
1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

1

Evaluating High Availability-aware Deployments Using Stochastic
Petri Net Model and Cloud Scoring Selection Tool

Manar Jammal1, Ali Kanso 2, Parisa Heidari3,and Abdallah Shami1

1Western University, London ON, Canada
2IBM T.J. Watson Research Center, New York, USA

3Ericsson Research, Montreal, Canada

Different challenges are facing the adoption of cloud-based
applications, including high availability (HA), energy, and other
performance demands. Therefore, an integrated solution that ad-
dresses these issues is critical for cloud services. Cloud providers
promise the HA of their infrastructure while cloud tenants
are encouraged to deploy their applications across multiple
availability zones with different reliability levels. Moreover, the
environmental and cost impacts of running the applications in the
cloud are an integral part of incorporated responsibility, where
both the cloud providers and tenants intend to reduce. Hence,
a formal and analytical stochastic model is needed for both the
tenants and providers to quantify the expected availability offered
by an application deployment. If multiple deployment options
can satisfy the HA requirement, the question remains, how
can we choose the deployment that satisfies the other providers
and tenants requirements? For instance, choosing data centers
with low carbon emissions can both reduce the environmental
footprint and potentially earn carbon tax credits that lessen the
operational cost. Therefore, this paper proposes a cloud scoring
system and integrates it with a Stochastic Petri Net model. While
the Petri Net model evaluates the availability of cloud applications
deployments, the scoring system selects the optimal HA-aware
deployment in terms of energy, operational expenditure (OPEX),
and other norms. We illustrate our approach with a use case
that shows how we can use the various deployment options in
the cloud to satisfy both the cloud tenant and provider needs.

Index Terms—Availability, cloud scoring, carbon footprint,
OPEX, Petri Net, stochastic failures, recovery, load balancing.

I. INTRODUCTION

With the cloud computing era, many business applications are
offered as cloud services where they can be accessed anytime
and anywhere. Infrastructure-as-a-Service (IaaS) and Platform-
as-a-Service (PaaS) are essential forms of cloud services
provided for many enterprises. Depending on the cloud user’s
needs, PaaS and IaaS provide the required web applications
and computational resources in the form of virtual machines
(VMs). With the widespread of on-demand cloud services,
their availability, energy consumption, and other performance
issues become paramount aspects for cloud providers and
users [1]. Nowadays, cloud users and providers depend on
affinity/anti-affinity policies, over-provisioning practices, and
multi-zone/region deployments to achieve high availability
rather than defining a comprehensive model to analyze the
high availability (HA) of cloud applications’ deployments. For
instance, OpenStack Nova schedulers use anti-affinity/affinity

E-mail addresses: mjammal@uwo.ca (M. Jammal), akanso@us.ibm.com
(A. Kanso), parisa.heidari@ericsson.com (P. Heidari), Abdal-
lah.Shami@uwo.ca (A. Shami)

filters and availability zones to deploy applications in geo-
graphically distributed data centers (DCs) to maintain HA [2].
Although these notions minimize outage of cloud applications,
they are still missing a quantitative model to analyze the
applications HA, provide generic guidelines for HA-aware
scheduling solutions, and minimize algorithms complexities.
It is important to note that the service availability is the
percentage of time where this service is available in a given
time duration [3].
Although an evaluation model provides generic guidelines
to maintain HA of cloud applications, there are still other
concerns with respect to the energy, performance, and cost
challenges associated with cloud. It is necessary to provide
a solution that integrates the HA constraints with the other
cloud challenges and provides integrated-aware deployments
(e.g. HA and green-aware deployments). This paper proposes
an approach that associates a cloud scoring tool with a
comprehensive availability analysis model to select the best
HA, energy efficient, and/or cost-aware deployments of appli-
cations. Fig. 1 summarizes this approach. First, a cloud sched-
uler generates a set of applications’ deployments. Then an
availability analysis approach using Stochastic Petri Net model
(SPN) is defined. The SPN model evaluates the deployments of
different application’s components by considering the impact
of cloud infrastructure and applications failures, recovery du-
ration, applications redundancy and interdependency relations,
load balancing delay, and processing time of the user’s request.
Once evaluated, these deployments are then inputted to the
cloud scoring tool to select the optimal one according to prede-
fined policies, such as lower operational expenditure (OPEX)
and/or low carbon footprint. The scoring system provides a
policy-driven ranking system to weight the best HA-aware
deployments and select the optimal ones accordingly. It is a
generic approach where the evaluation criterion is determined
based on the cloud providers preferences, and the selection
process is modified accordingly.
The work of this paper is an extension of two other papers
[4] [5]. Although [4] and [5] proposed an availability anal-
ysis approach of cloud-deployed applications, they discarded
SPN practicality and other challenges associated with cloud
applications deployments, such as energy and cost efficiency.
It is necessary to design a system that integrates HA objectives
with other cloud challenges. Therefore, we escalate that work
to the following:

• Associate the SPN model with a policy-driven cloud

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

2

Fig. 1: SPN and scoring selection approach.

scoring system.
• Capture energy/OPEX as scoring policies to provide HA

and green/cost-aware scheduling of cloud applications.
• Integrate the scoring policies with the functionality and

availability constraints to select best placements of ap-
plication components to maximize HA and maintain
energy/cost needs.

• Envision user needs and assess DCs capabilities to filter
out best HA-aware deployments to minimize Greenhouse
Gas (GHG) emissions and OPEX in DCs.

• Evaluate the deployments’ results of the SPN model using
the scoring tool and comprehensive analysis.

• Provide an extensible scoring system that depends on the
generic cloud environment.

• Modify the evaluation criterion based on the capabilities
and preferences offered by the cloud providers, such as
green and cost criteria to evaluate cloud DCs.

• Generate different patterns and/or guidelines to facilitate
the selection between cloud deployment models (public,
private, or hybrid) and to improve existing scheduling or
DCs models.

• Use the defined guidelines as preliminary analysis to
improve algorithms complexities.

The rest of this paper is organized as follows. Section II defines
the problem background where it presents the need for SPN
models and scoring selection system for deployments of cloud
applications. Section III describes the cloud stack, its failures,
the proposed SPN model, and the scoring selection approach.
Section IV describes the evaluation and results of the SPN
model and the scoring selection tool. Section V presents some
related works for availability analysis as well as green- and
cost-aware scheduling. Finally, Section VI concludes the paper
and describes the future work.

II. BACKGROUND

HA, energy efficiency, and OPEX are gaining a lot of interest
in information and communication technology sector and
cloud market. With the high energy consumption, DCs are
supposed to have performance- and energy-aware configura-
tion measures that can lessen the power use and save OPEX,
all aimed at having HA, green, and cost-aware solutions. This
section explains the HA-aware scheduling challenges, the need
for an appropriate dependability analysis model to handle
them, and the necessity to associate the analytical model with
a cloud scoring selection tool.

A. Stochastic Petri Nets in cloud:
The stochastic nature of service failures and the urgent need
for availability solutions require an availability evaluation
model that identifies failures and mitigates the associated risks

and service outages. It has been shown that analytical models,
such as SPNs and Markov chains have been used to analyze the
availability of many complicated IT systems [6]. However, the
complicated nature of cloud infrastructure configurations and
dynamic state changes require a comprehensive and analytical
availability-centric model [7]. Petri Nets (PNs) are widely used
to model the behavior of different Discrete Event Systems [8].
They are graphically presented as directed graphs with two
types of nodes: places and transitions. Deterministic Stochastic
Petri Nets (DSPN) are one of PNs extensions for modeling the
systems with stochastic and deterministic behaviors [9]. DSPN
is presented as a tuple of (P, T, I,O,H,G,M0, τ,W,Π)
where P and T are the non-empty disjoint finite sets of
places and transitions, respectively. I and O are the forward
and backward incidence functions. H describes the inhibition
conditions. G is an enabling function that given a transition
and a model state determines whether the transition is enabled.
M0 is the initial marking. The function τ associates timed
transitions with a non-negative rational number. The function
W associates an immediate transition with a weight (relative
firing probability). Finally, Π associates an immediate transi-
tion with a priority to determine a precedence among some
simultaneously firable immediate transitions.
TimeNET is a powerful PN analysis tool that is maintained
regularly, and therefore, it is used to the simulate and analyze
the SPN model [10]. TimeNET evaluates DSPN, Automata,
and SCPN models. Although DSPN imposes the restriction
of only one enabled deterministic transition in each marking
and does not support random delays distributions, TimeNET
provides transient and stationary analysis of Stochastic Col-
ored Petri Net (SCPN) without any restriction on the num-
ber of concurrently enabled transitions. SCPN supports both
stochastic and deterministic events, and it is a class of DSPN
models where the tokens can have different colors (types)
[11]. Also, SCPNs allow random distributions of transitions
including “global guards”, “zero delays”, “time guards”, and
“complex types of tokens”. With this in mind, the paper uses
SCPN to model the behavior of an application running on
the cloud with stochastic failures and deterministic recovery
events, but it does not make use of the token type feature.
Although the SCPN model captures the cloud characteristics
and translates them into elements of an availability model, it
overlooks the other challenges associated with the cloud. In
the following, we explain the need for a policy-driven scoring
system that weights the HA-aware deployments and select the
optimal one according to a predefined policy (i.e. green/cost).

