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Abstract: Cloud computing provides on-demand IT services via
large distributed datacenters over high-speed networks. Virtual-
ization, a key cloud computing technology, allows service providers
to offer computing services in cloud environments without plat-
form compatibility discrepancies. The recent proliferation of cloud
computing has rekindled interest in network virtualization. Thus,
network virtualization is emerging as a polymorphic approach
for the future Internet that will facilitate the use of shared re-
sources. Virtual network provisioning is considered to be a main
resource allocation challenge in any virtualized network environ-
ment. Software-defined networking (SDN) imparts flexibility to
a network by removing the control layer from the data transfer
layer of the network and moving it to the control plane. Network
virtualization is further employed to share physical infrastructure
to enable multiple service providers to access the network. Flexi-
ble access requires efficient management of network resources; the
SDN control plane can be used for efficient management of virtual
networks. In this study, we formulate virtual network provisioning
in SDN-enabled, geographically distributed cloud computing dat-
acenters as a mixed integer linear programming (MILP) problem.
The formulation of the proposed optimized virtual network provi-
sioning (OVNP) model is studied by means of simulations. The per-
formance of the proposed approach is measured against enhanced
network cloud provisioning (ENCP), our previous research, and
other recognized research focused on the ratio of successfully pro-
visioned requests and the efficiency of resource utilization. The re-
sults verify the effectiveness of the proposed approach.

Index Terms: Cloud computing, cloud datacenters, dynamic re-
source allocation, future Internet, network virtualization, software
defined networking, virtualization, virtual software-defined net-
working (SDN) provisioning.
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I. INTRODUCTION

CLOUD computing provides on-demand IT services via
large distributed datacenters over high-speed networks.

The benefits of cloud computing, which include on-demand
availability, scalability, and the pay-per-use model, have
prompted businesses to switch to the cloud in order to reduce
the overall cost of computing. To operate in the cloud envi-
ronment, users must be provided with robust performance by
service providers: This can be achieved when the technologies
used work efficiently and the system is managed optimally. Vir-
tualization, which is the key technology in cloud computing,
allows service providers to offer platform-compatible comput-
ing services in the cloud environment, which relieves the client
from troubleshooting compatibility issues. In addition, virtual-
ization enables service providers to improve the utilization of
their server and storage capacities while providing them with
the availability and flexibility required to service a large number
of clients [1], [2].

Cloud computing, with its distributed datacenter approach, re-
quires datacenters to be located as close to the client as possi-
ble in order to implement low-latency and real-time services.
Service providers are required to manage and control their dis-
tributed datacenters; thus, the recent proliferation of cloud com-
puting has rekindled interest in network virtualization. Indeed,
network virtualization is emerging as a polymorphic approach
for the future Internet that will facilitate the use of shared re-
sources. It allows multiple networks to exist in a single sub-
strate network. A virtual network consists of virtual nodes that
are connected by links and must be provisioned on the physical
network. Virtual network provisioning is considered to be the
main resource allocation challenge in any virtualized network
environment. Provisioning is the process of efficiently allocat-
ing the physical resources available to the virtual components
available within the network. Network virtualization plays an
important role in current cloud platforms because it is provided
as a service [3]–[5].

The core networks in large-scale cloud datacenters must be
flexible in order to meet changing requirements. The use of pro-
grammable networks has been proposed to facilitate a flexible
networking environment. Software-defined networking (SDN)
imparts flexibility to a network by removing the control layer
from the data transfer layer of the network and moving it to the
control plane. It also reduces CapEx and OpEx (up to $32 billion
annually [6]), and increases the generated revenue of cloud ser-
vice providers. The network is then managed by an entity called
the SDN controller, which maintains an overall view of the net-
work and allocates or configures networking resources dynami-
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cally as per the system requirements [7]. The control plane de-
fines the destination where the data is to be sent via a central
SDN controller. This controller can configure and manage the
flow of data packets through switches in the data plane. The data
plane constitutes the system that actually routes the data traffic
to the defined destination.

Network virtualization is used to share physical infrastruc-
ture in order to enable multiple service providers to access the
network; this access requires efficient management of network
resources. The SDN control plane promotes efficient manage-
ment of virtual networks, thus, the SDN is an effective tool to fa-
cilitate the implementation of network virtualization. SDN uti-
lizes software to manage, program, and virtualize the network,
similar to the manner in which hypervisors virtualize a physi-
cal server setup. Moreover, virtualized SDN-based network ar-
chitecture allows cloud service providers to implement versatile
public cloud technology in a cost-effective manner. The open
application platform interface will (1) enable end-users and ser-
vice providers to obtain network resources on demand, (2) sup-
port need-based resource allocation, and (3) allow customers to
control the procurement of resources. SDN, as an enabler of net-
work virtualization, can expand the services provided by cloud
service providers and offer an even higher level of innovation
[8].

