their distribution in DCs and extract the DCs that can be eliminated in the scheduling policy. State explosion is one of the challenges of a state space models, such as PN. In this case, the number of states increases exponentially. For instance, a model with n processes, each with k states, has kⁿ states [29]. The state explosion occurs when the PN analysis tool cannot process the PN model due to the lack of memory and/or absence of abstraction and model construction techniques. However, the existing VMs have high computational resources, which increase the efficiency of the PN analysis and verification tools [29]. With this in mind, this paper uses a powerful machine with 225GB of RAM and 20 vCPUs, and the proposed model is divided into sub-analyzable models where each tier is analyzed before aggregating the whole system. In this case, the state space is reduced where the DC impact on the application’s components is evaluated while preserving the VM and server states. In this transparent construction-time reduction mechanism, evaluation questions can be answered with the same tool as with the whole state space model.

2) Scoring tool discussion

When a cloud scheduler finds a host for an application’s component, it aims at satisfying one or more SLA objectives, such as HA, green, cost, or security requirements. This paper proposes a solution that integrate both HA, energy, and cost objective while finding the best host for a given cloud application. However, HA is one of major issues in the cloud; a failed application’s components can hinder the functionality of the whole application and can have huge impact on the customer relation managements. With this in mind, HA is the primary objective in this work. Once a set of application’s deployments is defined and assessed, the scoring tool is then used to select the best while considering green, cost, and other performance aspects. It is necessary to note that the scoring tool is not a scheduling algorithm, but it is a selection mechanism that opts for the best deployment (among set of many) while satisfying certain performance requirement(s). However, if the cloud providers and users consider for instance, energy/cost reduction as their primary objective when deploying an application component, the scoring tool can be used before the SCPN model to select best set of deployments from a green perspective. Then the SCPN model can assess this deployment and decides whether it satisfies the SLA or not. In this case, the above SCPN results change because the evaluated deployments are HA-agnostic ones.

The scoring tool does not only determine which cloud deployment is the best fit for a given application, but it can also
decide whether a cloud deployment solution is suitable for a business application. In this case, cloud and no-cloud deployments can be inputted to the scoring tool. Then each DC of the assessed deployments can be associated with its cloud business factors (OPEX vs Capital Expenditure, time to market, or return investment) and architecture aspects (energy, security, latency, or data restriction/locality). As shown above, each deployment option is then associated with a score (overload and distance weights) to choose between cloud or no-cloud deployment for a certain business applications. Similarly, the scoring tool can be used to choose among public, private, or hybrid cloud solution. In this case, deployment of each cloud model is associated with the desired business and architecture aspects. Once scores are applied to each deployment, the tool selects the deployment with the largest score. Consequently, the tool answers whether a public cloud model is an applicable option or the applications should be deployed in private or hybrid cloud model. It is necessary to note that the scoring tool can be associated with any scheduling solution for cloud applications. It is not limited to the use with the SCPN model.

V. RELATED WORK

Few literature studies use PN models and scoring selection tools to address the deployment of cloud services in terms of HA, cost, and green-aware objectives. In [30], the authors propose an availability analysis approach for cloud systems using Stochastic Reward Net (SRN) and Markov chain models. Although their approach minimizes the problem solving time and analyzes service availability in large-scale networks, it discards the redundancy models of software components at each tier of a cloud application, functional workflow between software components at different tiers, and their impacts on the availability analysis. This approach can be associated with the proposed SCPN model, but this paper focuses on modeling multi-tier application and extract guidelines that can answer when to opt for inter or intra-DC deployment. In [31], the authors propose statistical models to predict the availability of a hosts in a distributed system. Although this approach guides the design of scheduling solutions, it does not model a multi-tier cloud application. It only aims at defining subsets of hosts that have similar probabilistic availability distribution using clustering methods. In this paper, SCPN model is designed to reflect how cloud applications interact nowadays and how this interaction can affect the inter or intra-deployment solution. The SCPN models VM states, but the objective of this paper is to evaluate inter or intra-DC deployments. With this in mind, the VM reliability values are not changed during the analysis. While [32] proposes queuing and SPN service availability models through software rejuvenation and fault prevention, [33] describes the impact of adding servers on service availability using SCPN model. Although the proposed models show performance improvements, they only focus on few aspects of availability analysis. [34] proposes a colored PN model to provide scheduling approach. It uses phased scheduling scheme that separates the scheduling and the execution phase while minimizing processing cost and satisfying computational resources constraints. While [35] describes a clustering deployment model that maximizes performance, [36] provides a comprehensive availability model using SRNs to analyze downtime cost. [37] proposes a power management approach that minimizes the power consumption while satisfying the workload demands. It uses CPU utilization to predict these demands. When the utilization exceeds a certain threshold, extra servers are turned on to minimize the servers’ CPU usage.