B. Why a cloud scoring system is needed?
Nowadays, the size of DCs has increased significantly to
satisfy the migration to the cloud and the growth in the usage

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

3

Fig. 2: UML model for a cloud deployment.

of internet services [12]. Besides, many telcos are selling their
DCs and moving to the cloud, such as Verizon and AT&T [13].
With more DCs being built, more services will be provided
to the cloud users, and additional investments and incentives
will be brought to the market. This increase in the rate of
DCs construction is accompanied by a significant growth
in energy consumption that might exceed in some scenarios
the thresholds introduced by the power delivery and cooling
systems. DCs are also going to face an increase in operational
costs due to the high energy consumption [14].
To mitigate the above challenges, one solution could be a
migration to the cloud and adoption of virtualization con-
cept. The VMs, containers, and consolidation concepts can
eliminate idle servers and reduce OPEX while providing 75%
increase in server efficiency [14] [15]. With the migration to
the cloud, its providers are searching for alternative solutions
to reduce the high energy consumption and expenditures. They
adopt multiple approaches, such as using renewable energy and
building DCs in cooler areas to reduce cooling cost and earn
carbon tax credits. Facebook has announced the construction
of one of the most sustainable and reliable DC, Lulea [16].
It has been shown that power and cooling solutions in DCs can
reduce power bills, capital investments for power plants, and
GHG emissions, but one major impediment is raised regarding
the reliability and performance. It is necessary to delineate an
approach that can compromise between the availability, cost,
and green requirements. To ensure redundancy and workload
proximity, cloud providers should have multiple geographi-
cally distributed DCs, each with a different OPEX. Having
a profitable cloud necessitates a scoring mechanism that dis-
tributes the workload while satisfying the HA requirements
(different availability zones, service level agreement (SLA)
level) and minimizing DCs energy consumption and OPEX.
Note that the scoring selection tool can use objectives other
than green and cost efficiency depending on the predefined
options of the cloud providers.

III. APPROACH

To address the challenges of HA, cost, and green-aware
scheduling discussed in the previous section, we need first
to elaborate a behavioral model that can capture the stochastic

nature of different failures in a system and then associate it
with an energy- and cost-aware scoring selection tool.
In the following, we explain the transformation from a cloud
system to the corresponding SCPN model. Then we describe
the the scoring selection tool and its evaluation mechanism.

A. Cloud stack, failures, and UML model

The cloud consists of a set of geographically distributed
DCs hosting multiple servers and set of applications with
multiple software component types. Each type consists of one
or more components that might depend on different sponsor
component(s). Each type is associated with a redundancy
model that determines the number of active, standby, and/or
spare components. Using the appropriate placement solution,
the components are hosted on the servers that best fit their
requirements using VE (VM or container) mapping.
Different forms of failures can occur in the cloud and can be
envisioned as planned and unplanned downtimes. Unplanned
downtime is the worse failure causes because it is a result of
unexpected failure event, and consequently neither the cloud
provider nor the users are notified of it in advance. Unplanned
downtime can happen at the cloud infrastructure (i.e. faults
in memory chips), application’s components (i.e. hypervisor
malfunctioning or software bugs), or both (i.e. natural disas-
ters). Each of the previous failure states is associated with
a failure rate or mean time to failure (MTTF) and mean
time to repair or recover (MTTR). Due to the stochastic
nature of the corresponding failure events, it is assumed
that they are generated using certain probabilistic distribution
functions. However, there is no restriction or specific consent
on the distribution type of every failure event. It can follow
exponential, Weibull, normal, or any other stochastic model.
The exponential failure distribution has been used in many
previous failure analysis and availability related work [17],
[18], and [19]. Therefore, in this paper, the exponential failure
distribution is used to reflect failure rate or MTTF of DCs,
servers, and applications/VEs. Such distribution is applied on
all the stochastic failure transitions of the proposed SCPN
model. As for the repair/recovery timed transitions, there is
usually a predictable average time that can be estimated to
replace a faulty node [20]. Therefore, deterministic distribution
is used to trigger any repair or recovery behavior for the DCs,
servers, and VMs/applications. It should be noted that our
approach also supports other failure rates, as our model does
not depend on a specific probability distribution.
Many modeling approaches are developed to describe the
heterogeneity of cloud architectures. General-purpose lan-
guages are widely used to describe cloud environment. For
instance, Unified Modeling Language (UML) can describe
the platform, infrastructure, and software artifacts to reflect
the characteristics of different cloud components [21]. It can
also reflect the service availability features, but as a semi-
formal model, it cannot simulate the behavior of the system or
measure the availability of a service while different stochastic
failures are happening [21]. Creating the SCPN model man-
ually can be a tedious, time-consuming, and error-prone task.
To mitigate this complexity, a UML model is designed to
describes the above cloud stack and their availability metrics

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

4

Fig. 3: Data center, server, VM, and container sub-models.

(MTTF and MTTR). Fig. 2 illustrates our modified UML
model that captures such cloud deployment. Each application
consists of multiple software components of different types.
Each software component has some attributes to capture
the incoming workload distribution (arrivalRate), the time
duration required to process a request (processingTime), the
number of requests the component can process in parallel
(bufferSize), the maximum capacity of the requests waiting
to be processed (queueSize), the number of redundant replicas
considered for each component (numberOfReplicas), and the
redundancy schema of the component (redundancyModel) to
show which redundancy type a component is capable to accept.
Execution environment (VM or container), server, and DC may
fail because of different failure types. Each failure type has
a failure rate, a recommended recovery action, and recovery
duration based on the recommended recovery.
With the transformable property of the UML model, multiple
cloud deployments and profiles are generated as reusable
templates to identify the mapping between cloud infrastructure
and applications. Then these deployments are imported to the
SCPN model and scoring system to analyze and select best
HA, energy, and cost-aware deployments accordingly.