Cloud datacenters receive a large number of requests from
clients for resource allocation and processing. In turn, service
providers are required to efficiently allocate and schedule the re-
quests in their distributed datacenters. Cloud service providers
allow clients to reserve various types of virtual machines (VMs)
along with connection requests. Each client requires a certain
quality of service (QoS) to be maintained, regardless of the
resources being shared with other clients. Therefore, the sys-
tem must allocate resources to VMs dynamically so that the
resources can be utilized effectively [9]. Such VM resources
may be located in geographically distributed locations, and in
order to acquire data exchange capabilities, the client rents the
bandwidth required for inter-datacenter communications. In
traditional approaches, fixed bandwidths are allotted to fulfill
service-level guarantees [4]. However, these approaches do not
utilize networking resources optimally. This problem can be ef-
fectively resolved by a central controller that has an overall view
of the network and dynamically allocates network resources by
considering QoS in conjunction with availability. SDN, when
used in a network environment, can perform this task with its
network controller, which is appropriately assigned to have an
overall view of the network and its resources. The SDN con-
troller can be programmed to meet system requirements, define
suitable policies, and deliver efficient solutions. With these fea-
tures, the SDN can allocate networking resources dynamically
and proficiently as dictated by the demands of VM clients, while
accounting for link and node resources [10].

In this study, we formulate virtual network provisioning in
SDN-enabled geographically distributed cloud computing dat-
acenters as a mixed integer linear programming (MILP) prob-
lem. We assume that the central management controller, which
includes the cloud controller and SDN controller, has complete
knowledge of both the physical network resources and the dat-
acenters in terms of servers, computational resources, and link

resources. With this comprehensive observation, the controller
can dynamically and efficiently manage and optimize cloud
resources–including network link resources and computational
resources–while providing scalability and flexibility that satis-
fies the cloud client’s requirements. Most cloud providers adopt
the best-effort approach to fulfill the QoS requirements of cloud
clients. The proposed MILP formulation, referred to as opti-
mized virtual network provisioning (OVNP), allows the central
controller to provision the aggregated cloud connections of the
virtual SDN network to the underlying substrate network such
that the number of cloud clients served is maximized and the
allocated resources are minimized. For a virtual network to be
provisioned, it must be active during a predefined time frame
(determined dynamically). This provisioning adopts an online
approach for handling requests from cloud clients. Moreover,
the proposed OVNP model was compared to state-of-the-art al-
gorithms that tackled the same problem.

The remainder of this paper is organized as follows: Sec-
tion II provides a brief review of related studies; Section III
presents the role of OVNP in SDN-based cloud environments;
Section IV introduces the OVNP problem formulation and the
proposed algorithm; Section V describes our simulation envi-
ronment and the quantitative performance evaluation of the pro-
posed approach; Section VII summarizes our findings and con-
cludes the proceeding analysis; finally, Section VI summarizes
the contributions of the present study.

II. RELATED WORKS

A. Virtual Network Provisioning

Efficient virtual network provisioning, which is the key to
providing robust solutions to cloud computing clients, requires
efficient network virtualization techniques. In the literature, net-
work virtualization has been regarded as a key technology for
achieving various provisioning goals. In addition, network vir-
tualization has been considered the key component of future In-
ternet technologies [11]–[13], as it allows different technologies
to exist over a common physical infrastructure. Network vir-
tualization is also advocated as a solution to the problem of
Internet ossification, as it allows for controlled deployment of
new architectures [14]–[17]. In [18], approaches for provision-
ing virtual networks have been compiled and the constraints on
achieving an optimal solution have been listed. Specifically,
“node and link resource constraints, limited substrate resources,
the dynamic nature of the virtual network requests’ (VNRs’) ar-
rival, and VNRs diverse topologies impose challenges on the
process of virtual network mapping (VNM)” [18]. Dynamic
provisioning of a virtual network requires an efficient approach
for embedding virtual resources into the available physical re-
sources [10]. Most researchers have not taken into account the
simultaneous occurrence of one or more of these constraints;
this has led to simplified and constricted solutions. Virtual net-
work embedding is a difficult task owing to the use of diverse
topologies, resource constraints, online requests, and admission
control [19]. The complexity can be illustrated by the way that
researchers have termed the problem as “NP-hard” [11]–[13],
[20], [21].