VI. CONCLUSION

With the always on and always available trend, inoperative services halt the business continuity. It is not enough to provide HA solution that can mitigate failures and maintain certain availability baseline, but it is necessary to assess such solution and its resiliency to any failure modes. Additionally, it is essential to integrate such assessment with green and cost requirements to uphold the quality of service with lower carbon footprints and OPEX. With these objectives, this paper proposed a SCPN model that evaluates the inter and intra-DC deployments of cloud services. This model considers different stochastic failures, deterministic repairs, functionality constraints, redundancy, and interdependencies between different applications components. The SCPN model inputted the HA-aware deployments into a scoring selection tool. Using the latter algorithm, HA-aware placements are filtered in terms of energy and cost metrics to select the optimal deployment. The scoring selection tool is extensible to different criteria and is not limited to the aforementioned measures. In future work, the proposed scoring tool will be extended to include a visualization module and a machine learning algorithm to generate patterns about user requirements and their assessment.

ACKNOWLEDGMENT

This work is partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC-STPGP 447230) and Ericsson Research. We would like to thank Prof. Armin Zimmermann for his insights.

REFERENCES

Manar Jammal received her B.Sc. in electrical and computer engineering in 2011 from the Lebanese University, Beirut Lebanon. In 2012, she received her M.Sc. in electrical and electronics engineering from the Ecole Doctorale des Sciences et de Technologie, Beirut Lebanon in cooperation with University of Technology of Compige, France. She is currently working towards the Ph.D. degree in cloud computing and virtualization technology at Western University, London Canada. Her research interests include cloud computing, virtualization, high availability, and simulators. She is the chair of IEEE Women In Engineering, London ON and vice-chair of IEEE Canada Women In Engineering.

Ali Kanso is a senior Cloud Software Engineer at IBM T.J. Watson research center working on the IBM next generation container Cloud. He is also an adjunct research professor at Western University. Dr. Kanso earned his masters and Ph.D. degrees in Electrical and Computer Engineering from Concordia University in Montreal Canada in 2008 and 2012 respectively. He holds to his credit over 50 publications including 12 patents granted and several pending. He previously held the position of a senior researcher at Ericsson research Cloud technologies.

Parisa Heidari is currently working as a researcher at Ericsson Research, Montreal, Canada. She received her PhD on controller synthesis of real time systems modeled by Time Petri Nets and her MSc on tracking virtual systems both from Ecole Polytechnique de Montreal, Canada in 2012 and 2007, respectively. She worked as research associate on high availability middleware for cloud systems at Concordia University from 2013 to 2015. In 2015, she joined Ericsson as postdoctoral research fellow. Her research interests include cloud storage, container technologies, and new generation of cloud, resource dimensioning, and different aspects of QoS assurance in cloud systems.

Abdallah Shami received the B.E. degree in Electrical and Computer Engineering from the Lebanese University, Beirut, Lebanon in 1997, and the Ph.D. Degree in Electrical Engineering from the Graduate School and University Center, City University of New York in September 2002. In September 2002, he joined the Department of Electrical Engineering at Lakehead University, Thunder Bay, ON, Canada as an Assistant Professor. Since July 2004, he has been with Western University, Canada where he is currently a Professor in the Department of Electrical and Computer Engineering. His current research interests are in the area of network optimization, cloud computing, and wireless networks. He is an Editor for IEEE Communications Tutorials and Survey and has served on the editorial board of IEEE Communications Letters (2008-2013). He is an IEEE Distinguished Lecturer and Senior Member of IEEE and was the elected chair of the IEEE London Section and chair of IEEE Communications Society Technical Committee on Communications Software.