B. SCPN model building blocks
Although many literature studies provide PN models to ana-
lyze certain DC or host aspects (i.e. throughput), they model
the cloud application as a monolithic one. A monolithic appli-
cation deployment means that any sudden failure can bring the
whole service down. However, cloud providers and users are
migrating from monolithic applications toward multi-tiers and
microservices architecture. Different studies have shown that
overlooking interdependency and redundancy relationships
the application level provides undesirable service availability
results [18] [19]. Modeling each tier of cloud application’s
components, their interdependency/redundancy relationships,
their virtual environment (VE), and their DC(s)/servers reflects
how nowadays software components of a cloud applications
are designed to interact. When a sudden failure happens
at a certain component, the load balancer redistributes the
workload of the faulty component to its redundants. As for
its interdependent components, they function normally if they
can tolerate its absence; otherwise, the load balancer redis-
tributes their workload as well or executes new scheduling
if necessary. Big Data analysis application can be a good
example of a three-tier cloud application. At the front end,
Filters receive unstructured data and remove redundant/useless

data. In the middle, Analysis Engines analyze the data and
generate structured data form. At the back end, Databases
store the structured data produced by the Analysis Engine. The
proposed SCPN model defines a plurality of components of the
multi-tier cloud application and a stochastic model including
representations of the plurality of components, VEs executing
the components, servers executing one or more VEs, and one
or more DCs hosting the one or more server. The model
generates a dependency graph to reflect the intercommunica-
tion between different tiers of the application’s components. It
identifies a number and order of tiers of the multi-component
cloud application. In each tier, it defines a load balancer sub-
model, a component sub-model for each of the plurality of
redundant application’s components, a VE sub-model for the
components’ VEs, a server sub-model for the components’
servers, and a DC sub-model for the components’ servers.
In this section, we assume that the VE is a VM, and each
VM, server, and DC has its own MTTR and MTTF. Then the
SCPN model evaluates different deployment possibilities of
the multi-component cloud application. This evaluation gen-
erates different service availabilities of the multi-component
cloud application that is calculate in terms of number of served
requests during a given time interval.
Since the SCPN model is evaluating the service availability
of a given cloud deployment, each transition is associated
with the guards that reflect the transitioning from a healthy to
failure state, the failover of the workload between redundant
components in same tier, and the workflow of the requests
between different application’s components’ tiers. Although
some literature studies provide same conditions for DC, server,
and VM states, they overlook the modeling of multi-tier
applications’ components, fair round robin load balancing, and
request workflow and their associated guards, such as failover
state that is triggered when a software component or its host(s)
fails. In the following, each sub-model and its guard conditions
are described to reflect the above states.
1) Data center model: Fig. 3a shows the data center model. A
data center has two states: healthy (the place DCi) and failed
(the place DCi fail). Failure is modeled using an exponen-
tial timed transition (Ti DCfail) whereas the recovery is a
deterministic one (Ti DCup) [20].
2) Server model: Fig. 3b presents the server model. The server
also has two states: healthy (Si) and failed (Si fail). The
server can fail, and the failure is an exponential transition
(Ti sfail). It can also fail immediately due to the failure of

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

5

Fig. 4: Load balancer model.

Fig. 5: Component model.

its hosting data center (Ti sDCfail). We represent the data
center hosting Si with S(i)DC . In the following, we use the
place name in the formulas to show the number of the tokens
available in that place. The immediate transition Ti sDCfail
is guarded with:

GTi sDCfail = (S(i)DC == 0) (2)

The recovery occurs according to a deterministic transition
(Ti sUP). A server cannot be recovered unless its host data
center is healthy. Thus, Ti sUP is guarded with:

GTi sUP = (S(i)DC == 1) (3)

3) VM model: A VM (Fig. 3c) can fail through an exponential
transition (Ti fail) or can fail immediately due to the failure
of its hosting server or data center (Ti Hfail). We refer to
the server and DC hosting the VM with VM(i)Server and
VM(i)DC , respectively. Ti Hfail is guarded with:

GTi fail = (VM(i)DC == 0 ∨ VM(i)Server == 0) (4)

The recovery happens after a deterministic delay (Ti up). In
this case, also a VM cannot be recovered unless its hosting
data center and server are healthy. Thus, Ti up is guarded
with:

GTi up = (VM(i)DC == 1 ∧ VM(i)Server == 1) (5)

4) Container model: A VE (Fig. 3d) can also be a container
hosted directly on a server deployed on a DC or hosted on
a VM deployed on a server. The container can fail through
an exponential transition (Ti ctfail) or can fail immediately
due to the failure of its host or DC (Ti hfails). We refer to
the host and DC of the container with Ct(i)H and Ct(i)DC ,
respectively where Ct(i)H can be Ct(i)VM or Ct(i)Ser. If the

container is hosted on a VM then Ti hfails is guarded with:
GTi ctfail = (Ct(i)DC == 0

∨Ct(i)Ser == 0 ∨ Ct(i)VM == 0) (6)

If the container’s host is a server then Ti hfails guard is:
GTi ctfail = (Ct(i)DC == 0 ∨ Ct(i)Ser) (7)

The recovery happens after a deterministic delay
(Ti healthy). Note that in this case, a container cannot
be recovered unless its underlying infrastructure are all
healthy. Its Ti healthy is guarded with:
GTi healthy = (Ct(i)DC == 1 ∧ Ct(i)Ser == 1) (8) OR

GTi healthy = (Ct(i)DC == 1

∧ Ct(i)Ser == 1 ∧ Ct(i)VM == 1) (9)

5) Load balancer model: Load balancing distributes traffic
among multiple compute instances. It is an effective way to
maintain the availability of a given cloud system. It provides
fault tolerance policy in a given application deployment [22].
Upon failure of some instances, load balancer seamlessly
replace them while maintaining the normal operation of other
nodes/instances.
Fig. 4 illustrates the load distributor and round robin load
balancer sub-model. The place LoadDistributor has a fixed
number of tokens, and the load balancer transitions (T LBi

and T LB0) distribute the workload among the active replicas
of the same component. Each component has a queue place
(Ci queue) to represent the number of requests it can queue
for processing and a flushing place (Ci flushing) for the load
balancing mechanism to ensure a round robin distribution. The
transitions T LBi and Ti flush are guarded such that they
model a round robin policy. When a component Ci receives a
token in its queue, its flushing place is marked, and the com-
ponent will not receive another token until its flushing place
is unmarked. Let the round robin order be C1, C2, C3, ...CM

where M is the number of replicas (numberOfReplicas),
and then the same order repeats. The transition T LB1 is the
first one that becomes enabled, and its clock starts elapsing.
Once it is fired, one token is produced in C1 queue, and one
token is produced in C1 flushing. As long as C1 flushing
is marked, C1 cannot receive another token. On the other
hand, T1 flush cannot be fired until all other components
have received their share. As soon as C1 receives a token, the
transition T LB2 becomes enabled, and its clock starts elaps-
ing. Then, T LB2 fires, and C2 queue and C2 flushing
receive a token. The same way other components receive their
share until CM receives a token. At this time, T1 flush
is enabled, and C1 flushing is unmarked. Subsequently,
T2 flush, T3 flush, ...TM flush also fire. According to the
nature of workload arrival of the system, T LBi can have
different distributions. Table I lists the timed transitions of the
load balancer sub-model.
Note that if a component is not available due to a full
queue or a failure in the underlying stack, it should give
its turn to the next available component. For M being the
number of replicas, L being the maximum capacity of a
component queue (queueSize), VM(i)Server and VM(i)DC

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

6

Fig. 6: SCPN model of a three-tier Amazon web application running in a cloud environment.

TABLE I: Time function transitions of Load Balancer and Component
models

Transition Name Type Time Function
T LB0 Deterministic DET(comp.arrivalRate)
T LBi Deterministic DET(comp.arrivalRate)

Ti processed Deterministic DET(comp.processingTime)

being the host server and DC of VMi, we define V SDH(i)

and V SDF (i) as follows:
V SDH(i) = [VMi == 1 ∧ VM(i)Server == 1

∧ VM(i)DC == 1] (10)

V SDF (i) = [VMi == 0 ∨ VM(i)Server == 0

∨ VM(i)DC == 0] (11)

T LBi is guarded with GT LBi :
∀i∈1:MGT LBi

=
(Ci flushing == 0 ∧ V SDH(i) ∧ Ci queue < L)∧
k=1:i−1

(Ck flushing == 1 ∨ V SDF (k))∧
j=i+1:M

(Cj flushing == 0 ∨ V SDF (j)) (12)

And Ti flush is guarded with GTi flush:

∀i∈1:MGTi flush =∧
j=1:i−1

(Cj flushing == 0 ∨ V SDF (j))∧
k=i+1:M

(Ck flushing == 1 ∨ V SDF (k)) (13)

If all the components fail or their queues are full, the requests
are dropped and sent to the place DeniedService. Transition
T LB0 is guarded with:
GT LB0 =

∧
i=1:M

((VMi == 0) ∨ (VM(i)Server == 0)

∨ (VM(i)DC == 0) ∨ (Ci queue ≥ L)) (14)

An alternative solution to model the load distribution is
the loop back arcs from T LBi and T LB0 to the place
LoadDistributor to continuously re-enable the load balancer
transitions and regenerate the workload infinitely. Note that
with this alternative approach, we can over-flood the model
with tokens if their request arrival rate is faster than the the
processing rate of the requests (tokens). To avoid this issue,
we fix the number of tokens in the place LoadDistributor and
do not consider the feedback input arcs. The transitions and
their guards remain the same to model the round robin policy.
We include both techniques in the paper so that the reader can
select the one that best fits their simulation needs.
6) Component model: Fig. 5 illustrates the model of a com-
ponent including partially the load balancer delivering the
workload to the component. Each component has a queue
(Ci queue) to model the maximum capacity of the requests
waiting to be processed and also a buffer to model the
maximum number of requests a component can process in
parallel (Ci processing), such as multi-threaded components.
The requests stored in the queue can enter the buffer only if the
component, its corresponding server, and VM are healthy, and
the number of tokens already in the buffer is below the max-
imum. When a component fails, all the requests in its buffer
are lost and transferred to the place Lost in phasei where

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

7

Fig. 7: Overall approach.