The VNM process requires node mapping as well as link
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mapping; this can be achieved in two stages or by using co-
ordination between the two stages to improve efficiency. A set
of virtual network embedding algorithms (ViNEYard) consti-
tutes one such approach that co-ordinates node and link map-
ping stages [19]. The authors proposed an augmented graph by
connecting a virtual node to each physical node. ViNEYard
considers multicommodity flow to perform link mapping, and
this method of link mapping is employed in this work. In [20],
a substrate node with the required resources and bandwidth is
selected using a node mapping algorithm. In [21], a technique
called VHub approaches mapping as a mixed integer program
to reduce the usage of physical resources and balance the load
evenly. The virtual paths for the substrate are selected using a
link-mapping algorithm. The author used path migration for dis-
tributing virtual links to different paths in order to maximize the
utilization of the virtual network (VN) in the substrate network.
Splitting of the virtual network provisioning request has been
solved using techniques such as max-flow min-cut algorithms
and linear programming [22]. In [11], the authors proposed inte-
ger linear programming formulation for simultaneous optimiza-
tion of node and link mapping. Mapping of nodes and links
in the same stage has also been proposed in [23]. The authors
proposed a VNM algorithm based on subgraph isomorphism de-
tection for mapping. In [17], the authors showed that the use of
internal topologies for virtual mapping provides less efficient
solutions and creates undesirable constraints. Virtual network
requests were represented using traffic matrices, which were
solved using mixed integer programming formulation. Another
approach for virtual network embedding solutions was proposed
in [24]. The traditional approach of imposing restrictions on the
problem space or using heuristic algorithms was discarded, as
these do not use the substrate resources efficiently. The authors
proposed that the substrate network be re-designed so that sim-
pler embedding algorithms can be used and the substrate re-
sources be distributed more efficiently without imposing restric-
tions on the problem space. The virtual link is dispersed over
multiple substrate paths, at which point path migration is em-
ployed to improve ink utilization as new requests are received.

B. Virtual Network Embedding in Cloud Computing

The end-to-end QoS in distributed cloud applications is a
cause for concern among cloud clients. In most cases, cloud in-
frastructures and communication networks work independently
of each other, making it difficult to guarantee QoS. Many ap-
proaches have been proposed to provide QoS in a cloud envi-
ronment [5], [25]–[28]. A virtual-network-as-a-service (VNaaS)
model was proposed by [5] to reduce the latency experienced
in communication networks. The model maps the requirements
to create virtual links with differentiated quality among data-
centers that fulfill the QoS requirements. In [25], end-to-end
availability and latency was guaranteed by modeling problems
as linear optimization problems to control network and cloud
resources, whereas mixed integer programming (MIP) and a
heuristic methodology were adopted in [26] and [28] for the
same purpose. Minimizing the rejection rate of requests by
ensuring the availability of sufficient bandwidth, memory, and
processing power was the key objective of the proposal pre-
sented by [27]. This strategy aims to enhance cloud revenue but
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Fig. 1. OVNP in SDN-based cloud environment.

does not consider issues such as network latency. Most of the
above mentioned studies have focused on solving the virtual net-
work embedding problem and have not investigated the type of
communication required by virtual networks. Communication-
related issues have been discussed by [29] and [30].

C. SDN with the Concept of Network Virtualization

In [31], the SDN controller used an MILP formulation to
determine the optimum virtual end-to-end paths, whereas [32]
adapted an existing resource mapping algorithm for use with
SDN in a networked cloud environment. Furthermore, the use
of MILP for coordinated node and link mapping was proposed
by [33]. Most of these schemes do not guarantee survivability
in the event of network virtualization failures; to address this
problem, [34] proposed the use of a VNM algorithm with coor-
dinated primary and backup topology (VNM-PBT).

FlowVisor is a major facilitator of the SDN virtualization
process. It causes segmentation of the SDN flow tables in the
OpenFlow switches into different slices, and each slice instance
can be managed and controlled by independent OpenFlow con-
trollers [35], [36]. Autoslice is considered as another concept
that envisions a virtualization layer to support implementation of
the software defined network paradigm in separate slices. Con-
ceptualized by Bozakov et al. in [37], this study is significant be-
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cause it aims to streamline and automate the SDN virtualization
process. The Autoslice control plane incorporates distributed
hypervisor architecture that can handle multiple flow table re-
quests from multiple clients concurrently. Niciras network vir-
tualization platform (NVP) uses overlay networking to provide
abstraction from the physical hardware. The overlay network
offers each tenant an abstracted version of a single switch that
connects all of its virtual machines [36], [38]. The rules that
control the encapsulation and updating of data packets when-
ever a virtual machine moves is handled by a logically central-
ized controller.

III. ROLE OF OVNP IN SDN-BASED CLOUD
ENVIRONMENT

In order to handle the substantial number of requests re-
ceived by the central controller in large and distributed data-
centers, techniques such as connection request aggregation may
be adopted. These techniques require the use of proper aggrega-
tion techniques, request prioritization, window sizing, and so on.
This issue was addressed in our previous works [9] and [18] by
using an algorithm that selects a proper window size for VNM.