‘i’ is the tier number. The transition Ti Lost in Processing
is guarded with:
GTi Lost in Processing = ((VMi == 0)

∨ (VM(i)Server == 0) ∨ (VM(i)DC == 0)) (15)

In addition, in each tier, if all the replicas fail at the same time,
all the tokens stored in the component queue are transferred
to the place LostReq. The transition Ti Lost is guarded with:
GTi Lost =

∧
i=1:M

((VMi == 0)

∨ (VM(i)Server == 0) ∨ (VM(i)DC == 0)) (16)

When a component fails, the requests already stored in its
queue are transferred again to the load distributor to be failed
over to the other healthy components. This behavior simulates
a multi-active stateful redundancy where each component is
equally backed up by the other components. The transition
T failover Ci to LB is guarded with:
∀i∈1:MGT failover Ci to LB = (17)

(VM(i) == 0 ∨ VM(i)Server == 0 ∨ VM(i)DC == 0)∧∨
j=1:M

j 6=i

(VM(j) == 1∧VM(j)Server == 1∧VM(j)DC == 1)

The tokens successfully processed are stored in the place
Cmid. Note that in a multi-tier system, the tokens successfully
processed in one tier are carried to the next tier where they
are load balanced among the replicas of the next tier. The
tokens successfully processed in all the tiers are stored in a
final place. The availability of the system is only determined
by those tokens that reach this final place. Table I presents the
list of timed transitions and their information.
These building blocks are combined to form the complete
SCPN model. Fig. 6 illustrates a snapshot of the SCPN model
of a 3-tier application running in a cloud environment with
3 active replicas in each tier. The depicted model is using
only VM as VE, but it can be easily modified to include
containers. In the latter case, the above container sub-model
and its complementary guards can be added to the SCPN
model to perform availability analysis and quantification.

C. Transforamtion algorithm of the UML to the SCPN model
In TimeNET, the PN classes are built from an Extensible
Markup Language (XML) schema. Taking this into consid-
eration, the transformation approach performs a one to one
mapping to generate a solvable SCPN model. Fig. 7 summa-
rizes this approach. It starts with defining an an instance of
the UML model (an object model) that represents a certain

cloud deployment scenario. It then parses and wraps this
instance into the XML data format supported in TimeNET
that builds the application’s components dependency graph to
identify the number of tiers and their orders. Once the XML
schema is generated, it is imported to the TimeNET SCPN
analysis tool. Fig. 8 shows the XML schema for creating
the places, transitions (timed/immediate), and the arcs and
measures/expressions that connect map each place to its corre-
sponding transitions. In the XML schema, the transformation
algorithm creates the places and transitions that are common
in all SCPN models, such as the LoadDistributor, LostReq,
and DeniedService places. Then the algorithm iterates over
each tier creating the load balancer, all the component replicas,
their VMs, and their corresponding servers. For instance, if the
model includes five VMs, the VM building block is replicated
five times. However, the transition and guards of each building
blocks may be different. Then, in the final stage, the DCs are
created, the transitions are annotated with the proper rates, and
the guards are annotated with the corresponding conditions. It
is the annotation phase that glues the model together reflecting
the actual deployment and the failure cascading effects. The
overall transformation algorithm is described in Fig. 9. Then
the approach analyzes this SCPN model using TimeNET to
quantify the expected availability of the application.

D. Cloud scoring approach:
Multiple HA-aware deployments might be eligible for the
application components with certain MTTF and MTTR values
of examined DCs. For instance, if the cloud user is looking
for HA-baseline greater than 90%, SCPN evaluation can end
up with more than one satisfactory solutions. Therefore, a
scoring selection tool is needed to add weights to the selected
deployments and select optimal ones among them. The scoring
selection tool is extensible and can address different prefer-
ences of cloud providers. It has an evaluation criterion with
multiple options to allow scoring the deployments. In order
to determine a pragmatic evaluation methodology, some afore
steps are considered:
1) User Requirements Envisioning: The scoring approach
envisions the user requirements and usage patterns to generate
certain groupings of the application components. For instance,
if the deployment of a 3-tier web application is evaluated using
the scoring tool, the envisioning process should consider the
interdependencies between components and examine tolerance
time of the dependent ones to generate the possible groupings.
If the Hypertext Transfer Protocol (HTTP) of a 3-tier web
application cannot tolerate the absence of the business logic
application (App) component, both components should share

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

8

Fig. 8: XML schema to create the SCPN model.

Fig. 9: Transformation algorithm.

same host. In this case, the envisioning process eliminated
the maximum distribution deployment option for both HTTP
and App. In this work, we focus on green and cost objectives
as the evaluation criterion to select optimal placement of the
applications components.
2) Cloud Infrastructure Assessment: It is necessary to measure
the DCs capabilities in terms of OPEX, carbon footprint,
governmental regulations, usage patterns, etc [23]. With these
measures, DC workloads can be evaluated, and consequently,
the overload factor can be calculated for each DC. Overload
represents the increased load that a DC can handle upon
a sudden failure, slashdot effect, or any other growth in
workload. Therefore, each DC is associated with its over-
load factor to help select best DC upon load distribution
or redirection process. In order to determine the overload
factor, it is necessary to select a baseline DC. The baseline
DC, DCb, is the DC that has the highest GHG emissions
and OPEX. Therefore, we have assumed that DCb does not
improve OPEX, GHG emissions, or other metrics preference

compared to other DCs with higher metrics. Once the baseline
is determined, it is assigned an overload factor OLb of 1. Then
the overload factors of remaining DCs, DCri , are calculated
accordingly. For example, if DCr1 has low carbon footprint,
it is assigned up to x% overload. Subsequently, its overload
factor is calculated as follows:

OLri = OLb +
x

100
(18)

Generally, the x% overload is determined by the cloud
provider during the DC planning strategy. This overload
percentage is affected by DC size, CPU, network, storage,
memory, and power modeling in the corresponding DC [24].
This paper uses carbon footprint and OPEX as DCs assessment
metrics. The assessment phase is not only bounded to green
and cost metrics, it can be extended to other objectives based
on the capabilities and choices of the cloud providers.
3) Evaluation Criteria Extraction: The envisioning process is
integrated with the assessment phase, and the suitable criterion
is generated accordingly. For instance, if the cloud user
requires HA-aware deployments for interdependent application
components while taking into consideration energy efficiency,
the evaluation criterion will have low, medium, and high
carbon footprint options. Then the overload factors of the
DCs are evaluated. Also, an evaluation criterion can be a
combination of multiple features/preferences.

E. Scoring selection system of cloud deployments
The proposed scoring tool consists of evaluation criteria with
multiple options and a scoring methodology. Fig. 10 shows
the different modules of the scoring selection tool.
1) Evaluation Criteria: The scoring algorithm consists of
user requirement and assessment modules to determine the
measures that add the scores to the deployment solutions.
Multiple measures can be used as evaluation criteria.
In order to inject cost and green objectives into the proposed
approach, the evaluation criterion assesses the cloud infras-
tructure in terms of OPEX and carbon footprint. During the
assessment process, each DC is examined, and its overload
factor is calculated subsequently. For a given OPEX or carbon
footprint baseline, or a combination of both, the examined DC
operates at a higher load factor, the overload factor, compared
to default/baseline DC. This increase in the load factor gives
preference for one DC over the others.
2) Scoring Methodology: Once the evaluation criterion is
determined, the scoring methodology selects the optimal one.

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

9

Fig. 10: Modules of scoring selection tool.

The scoring selection algorithm is depicted in Fig. 11. Each
DC is characterized by a distance metric that represents its
available capacity before reaching the allowed load. Also,
each deployment is characterized by a distance attribute that
refers to its corresponding DCs’ distances. For the initial
deployment, a default preference is defined as the baseline.
For subsequent deployments, the algorithm evaluates each
eligible deployment distance and selects the one offering the
largest distance. In other words, the scoring tool selects the
deployment that has one or more DC(s) with the highest
capacity to process new workload.
Let NumDC be the total number of available DCs and CLi the
current load of corresponding DCi, then the relative average
utilization (RU) of DCi is calculated as follows:

∀
i∈1:NumDC

DCi.RUi =

(
∑

j=1:NumDC|j 6=i

DCj .CLj)

(NumDC − 1)
(19)

Let OL be the overload factor of each DC, the maximum
allowed workload (AL) is calculated as follows:

∀
i∈1:NumDC

DCi.ALi = DCi.RUi×DCi.OLi (20)

Then the distance (dist) for each DC is calculated as follows:

∀
i∈1:NumDC

DCi.disti = DCi.ALi−DCi.CLi (21)

Suppose Dep is the set of DCs used in a deployment, and
DepN is the number of elements in the set Dep. Then for
every eligible deployment, its distance (Deployment.dist) is
calculated as follows:

Deployment.dist =

(
∑

∀i∈Dep

DCi.disti)

DepN
(22)

Then the eligible deployment that corresponds to the max-
imum deployment distance is chosen as the optimal solu-
tion. The maximum distance measure captures the imbalance
between the examined DCs and the preferences of cloud
providers (low OPEX/carbon footprint).
The proposed scoring tool is an automated extensible module
that can be easily modified to include another evaluation
module.

Fig. 11: Scoring selection algorithm.

IV. CASE STUDY

The system under study is a three-tier web application, such
as Amazon Web application deployed using AWS Elastic
Beanstalk [25]. In each tier, the software component is running
on a VM that is hosted on a server. The server, in turn, is
hosted on a DC. Each tier is replicated three times using an
active/active redundancy model. In each tier, an elastic load
balancer distributes the workload among the replicas based on
a round robin policy.
To investigate different application inter or intra DC deploy-
ments, we have considered three deployments cases: the first
deployment maximizes the distribution among the DCs, such
that in each tier at least one of the replicas is on DC1, one
is on DC2, and one is on DC3 (named Dep.1-2-3). In our
case, we have assumed that DC1, DC2, and DC3 are located
in Virginia, Oregon, and California respectively [26]. In the
second deployment, we put one replica of each tier on DC2

and two other replicas of each tier on DC3 (called Dep. 2-3).
In the third deployment, all the replicas are hosted by the most
reliable DC, which is DC3 (Dep.3 afterward). Fig. 12 shows
the case study to be evaluated.

A. SCPN evaluation and results
The failure of hosting DC has a cascaded impact where its
servers, corresponding VMs, and applications’ components fail
as well. Also, each DC has different OPEX, energy, and other
capabilities. Therefore, in this case study, we are particularly
interested to compare inter- and intra-DC deployments.
Analyzing the service availability can be done either by
(1) quantifying the percentage of time a given service is
in a healthy state, or (2) by analyzing the percentage of
served requests in comparison to the total number of received
requests. We used the latter technique and fixed the number
of tokens in the initial LoadDistributor place. In each tier,
the served requests are stored in a place, which serves as

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

10

Fig. 12: Case study of multi-tier cloud web application distributed among
three DC deployment distributions.

Fig. 13: Service availability of different deployments and different MTTRs.
DCs have similar MTTF.

the load distributor of the next tier (e.g. Cmid and Cmid1
places in Fig. 6). The tokens successfully processed in all
the tiers are stored in the place ServedReq in the 3rd tier. If
all the components fail, or their queues are full, the requests
are dropped and sent to the place DeniedService. When a
component fails, the requests already stored in its queue are
resent to the load distributor to be failed over to the other
healthy components. Lost in phase1, Lost in phase2, and
Lost in phase3 collect in each phase the lost requests from
the components buffers. If all the replicas of a tier fail at the
same time, all the tokens waiting in the components queues
are transferred to the place LostReq.
The VMs and servers can fail due to DC failure through
immediate transitions Ti sDCfail and Ti Hfail. The VMs
and servers MTTF (used in Ti fail and Ti sfail) are fixed
in these experiments. We consider that DCs can have similar
or different MTTF. As a baseline, they all have the same
MTTF (x, x, x). Then we modify MTTF of the DCs (x,
2x, 3x) assuming that DC1 fails more frequently, DC3 is
always the most reliable one, and DC2 has a MTTF between
the two others. Then, we consider different MTTR for each
variation of the MTTF. However, recovery time is always
the same among the DCs. We aim to evaluate which of
the above three deployments would maximize the availability
of the application. If DC3 is the most reliable one, is it
better to choose the third deployment and put all of the
replicas on the most reliable DC or is it better to maximize
the distribution among the DCs? The model presented in

Fig. 14: Service availability of different deployments and different MTTRs.
DCs have different MTTF (x, 2x, 3x).

Fig. 6 is analyzed with transient simulation of TimeNET4.2
running on a Linux VM with 225GB of RAM and 20 vCPUs
running Ubuntu12.04. The results are the outcome of multiple
repetitions of the simulation.
First, we consider the case where all of the DCs have the
same MTTF (x, x, x), and we vary the MTTR among DCs. ‘x’
ranges from 30 to 90 weeks, the MTTR is measured as a ratio
of ‘x’ where MTTR values are x/3, x/10, and x/30 hours, and
the request processing time ranges between 0.1 to 1 second.
The MTTF and MTTR are instantiated to maintain their within
the allowed downtime for cloud providers [25] [27]. Fig. 13
shows the results for the above three deployments. When the
DCs have the same MTTF, we should go for a maximum
distribution as it reduces the probability of the service outage
due to multi-DC failures.
In the second step, we change the MTTF of DC1, DC2, and
DC3 to x, 2x, and 3x, respectively and change the MTTR to
x/3, x/10, and x/30. The results are presented in Fig. 14. Based
on these results, when the reliability of DCs differs, we can opt
for the most reliable ones instead of maximum distribution. A
single DC deployment is not the optimal choice.
In the last experiment, a comparative analysis is performed
between the SCPN results of the deployments of multi-tier ap-
plication’s components and redundancy-agnostic deployment
of a monolithic application. Fig. 15 shows the results of the
comparative analysis. In case of multi-tier cloud application,
we assume DCs have same MTTF and same MTTR. The
MTTF value changes from 30 tu to 90 tu and MTTR is
the MTTF/3 where tu is TimeNET time unit. In case of
the redundancy-agnostic deployment, the whole application is
placed in the same DC due to the monolithic architecture.
Since the redundancy-agnostic deployment does not support
any redundancy model, a failure can then brings the whole
application down. Therefore, it shows the lower number of
served request as shown in Fig. 15. As for multi-tier cloud
application, the maximum distribution shows the highest num-
ber of served requests because the DCs have same MTTF. In
this comparison, the analysis of the SCPN model can improve
the redundancy-agnostic deployment by extract the following
guidelines:

• Reschedule the application and deploy it in the DC with

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

11

Fig. 15: Comparative results of the SCPN model for multi-tier and monolithic
application.

the highest MTTF, or
• Migrate from a monolithic architecture to a multi-tier one

and opt to the maximum DCs distribution, or
• Scale up the application to include redundant one(s).

The proposed SCPN approach is a framework providing HA-
aware placement guidelines where these inferred clues can be
applied to different scheduling scenarios. Note that solving a
model may take some hours due to the complicated stochastic
analysis.