Although this paper addresses the problem of optimal pro-
visioning of virtual networks in SDN-enabled geo-distributed
cloud datacenters, it is vital to show its role in an SDN-enabled
cloud environment. Such an environment makes it easier to vir-
tualize the physical switches and routers, because components
do not need to initiate their own instances of control plane soft-
ware [36]. Fig. 1 highlights the different components and in-
terfaces in an SDN-enabled cloud environment. The SDN con-
trol layer determines how data are to be routed to their destina-
tion [39]. The controller layer allows network operators to have
centralized control over the network hardware utilities. There
are three main SDN control plane interfaces, and each of them
has its own specific settings. These interfaces facilitate a steady
flow of communication between the different layers of the SDN
architecture. The southbound interface lies between the SDN
controller and the underlying data plane and facilitates com-
munication between the SDN controller and the data forward-
ing plane. This interface allows the controller to define virtual
networks and adjust their settings in a highly prioritized, need-
based manner. The northbound interface, which is accessible
to end users and customers, monitors network functionalities.
Within the context of this work, the central cloud controller re-
ceives multiple cloud connection requests from multiple cloud
users. Next, cloud connection requests are aggregated into vir-
tual network requests, where they are received by the SDN con-
troller and separate control logic is built for each virtual network
request. The hypervisor within the cloud, as well as the SDN
controller provided via the proposed OVNP model, will deter-
mine the optimal provisioning solution for the virtual network
requests with respect to the underlying substrate network. Fol-
lowing which, the hypervisor of the SDN controller will transfer
this solution into forwarding rules to be sent to the underlying
physical forwarding plane through the southbound interface.

It is worth noting that several studies have focused on SDN
controller placement, as it is one of the commonly known chal-
lenges in SDN [40]–[43]. Several heuristic techniques and op-

timization algorithms have been proposed to tackle SDN con-
troller placement, owing to its hardness level (NP-hard). Any of
these heuristics can be used to determine the controller place-
ment, based on the desired design metric (e.g., latency, fault tol-
erance).

In the SDN environment, the traffic statistics collection is per-
formed via the southbond interface which facilitate the commu-
nication between controller and SDN switches/network devices.
OpenFlow is one mechanism of this communication. It has mul-
tiple features for monitoring and management. It provides the
required interfaces to get traffic statistics from underlying SDN
switches. Among these features, there are two messages of in-
terest, namely PacketIn and FlowRemoved. These two messages
are sent by the OpenFlow switch to the controller whenever
the flow arrives and departs respectively. They are often used
for push-based (passive) flow statistics collection approaches. In
our work, a similar mechanism is employed, by reason of, when
a set of cloud connection requests arrive, they are aggregated
to form a VNR. This mimics the PacketIn feature available in
OpenFlow switches. Furthermore, whenever a VNR departs, the
substrate is updated and the information is also reported back to
the SDN controller. This in turn resembles the FlowRemoved
feature in OpenFlow. Several works have shown that the push-
based flow statistics collection approaches (passive approaches)
minimize the measurement cost for utilization monitoring. This
is due to the fact that performance can be inferred based on the
passive capturing and analysis of control messages between the
switches and the SDN controller [44], [45].

Additionally, these works studied the tradeoff between the re-
sources consumption on monitoring and the granularity of the
statistics collection on both the time and address-space dimen-
sions. To that end, we employed the windowing technique which
limits the overhead that results from the aggregated incoming
requests. Also, the aggregation of the requests into VNRs fur-
ther reduces the effect of statistics collection since aggregation
reduces the number of messages sent from the switches to the
SDN controller [44]–[46]. Hence, the provisioning performance
is not affected by the granularity of the flow statistics collection
process.

IV. VIRTUAL NETWORK PROVISIONING MODEL AND
PROBLEM FORMULATION

To solve the problem of virtual network provisioning in a ge-
ographically distributed cloud computing environment, this pa-
per introduces an analytical formulation in which we model the
problem as an MILP problem. This model can be used by cloud
providers to efficiently allocate computational and networking
resources, with the objective of serving the maximum number of
cloud users with minimum physical cloud resources. We mod-
eled the optimization problem–that is, maximizing the ratio of
served cloud connection requests and minimizing the cost of
provisioning these requests–as an MILP problem. This modi-
fication should, however, satisfy the requirements of different
cloud clients’ virtual connection requests. The problem defi-
nition and the various components involved in this model are
described in the following section.
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A. The Substrate Network

One of the inputs to the MILP is the undirected physical net-
work denoted by Gp(X,E), where X represents the set of phys-
ical nodes and E is the set of physical links. A physical node
can be a datacenter C, which serves cloud connection requests
as per the controller provisioning decision, or a client node S,
which generates cloud connection requests (i.e., X = {C, S}).
Each datacenter c ∈ C has a number of servers. The total set of
servers available in all data centers is denoted as Ser, and each
server ser ∈ Ser is associated with a finite computing capac-
ity i. Note that a server is not considered a physical node within
the network topology graph. The computing resources used in
this work are CPU, memory, and storage. T i

ser,c represents the
total available capacity i (i = 1 for CPU, i = 2 for memory,
and i = 3 for storage) of server ser in datacenter c ∈ C ⊆ X .
Similarly, each physical link uv ∈ E has a limited bandwidth
denoted by δuv .