TABLE II: DC evaluation metrics of the first case

DC
OPEX
option

(%)

Carbon
footprint

option (%)

OL
(%)

OL
factor

CL
(%)

DC1 medium none 20 1.2 42
DC2 none low 10 1.1 41
DC3 none none 0 1.0 40

B. Scoring selection system evaluation and results
To select the optimal deployment, the scoring selection algo-
rithm is applied to the above SCPN evaluation results. Since
we focus in this paper on the DC failures impact on HA, the
evaluation criterion is applied to DCs. Two cases are presented
to evaluate the selected deployments against different policies.
In the first case, the criterion is OPEX and carbon footprint
while in the second case only carbon footprint is considered.
The scoring selection algorithm is applied to the above SCPN
evaluation cases: (same MTTF, different MTTR) and (different
MTTF and MTTR) using Dep.1-2-3, Dep.2-3, and Dep.3
deployments. We aim to select the best deployment if multiple
eligible ones are chosen by the SCPN model.
1) First scoring case: In this case, each DC is examined in
terms of OPEX and carbon footprint, and its corresponding
overload factor is generated. Table II shows an example
of metrics that characterize each DC, such as current load
(CL), overload factor (OL), OPEX, and carbon footprint
improvement options. The option can be either high, medium,
low, or none where “high” represents high improvement in
OPEX or carbon footprint reduction, and “none” reflects the
opposite state.

TABLE III: DC distances of the first case

DC RU(%) AL(%) dist(%)
DC1 40.5 48.6 6.6
DC2 41 45.1 4.1
DC3 41.5 41.5 1.5

Table III shows the calculated (RU), (AL), and (dist) for
each DC using (19)-(21). Using values of Table III and (22),
the deployment distances are calculated for each of evaluated
placements as shown in Table IV.

TABLE IV: Deployment distances of the first case

Dep Deployment Distances
Dep.1-2-3.dist 4.06
Dep.2-3.dist 2.8

The scoring selection algorithm is applied to the three cases
introduced in Subsection IV-A. The results are shown in
Table V. In the first case (same DCs MTTF, different DCs
MTTR), Dep.1-2-3 and Dep.2-3 are the eligible solutions for
MTTF of (x) and MTTR of (x/10 and x/30) if the desired
HA-baseline is greater than 80%. In the second case, Dep.1-
2-3 and Dep.2-3 are the eligible solutions for MTTF of
(x, 2x, and 3x) and MTTR of (x/3, x/10, and x/30) if the
desired HA baseline is greater than 80%. Once the eligible
solutions are selected, the scoring algorithm calculates the
(RU), (AL), and, (dist) for each DC. With these parameters,
the Deployment.dist is calculated, and consequently, Dep.1-
2-3 is the optimal deployment since it has maximum distance
compared to the others.

TABLE V: Optimal deployments of first case

Dep HA-baseline ≥ 80%
Eligible
Dep(s) Dep.1-2-3 & Dep.2-3

Optimal
Dep Dep.1-2-3

If the desired HA baseline is greater than 87%, first case
generates one eligible solution, Dep.1-2-3 for MTTF of (x)
and MTTR of (x/3). With the same HA-baseline applied to the
second case, Dep.1-2-3 and Dep.2-3 are the best placements
for MTTF of (x, 2x, 3x) and MTTR of (x/10 and x/30).
Therefore, the scoring algorithm is only applied to the second
case where DCs have different MTTF of (x, 2x, 3x).

TABLE VI: DC carbon metrics in 2013 used in second case

DC

Carbon
Emission

(kg/million
Btu)

Carbon
footprint

option (%)

OL
(%)

OL
factor

CL
(%)

DC1 52.5 none 0 1.0 55
DC2 35.6 medium 39 1.39 10
DC3 51.4 low 2 1.02 25

2) Second scoring case: In this case, each DC is examined in
terms of carbon emission based on the U.S. energy report [28].
Table VI shows the carbon emissions of industrial sectors in
California, Oregon, and Virginia where the above three DCs
are located [28]. Since Virginia has highest carbon emissions,
its DC, DC1, is considered the baseline one, and consequently
its (OL) is one. The deployments evaluation is based only on
the carbon emission factor. Similarly, the option can be either
high, medium, low, or none.

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

12

Table VII and Table VIII show the calculated (RU), (AL),
(dist), and deployment distances for each DC and evaluated
placements using (19)-(22).

TABLE VII: DC distances of the second case

DC RU(%) AL(%) dist(%)
DC1 17.5 17.5 -37.5
DC2 40 55.6 45.6
DC3 32.5 33.15 -8.15

TABLE VIII: Deployment distances of the second case

Dep Deployment Distances
Dep.1-2-3.dist -0.016
Dep.2-3.dist 18.725

The scoring selection algorithm is applied to the three cases
introduced in Subsection IV-A. The results are shown in
Table IX. In the first case (same DCs MTTF, different DCs
MTTR), Dep.1-2-3 and Dep.2-3 are the eligible solutions for
MTTF of (x) and MTTR of (x/10 and x/30) if the desired HA-
baseline is greater than 80%. In the second case, Dep.1-2-3
and Dep.2-3 are the eligible solutions for MTTF of (x, 2x,
and 3x) and MTTR of (x/3, x/10, and x/30) if the desired HA
baseline is greater than 80%. The scoring algorithm calculates
the (RU), (AL), and, (dist) for each DC of the eligible
deployments. Then, the Deployment.dist is calculated, and
consequently, Dep.2-3 is the optimal deployment since it has
maximum distance compared to the others.

TABLE IX: Optimal deployments of the second case

Dep HA-baseline ≥ 80%
Eligible
Dep(s) Dep.1-2-3 & Dep.2-3

Optimal
Dep Dep.2-3

Note that a change in the DC workload, its OPEX, or
carbon footprint option affects the (RU), (AL), and, (dist)
calculation. Consequently, different deployment might win the
scoring test since Deployment.dist of the eligible solutions
will be modified.
C. Approach discussion
The understandability and practicality of both the SCPN model
and the cloud scoring tool are discussed below.
1) SCPN discussion
The Petri net model is used to perform the following:
i) Provide guidelines to improve HA-schedulers. It provides
a preliminary analysis that allows eliminating some of the
deployment options when executing the algorithm. Conse-
quently, the complexity of an HA-aware scheduling algorithm
is reduced. For instance, let us assume we have a scheduling
algorithm with 3 DCs of different reliability values, and each
DC hosts 100 servers. Since the DCs have different reliability,
the proposed SCPN model indicates that the maximum DCs
distribution option can be eliminated from the scheduling
search. If we assume that the scheduling algorithm has O(n2)
complexity, the latter is reduced to O((n − ne)2) where n is
number of servers and ne is number of eliminated servers. In
this case, the best case scenario is O((n− ((ndc−1)∗ndce))2)
and the worst case scenario is O((n − ndce))2) where ndce is
number of eliminated servers in one DC. In both cases, the
assessment and the guidelines extracted from the SCPN model

can enhance the scheduling complexity.
ii) Evaluate existing deployments of cloud applications in
terms of HA objective. Once assessing the deployments, it
can be determined if they meet the SLA.
In this paper, the focus of the SCPN model is to extract
different directives to improve the availability of cloud ap-
plications’ deployments and reduce the complexity of the
scheduling algorithms. In other words, if a deployment setting
has large number of DCs, servers, and VMs, there is no need
to evaluate the model with this setting. It would be enough
to sample a number of VMs and their distribution in DCs
and extract the DCs that can be eliminated in the scheduling
policy. State explosion is one of the challenges of a state space
models, such as PN. In this case, the number of states increases
exponentially. For instance, a model with n processes, each
with k states, has kn states [29]. The state explosion occurs
when the PN analysis tool cannot process the PN model due to
the lack of memory and/or absence of abstraction and model
construction techniques. However, the existing VMs have high
computational resources, which increase the efficiency of the
PN analysis and verification tools [29]. With this in mind, this
paper uses a powerful machine with 225GB of RAM and 20
vCPUs, and the proposed model is divided into sub-analyzable
models where each tier is analyzed before aggregating the
whole system. In this case, the state spaced is reduced where
the DC impact on the application’s components is evaluated
while preserving the VM and server states. In this transparent
construction-time reduction mechanism, evaluation questions
can be answered with the same tool as with the whole state
space model.

2) Scoring tool discussion

When a cloud scheduler finds a host for an application’s
component, it aims at satisfying one or more SLA objectives,
such as HA, green, cost, or security requirements. This paper
proposes a solution that integrate both HA, energy, and cost
objective while finding the best host for a given cloud appli-
cation. However, HA is one of major issues in the cloud; a
failed application’s components can hinder the functionality
of the whole application and can have huge impact on the
customer relation managements. With this in mind, HA is the
primary objective in this work. Once a set of application’s
deployments is defined and assessed, the scoring tool is then
used to select the best while considering green, cost, and
other performance aspects. It is necessary to note that the
scoring tool is not a scheduling algorithm, but it is a selection
mechanism that opts for the best deployment (among set of
many) while satisfying certain performance requirement(s).
However, if the cloud providers and users consider for in-
stance, energy/cost reduction as their primary objective when
deploying an application component, the scoring tool can be
used before the SCPN model to select best set of deployments
from a green perspective. Then the SCPN model can assess
this deployment and decides whether it satisfies the SLA or
not. In this case, the above SCPN results change because the
evaluated deployments are HA-agnostic ones.
The scoring tool does not only determine which cloud de-
ployment is the best fit for a given application, but it can also

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

13

decide whether a cloud deployment solution is suitable for a
business application. In this case, cloud and no-cloud deploy-
ments can be inputted to the scoring tool. Then each DC of the
assessed deployments can be associated with its cloud business
factors (OPEX vs Capital Expenditure, time to market, or
return investment) and architecture aspects (energy, security,
latency, or data restriction/locality). As shown above, each
deployment option is then associated with a score (overload
and distance weights) to choose between cloud or no-cloud
deployment for a certain business applications. Similarly, the
scoring tool can be used to choose among public, private, or
hybrid cloud solution. In this case, deployment of each cloud
model is associated with the desired business and architecture
aspects. Once scores are applied to each deployment, the tool
selects the deployment with the largest score. Consequently,
the tool answers whether a public cloud model is an applicable
option or the applications should be deployed in private or
hybrid cloud model. It is necessary to note that the scoring
tool can be associated with any scheduling solution for cloud
applications. It is not limited to the use with the SCPN model.

V. RELATED WORK

Few literature studies use PN models and scoring selection
tools to address the deployment of cloud services in terms
of HA, cost, and green-aware objectives. In [30], the authors
propose an availability analysis approach for cloud systems
using Stochastic Reward Net (SRN) and Markov chain
models. Although their approach minimizes the problem
solving time and analyzes service availability in large-scale
networks, it discards the redundancy models of software
components at each tier of a cloud application, functional
workflow between software components at different tiers,
and their impacts on the availability analysis. This approach
can be associated with the proposed SCPN model, but this
paper focuses on modeling multi-tier application and extract
guidelines that can answer when to opt for inter or intra-DC
deployment. In [31], the authors propose statistical models
to predict the availability of a hosts in a distributed system.
Although this approach guides the design of scheduling
solutions, it does not model a multi-tier cloud application.
It only aims at defining subsets of hosts that have similar
probabilistic availability distribution using clustering methods.
In this paper, SCPN model is designed to reflect how cloud
applications interact nowadays and how this interaction can
affect the inter or intra-deployment solution. The SCPN
models VM states, but the objective of this paper is to
evaluate inter or intra-DCs deployments. With this in mind,
the VM reliability values are not changed during the analysis.
While [32] proposes queuing and SPN service availability
models through software rejuvenation and failure prevention,
[33] describes the impact of adding servers on service
availability using SCPN model. Although the proposed
models show performance improvements, they only focus
on few aspects of availability analysis. [34] proposes a
colored PN model to provide scheduling approach. It uses
phased scheduling scheme that separates the scheduling and
the execution phase while minimizing processing cost and
satisfying computational resources constraints. While [35]

describes a clustering deployment model that maximizes
performance, [36] provides a comprehensive availability
model using SRNs to analyze downtime cost. [37] proposes
a power management approach that minimizes the power
consumption while satisfying the workload demands. It
uses CPU utilization to predict these demands. When the
utilization exceeds a certain threshold, extra servers are turned
on to minimize the servers’ CPU usage.

VI. CONCLUSION

With the always on and always available trend, inoperative
services halt the business continuity. It is not enough to
provide HA solution that can mitigate failures and maintain
certain availability baseline, but it is necessary to assess such
solution and its resiliency to any failure modes. Additionally,
it is essential to integrate such assessment with green and
cost requirements to uphold the quality of service with lower
carbon footprints and OPEX. With these objectives, this paper
proposed a SCPN model that evaluates the inter and intra-DC
deployments of cloud services. This model considers different
stochastic failures, deterministic repairs, functionality con-
straints, redundancy, and interdependencies between different
applications components. The SCPN model inputted the HA-
aware deployments into a scoring selection tool. Using the
latter algorithm, HA-aware placements are filtered in terms of
energy and cost metrics to select the optimal deployment. The
scoring selection tool is extensible to different criteria and is
not limited to the aforementioned measures. In future work,
the proposed scoring tool will be extended to include a visual-
ization module and a machine learning algorithm to generate
patterns about user requirements and their assessment.

ACKNOWLEDGMENT

This work is partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC-STPGP
447230) and Ericsson Research. We would like to thank Prof.
Armin Zimmermann for his insights.

REFERENCES

[1] H. Hawilo, A. Kanso, and A. Shami, “Towards an Elasticity Framework
for Legacy Highly Available Applications in the Cloud,” IEEE World
Congress on Services (SERVICES), pp. 253-260, July 2015.

[2] OpenStack, “Filter Scheduler,” http://docs.openstack.org/developer/nova/
filter scheduler.html, 2010. [June 17, 2016]

[3] TechTarget, “Reliability, Availability and Service-
ability (RAS),” http://whatis.techtarget.com/definition/
Reliability-Availability-and-Serviceability-RAS, 2017. [June 2017]

[4] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “Availability Analysis
of Cloud Deployed Applications,” IEEE International Conference on
Cloud Engineering (IC2E), April 2016.

[5] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “A Formal Model for
the Availability Analysis of Cloud Deployed Multi-Tiered Applications,”
3rd IEEE International Symposium on Software Defined Systems, April
2016.

[6] K. S. Trivedi, D. Kim, and R. Ghosh, “System availability assessment
using stochastic models,” Applied Stochastic Models in Business and
Industry, vol. 29, no. 2, pp. 94-109, 2013.

[7] R. Ghosh, D. Kim, and K. S. Trivedi, “System resiliency quantifica-
tion using non-state-space and state-space analytic models,” Reliability
Engineering & System Safety, vol. 116, pp. 109-125, 2013.

[8] C. Petri, “Kommunication mit Automaten,” University of Bonn, 1962.
[9] G. Ciardo and C. Lindemann, “Analysis of deterministic and stochastic

Petri nets,” 5th International Workshop on Petri Nets and Performance
Models, pp. 160-169, 1993.

[10] A. Zimmermann, “Modeling and Evaluation of Stochastic Petri Nets

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2781730, IEEE
Transactions on Services Computing

14

with TimeNET 4.1,” 6th International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS), pp. 54-63, 2012.

[11] A. Zimmermann and M. Knoke, “A Software Tool for the Performa-
bility Evaluation with Stochastic and Colored Petri Nets,” http://www2.
tu-ilmenau.de/sse file/timenet/ManualHTML4/UserManual.html, March
2007. [June 2017]

[12] Data Center Knowledge, “Undertaking the Challenge
to Reduce the Data Center Carbon Footprint,”
http://www.datacenterknowledge.com/archives/2014/12/17/
undertaking-challenge-reduce-data-center-carbon-footprint/, December
2014. [November 2015]

[13] Data Center Dynamics, “Verizon to auction its data centers
report,” http://www.datacenterdynamics.com/design-strategy/
verizon-to-auction-its-data-centers-report/95445.article, January
2016. [January 2016]

[14] Ingram Micro Advisor, “How Data Center Design Impacts Efficiency
and Profitability,” http://www.ingrammicroadvisor.com/data-center/
how-data-center-design-impacts-efficiency-and-profitability, July 2015.
[January 2016]

[15] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state of the
art, challenges, and implementation in next generation mobile networks
(vEPC),” IEEE Network, vol. 28, no. 6, pp. 18-26, December 2014.