B. Virtual Network Request

Most previous studies considered virtual network requests as
predefined, and these virtual networks were generated randomly.
However, in our work, the scenario is different; we consider
real-world requests in the cloud environment. Cloud users re-
serve or rent VMs with different configurations for a certain
period of time (duration) and request a connection with their
VMs. In each connection request, the client defines the source
(client node), duration, requested VM specifications (capacity
units), required bandwidth, and allowed waiting time. Data ex-
change between the end users and their VMs will be performed
through these cloud connection requests. A set of cloud connec-
tions that belong to different cloud clients are aggregated based
on a preset aggregation factor. The aggregated cloud connection
requests will be abstracted as a VNR. The VNR is modeled as
an undirected graphGv(V,D,R,B), where V represents the set
of virtual nodes, D denotes the set of cloud connection requests
within the VN request, which are considered virtual links, R
represents the set of requested capacities (e.g., CPU, memory,
and storage) of the clients’ VMs, and B denotes the set of re-
quested bandwidths of the cloud connection requests. The vir-
tual nodes V can be either client source nodes or their VMs.

C. Key Notations Used in This Work

Tables 1 and 2 present the key notations that are used in this
work.

D. Decision Variables:

The decision variables as follows:

Md =

{
1, if cloud connection request d is mapped;
0, otherwise.

yde
ser,c =


1, if destination node de = a ∈ A is mapped

in server ser ∈ Ser in physical datacenter
c ∈ C ⊆ X;

0, otherwise.

Table 1. Sets used in the model.

Sets
X Set of physical nodes
E Set of physical links
S Set of client nodes S ⊆ X

C Set of datacenter nodes C ⊆ X

Ser Set of servers in the all datacenters of cloud infrastructure
A Set of requested virtual machines
V Set of virtual nodes with V = A ∪ S
D Set of cloud connection requests
R Set of capacities such as CPU, memory, storage{1,2,3}

B
Set of required bandwidth of
the cloud connection requests

J Set of time intervals {1 ≤ j ≤ Wmax}

Table 2. Parameters used in our model.

Parameters
Notations Meaning Domains

s and e
Index the source and destination nodes of cloud con-
nection request

>0

u and v
Index the nodes in the physical topology of the sub-
strate network

>0

ser Index the servers in the cloud infrastructure >0
c Index the cloud datacenter in the cloud infrastructure >0

d
Cloud connection request d ∈ D, such that d =

(ds, de)
>0

ds Source node of cloud connection d >0

de
Destination node of cloud connection d, which is
equivalent to a required VM (de ≡ a ∈ A)

>0

bd
Requested bandwidth for cloud connection request
d ∈ D >0

rid
Requested capacity {i = 1, 2, 3} (CPU, Memory,
Storage), for cloud connection request d

>0

T iser,c
Total available computational capacity i of server ser
in datacenter c ∈ C ⊆ X

>0

δuv
Available bandwidth of physical link uv, where u, v ∈
X

>0

W d
j

1 if cloud connection request d is active during in-
terval j, 0 otherwise. It is a parameter that indicates
whether a cloud connection request d is active during
time window j, based on the knowledge of the request
arrival time and boundary of the window size

>0

Wmax Total number of windows >0
L Large number >>0

fduv: Requested bandwidth for cloud connection request d
routed over physical link uv, 0 otherwise.

E. Mathematical Model:

E.1 Objective Function

The objective function (1) is a weighted sum of two main
parts. The first part attempts to maximize the ratio of served
connections Md; hence, the ratio of virtual network acceptance
is maximized. The second part aims to minimize the cost of pro-
visioning cloud connection requests, and this is represented by
the summation of the bandwidth reserved for cloud connection
requests over all substrate edges. Therefore, to provision a vir-
tual link, the second term of the objective function will provision
that link to substrate links/paths with minimum resources; there-
fore, network physical resource usage/utilization is minimized.
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Further, α and β are tuning parameters for setting the weight of
parts in the objective function.

Max α
∑
d∈D

Md − β
∑

u,v∈X

∑
d∈D

(fduv + fdvu) (1)

E.2 Constraints

• Bandwidth conservation

∑
d∈D

(fduv + fdvu)W
d
j ≤ δ(u, v) ∀u, v ∈ X,∀j ∈ J (2)

Constraint (2) deals with the bandwidth limit δ on a substrate
link uv. The total bandwidth of cloud connection requests
(within window j) allocated to a physical link should not ex-
ceed the available bandwidth of that physical link δ(u, v).
Further, W d

j is a parameter that indicates whether a cloud
connection request d is active during time window j, based
on the knowledge of the request arrival time and boundary of
the window size.

• Provisioning of virtual links to physical links
Constraints (3)–(5) deal with the provisioning of the virtual
networks cloud connection requests to the substrate edges,
which are revealed through flow conservation. Using these
equations, the provisioning of cloud connection requests is
determined and the provisioning of the nodes is carried out
using the decision variable yde

ser,c in the link provisioning
equations. Thus, node and link provisioning are carried out
in a single stage.∑

n∈X
fddsn −

∑
n∈X

fdnds
= bd.Md ∀d ∈ D (3)

∑
n∈X,n 6=c

fdcn −
∑

n∈X,n 6=c

fdnc = −bd.
∑

ser∈Ser

yde
ser,c

∀d ∈ D, c ∈ C ⊆ X (4)

∑
m

fdnm −
∑
m

fdmn = 0

∀d ∈ D,∀m ∈ X,∀n ∈ X \ {ds, c ∈ C}} (5)

In constraint (3), the net flow to the source node ds of the
connection request, which represents the client node, must
be equal to the requested bandwidth of cloud connection
bd given that this cloud connection request is provisioned,
Md = 1.
In constraint (4), if yde

ser,c = 1 , the destination node de of the
connection request, which is the requested virtual machine
of cloud connection request d, is provisioned to datacenter
c ∈ C ⊆ X . Then, the net flow to the destination node at
datacenter c must be equal to −bd.
In constraint (5), the net flow to the intermediate nodes be-
tween the source (client node) and destination (datacenter)

must be equal to zero.