[16] EuroNews, “Facebook boasts green data centre in Lule,
Sweden,” http://www.bloomberg.com/bw/articles/2013-10-03/
facebooks-new-data-center-in-sweden-puts-the-heat-on-hardware-makers,
October 2015. [25 October 2015]

[17] J. Xu, X. Li, Y. Zhong, and H. Zhang, “Availability modeling and
analysis of a single-server virtualized system with rejuvenation,” Journal
of Software, vol. 9, no. 1, pp. 129-139, January 2014.

[18] M. Jammal, A. Kanso, and A. Shami, “High Availability-Aware Op-
timization Digest for Applications Deployment in Cloud,” 2015 IEEE
International Conference on Communications (ICC), pp.6822-6828, June
2015. Available: http://vixra.org/pdf/1410.0193v1.pdf

[19] M. Jammal, A. Kanso, and A. Shami, “CHASE: Component High-
Availability Scheduler in Cloud Computing Environment,” IEEE Inter-
national Conference on Cloud Computing (CLOUD), pp. 477-484, 2015.

[20] J. O. Grady, “System Requirements Analysis,” Elsevier, December 2013.
[21] S. Bernardi, J. Merseguer, and D. Petriu, “An UML profile for de-

pendability analysis and modeling of software systems,” Technical Re-
port, May 2008, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.205.4357&rep=rep1&type=pdf.

[22] Amazon Web Services, “Web Application Hosting,” https://media.
amazonwebservices.com/architecturecenter/AWS ac ra web 01.pdf,
2016. [May 2016]

[23] Oracle, “Oracle’s Approach To Cloud,” http://www.oracle.com/
technetwork/topics/entarch/oracle-ds-cloud-approach-r3-0-1556829.pdf,
2012. [December, 2015]

[24] S. Shen, V. Beek, and A. Iosup, “Statistical Characterization of Business-
Critical Workloads Hosted in Cloud Datacenters,” 5th IEEE/ACM Inter-
national Symposium on Cluster, Cloud, and Grid Computing (CCGrid),
pp. 465-474, May 2015.

[25] A. Adegoke and E. Osimosu, “Service Availability in Cloud Computing-
Threats and Best Practices,” Bachelor Thesis, http://www.diva-portal.se/
smash/get/diva2:646329/FULLTEXT01.pdf, June 2013.

[26] Amazon Web Services, “AWS Global Infrastructure,” https://aws.
amazon.com/about-aws/global-infrastructure/, 2016. [May 2016]

[27] CloudHarmony, “Service Status,” https://cloudharmony.com/status,
2017. [June 13, 2017]

[28] U.S. Energy Information Administration, “Energy-Related Carbon
Dioxide Emissions at the State Level, 2000-2013,” http://www.eia.
gov/environment/emissions/state/analysis/pdf/stateanalysis.pdf, October
2015. [April 2016]

[29] M. Camilli, “Coping with the State Explosion Problem in Formal
Methods: Advanced Abstraction Techniques and Big Data Approaches,”
Doctor of Philosophy Thesis, https://air.unimi.it/retrieve/handle/2434/
264140/367004/phd unimi R09619.pdf,February 2015.

[30] F. Longo, R. Ghosh, V. Naik, and K. Trivedi, “A scalable availability
model for infrastructure-as-a-service cloud,” 41st IEEE/IFIP Interna-
tional Conference on Dependable Systems & Networks (DSN), pp. 335-
346, June 2011.

[31] B. Javadi, D. Kondo, J. Vincent, and D. Anderson, “Discovering sta-
tistical models of availability in large distributed systems: An empirical
study of seti@home,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 11, pp. 1896-1903, November 2011.

[32] F. Salfner and K. Wolter, “Analysis of service availability for time-
triggered rejuvenation policies,” Journal of Systems and Software, vol.
83, no. 9, pp. 1579-1590, May 2010.

[33] F. Salfner and K. Wolter, “A Petri Net model for Service Availability in
Redundant Computing Systems,” Winter Simulation Conference (WSC),
pp. 819-826, December 2009.

[34] K. Joo, S.H. Kim, D. Kim, and C.H. Youn, “Cost-Aware Workflow
Scheduling Scheme Based on Colored Petri-net Model in Cloud,”
International Conference on Future Web, November 2014.

[35] P. Fan, J. Wang, Z. Chen, Z. Zheng, and M. R. Lyu, “A spectral
clustering-based optimal deployment method for scientific application
in cloud computing,” International Journal of Web and Grid Services,
vol. 8, pp. 31-55, 2012.

[36] T. A. Nguyen, D. S. Kim, and J. S. Park, “Availability modeling and
analysis of a data center for disaster tolerance,” Future Generation
Computer Systems, vol. 56, pp. 27-50, October 2015.

[37] D. J. Bradley, R. E. Harper, and S. W. Hunter, “Workload-based power
management for parallel computer systems,” IBM Journal of Research
and Development, vol. 47, pp. 703-718, 2003.

Manar Jammal received her B.Sc. in electrical and
computer engineering in 2011 from the Lebanese
University, Beirut Lebanon. In 2012, she received
her M.E.Sc. in electrical and electronics engineering
from the Ecole Doctorale des Sciences et de Tech-
nologie, Beirut Lebanon in cooperation with Uni-
versity of Technology of Compigne, France. She is
currently working towards the Ph.D. degree in cloud
computing and virtualization technology at Western
University, London Canada. Her research interests
include cloud computing, virtualization, high avail-

ability, and simulators. She is the chair of IEEE Women In Engineering,
London ON and vice-chair of IEEE Canada Women In Engineering.

Ali Kanso is a senior Cloud Software Engineer at
IBM T.J. Watson research center working on the
IBM next generation container Cloud. He is also
an adjunct research professor at Western University.
Dr. Kanso earned his masters and Ph.D. degrees
in Electrical and Computer Engineering from Con-
cordia University in Montreal Canada in 2008 and
2012 respectively. He holds to his credit over 50
publications including 12 patents granted and several
pending. He previously held the position of a senior
researcher at Ericsson research Cloud technologies.

Dr. Kanso has over a decade of industrial research experience where his
research interests are focused on distributed systems and lightweight virtu-
alization in cloud computing environments.

Parisa Heidari is currently working as a researcher
at Ericsson research, Montreal, Canada. She received
her PhD on controller synthesis of real time systems
modeled by Time Petri Nets and her MSc on tracing
virtual systems both from Ecole Polytechnique de
Montreal, Canada in 2012 and 2007, respectively.
She worked as research associate on high availability
middleware for cloud systems at Concordia Univer-
sity from 2013 to 2015. In 2015, she joined Ericsson
as postdoctoral research fellow. Her research inter-
ests include cloud storage, container technologies,

and new generation of cloud, resource dimensioning, and different aspects of
QoS assurance in cloud systems.

Abdallah Shami received the B.E. degree in Elec-
trical and Computer Engineering from the Lebanese
University, Beirut, Lebanon in 1997, and the Ph.D.
Degree in Electrical Engineering from the Graduate
School and University Center, City University of
New York in September 2002. In September 2002,
he joined the Department of Electrical Engineering
at Lakehead University, Thunder Bay, ON, Canada
as an Assistant Professor. Since July 2004, he has
been with Western University, Canada where he is
currently a Professor in the Department of Electrical

and Computer Engineering. His current research interests are in the area
of network optimization, cloud computing, and wireless networks. He is an
Editor for IEEE Communications Tutorials and Survey and has served on
the editorial board of IEEE Communications Letters (2008-2013). He is an
IEEE Distinguished Lecturer and Senior Member of IEEE and was the elected
chair of the IEEE London Section and chair of IEEE Communications Society
Technical Committee on Communications Software.