• Domain constraints

fduv ≥ 0 ∀u, v ∈ X,∀d ∈ D (6)

Md ∈ {0, 1} ∀d ∈ D (7)

Constraints (6) and (7) are domain constraints. They state
that the flow decision variable should be greater than 0 while
the connection request mapping decision variable should be
binary.

• Node provisioning∑
c∈C⊆X

∑
ser∈Ser

yde
ser,c = 1 ∀d ∈ D (8)

Constraint (8) limits the provisioning of a VM to only one
server in one of the available datacenters.

• Computational resources conservation

yde
ser,c.r

i
d ≤ T i

ser,c

∀d ∈ D,∀i ∈ R,∀c ∈ C ⊆ X, ser ∈ Ser (9)

Constraint (9) deals with computational capacity during node
provisioning. The virtual nodes must be provided with the re-
quired computational resources; thus, a VM or a destination
node of a cloud connection request within the VN will be pro-
visioned only to one server in one of the datacenters that has
sufficient resources.

• Binary constraint

1

L

∑
c∈C⊆X

∑
ser∈Ser

yde
ser,c ≤Md ∀d ∈ D (10)

1

L

∑
u,v∈X

(fduv + fdvu) ≤Md ∀d ∈ D (11)

Constraints (10) and (11) ensure that Md is set to 1 whenever
the destination virtual node within a VN is provisioned in one
of the servers in any of the datacenters. Further, the virtual
link is embedded into a substrate path.

F. Virtual Network Provisioning

This work adopts fixed and dynamic windowing techniques
proposed in [18]. To the best of our knowledge, this is the first
work that studies a proposed OVNP mathematical model that
represents an actual distributed SDN-enabled cloud environ-
ment along with a dynamic windowing technique. Furthermore,
the proposed approach is compared with the enhanced algorithm
proposed in [18] as well as other methods in the literature.

F.1 OVNP Algorithm Input

The OVNP algorithm requires the following as input:
• The substrate network Gp(X,E), which shows the topology,
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characteristics, and utilization of the infrastructure. Here, the
algorithm will have complete knowledge of the locations of
the datacenters and cloud clients, available capacities of the
servers, network topology, and state of the physical links in
terms of the available bandwidth.

• The abstracted virtual network request Gv(V,D,R,B). Gv

defines the aggregated cloud connection requests (virtual
links) to be provisioned simultaneously. Each cloud con-
nection request (virtual link) of D has the following: virtual
nodes V in terms of the source node (client node) and destina-
tion node (VM), requested computational capacities R of the
destination virtual node, and networking resources B needed
for the virtual link.

F.2 OVNP Algorithm Output

Given the OVNP formulation, the solver returns the follow-
ing:
• The success of the cloud connection request (virtual link)

provisions to the physical infrastructure using variable Md.
• If a cloud connection request d of a virtual networkGv is pro-

visioned, the solver indicates the server within a datacenter
in which the destination node (virtual node) has been embed-
ded, using variable yde

ser,c. Such a server must have sufficient
resources to accommodate that virtual node.

• The physical links and bandwidth required by the successful
requests.

To successfully provision a virtual network, all of its virtual
links and nodes must be provisioned to the physical infrastruc-
ture.

F.3 OVNP Algorithm Execution Process

Before the execution process of the algorithm can be delin-
eated, it should be understood, as it is in [9] and [18], that cloud
connection requests received from clients are accumulated in a
fixed/dynamic time frame or window, and then processed to-
gether.
• Fixed window technique: This technique uses a predefined

time window for a collection of virtual network requests. The
analysis of cloud connection requests is carried out, and the
requests sent by the same user are given the highest priority
to be aggregated. The aggregated requests formulate VNs,
and these VNs are then provisioned to the substrate network.
The cloud clients can define maximum tardiness along with
a connection request, and if the system is unable to serve the
connection within this period, it is considered rejected. All
unprovisioned requests are also rejected.

• Dynamic window technique: In this technique, requests are
divided into a set of windows with different sizes using
the maximum independent set algorithm. The algorithm
takes the details of a predefined size set of cloud connec-
tion requests–such as arrival time, lifetime, and maximum
waiting time–as input and constructs a binary table (called
the intersection table) for connections. This table represents
how these requests are overlapped over time. From this table,
an interval graph is constructed. In this graph, each connec-
tion request is taken as a node; subsequently, the links con-
nected to this node represent the cloud connection requests
that intersect with this connection over time. At this point,
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Fig. 2. Optimized virtual network provisioning process.

the maximum independent set (MIS) algorithm is executed
for the generated interval graph. The algorithm generates the
maximum set of nodes (cloud connection requests) using the
interval graph as input; during this process, no two nodes in
the set are connected by a link. This set of nodes is called the
maximum independent set of this particular interval graph.
The boundaries of the dynamic time windows are determined
using the requested connections’ start times in each set. Note
that this is done only once, independent of the total number
of cloud connection requests received over time.
In the next step, the connections expiring before the end of the

window assigned to them are set aside. The remaining connec-
tions in each window are stored according to their arrival time.
Cloud connection requests within each dynamic window are ag-
gregated into VNRs, taking into consideration that requests sent
by the same user are given priority to be grouped together into
one VNR.

Given the substrate network and the list of VNRs within a
window the proposed OVNP model is solved for each VNR in
order to assign the optimal provisioning of virtual nodes and
links simultaneously to the substrate resources. Node and link
provisioning is carried out in a single stage while checking the
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current substrate network status. If the solution is not feasible,
the VNR will be rejected, and the procedure will continue to the
next VNR.

However, if a feasible solution is found, the central controller
will provision it to the physical resources and update the sub-
strate network status in terms of the computational resources
and link bandwidth. Moreover, the set of active VNRs will be
updated whenever a successful provisioning occurs, hence the
number of served cloud connections is incremented based on the
VNR’s size. Furthermore, the algorithm checks if there are any
departing VNRs. Whenever a VNR departs, it is de-provisioned,
the resources will be released, and the network status will be up-
dated accordingly. The algorithm will continue until all VNRs
for all windows are served. The complete process is shown in
Fig. 2.

F.4 Proposed Enhanced Network Cloud Provisioning

The network cloud provisioning (NCP) technique was pro-
posed in [18]. The NCP process is divided into node and link
provisioning. This work proposes an enhanced network cloud
provisioning (ENCP) approach, which is designed to facilitate
the process of node and link provisioning to enhance the coordi-
nation between the two stages. This approach increases the load
balance and ensures wide distribution of load; the result is less
congestion. The delay and request provisioning costs can be
reduced by ensuring that clients’ cloud requests are served and
provisioned in the closest datacenter. VM provisioning in data-
center servers, which is represented by virtual nodes in virtual
networks, is based on server resource availability. Selection of
the correct datacenter/substrate nodes for provisioning is very
important for node and link provisioning.

For node provisioning, an enhanced heuristic of the NCP,
known as the region and load distribution based (RLDB) tech-
nique, was evaluated. In this technique, we divide the sub-
strate network topology into multiple regions; each region has
its own datacenter or set of servers. Whenever a virtual net-
work request arrives at the central controller for provisioning,
the central controller must optimize the virtual nodes within the
physical network. It is important to note that substrate node
selection is based on multiple factors. The average distance
between the physical nodes is calculated and then arranged in
descending order. Nodes with the highest average distance are
preferred. For a virtual network request, the controller will se-
lect the nodes based on the following: highest average distance,
source node region of the virtual network request (cloud client
region/location), and the remaining capacities of the physical
nodes. The algorithm will select the best of these three fac-
tors. The selected nodes must be within or close to the client
region, must be far from previously selected provisioned nodes,
and must have the maximum remaining capacities. The same
heuristic illustrated in our previous work in [9] was utilized in
the link provisioning stage.

As for this algorithm, the overall complexity can be schema-
tized as follows:
1. Constructing the interval graph requires O(m2). This can be

reduced to O(m) for certain special connection set cases,
where m is a predefined small size set of requests.

2. Finding the optimal dynamic window size by applying

the maximum independent algorithm could require O(m8).
However, this process will be performed only once for the
previously defined set of connections as it is part of the pre-
processing stage, and is independent of the size of any future
connection requests set. It is worth mentioning that the com-
plexity of the maximum independent set algorithm can be re-
duced to O(m5) for some special cases of graph topology.
This is a potential improvement that we can develop in future
works. Moreover, the produced dynamic window sizes can
be used for different sets of connections regardless of their
size, because the same window sizes can be repeated over
time.

3. Constructing virtual SDN networks from the connections re-
quires O(n log n) operations because it involves sorting of
the requests received within each window, where n is the to-
tal number of cloud connection requests with n >> m.

4. The node provisioning process using the RLDB technique re-
quires O(n.NumPaths) operations. Here, NumPaths is
the number of paths between nodes (any two nodes u and v),
and Nodes is the number of nodes in the substrate graph.

5. The link provisioning process requires O(n.Nodes) opera-
tions. Looking at the system overall, the dominant factor is
the calculation of the maximum independent set, which is of
O(m8) operations. However, because this is done offline and
only once, it does not factor into the complexity calculation
of the provisioning algorithm.

The provisioning process of our algorithm requiresO(n.Nodes+
n.NumPaths) only. This accounts for the total complexity of
our provisioning method. This is a polynomial running time
and, hence, is tractable and acceptable. Note that this is also
comparable to similar methods including [19], which requires
O((|Es‘|(1 + |Ev|))3.5L2lnLlnlnL) to serve a single virtual
network or O(n.(|Es‘|(1 + |Ev|))3.5L2lnLlnlnL) to serve all
connections. Here, Es‘ is the set of augmented substrate graph
edges, Ev is the set of virtual links, and L is the set of physical
links.

V. PERFORMANCE EVALUATION

This section describes the simulation environment and
presents the evaluation results. A C++ based discrete event sim-
ulator was used to evaluate the proposed model. The simu-
lator consists of the required modules to implement the func-
tionalities illustrated in Fig. 2. These include modules for pre-
processing, provisioning and producing the final results, and in-
corporating all the algorithms used in our experiments. For the
optimal solution for the problem, the open-source GNU linear
programming kit (GLPK) was used in the discrete event sim-
ulator. As GLPK supports the AMPL modeling language, the
model and its data were compatible with the AMPL language.
The efficiency of the proposed OVNP model was studied using
simulation and its effectiveness was evaluated by comparisons
with ENCP, NCP in [18], and other well-known approaches in
the literature, such as the greedy multi-commodity flow problem
(G-MCF) [24] and ViNEYard [19]. Different metrics were used
in the evaluation process. To ensure the accuracy of the devel-
oped simulator, we reproduced the results of widely recognized
approaches that have been applied in the literature; namely, [19]
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Region 1 Region 2 Region 3

Fig. 3. Internet2 OS3E network topology.

and [24]. The reproduced results using our simulator matched
the results reported in [19] and [24] and are shown in Fig. 4. The
detailed analysis of this quantitative comparison is shown in the
“Analysis of results” Section. Discrete event simulation tech-
niques were applied, as well as appropriate simulation method-
ologies [47].

A. Simulation Setup

The physical network topology used in this work to eval-
uate the proposed model along with the heuristics is a well-
known real-world network topology called Internet2 open sci-
ence, scholarship and services exchange (OS3E) (http://
www.internet2.edu/network/ose/), which is repre-
sentative of a medium-scale infrastructure provider topology as
shown in Fig. 3. OS3E was chosen because of its popularity
in the research and education community; it is frequently used
to support advanced global scientific research [40], [42], [43].
This network consists of a 34-node SDN (physical nodes can
either be a datacenter or a client node), and 42 physical links.
Internet2 is an OpenFlow enabled nationwide backbone. The
topology is divided into three regions (east, middle, west) in a
similar manner as the topology utilized by Amazon AWS, with
one datacenter in each region (Seattle, Houston, and Washing-
ton, D.C.) considered to be one physical node. The considered
regions are widely separated. Each region consists of one avail-
ability zone because it is assumed that the datacenters do not fail
and thus ensure high availability.

Each datacenter has 400 servers; thus, 1, 200 different servers
were applied in this environment. Substrate nodes were con-
nected with 42 physical links. Each of the remaining 31 phys-
ical nodes can either generate cloud connection requests itself
or route requests generated elsewhere. For each pair of nodes,

three different paths were arranged. Further, 2, 000 different
VMs were incorporated in the input data. The underlying as-
sumption is that a maximum of 2, 000 VMs can be provisioned
at any moment in time, owing to the arrival rate and service time
of the requests.

Similarly, the simulation setup matches commonly used envi-
ronments in the literature [14], [18], [19], [24], [26], [28]. The
substrate link capacity was set to 200 bandwidth units (Mb/s).
Clients’ cloud connection requests arrive according to a Pois-
son process with a rate of 1–5 in increments of 0.5 per 100 time
units, and each has an average lifetime of 1, 000 time units fol-
lowing an exponential distribution. Each experiment was run
using 30, 000 cloud connection requests, and each one had a
permitted waiting time of half the lifetime. Whenever a client
requests a connection to a virtual machine, the client must de-
termine its location (source node number), virtual machine spec-
ifications, connection start time, duration, requested bandwidth,
and allocated waiting time. For the purpose of this work, and
for alignment with the above-mentioned references, the source
nodes are normally distributed in the range [0, 31], and the desti-
nation nodes representing the virtual machine numbers are uni-
formly distributed in the interval [1, 2000]. Specifically, 2,000
different VM instances were used in the simulation environ-
ment. It is worth mentioning that the number of VMs reflects
the VM specification profiles provided by the service providers,
which gives the cloud user more flexibility in choosing the de-
sired profile according to his needs. Multiple VMs of the same
profile can be provisioned for different cloud users. The ca-
pacities of the requested VMs were uniformly distributed. CPU
requirements are in the range [0, 20], and memory and storage
requirements are in the range [0, 20]. A uniform distribution
within the range [0, 50] is set for the requested bandwidth. Fol-
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lowing the simulation configuration used in [2], [9], and [26],
the available resources per server are CPU, memory, and stor-
age, and their capacities are uniformly distributed in the interval
[50, 100] of their respective units.

The processor capacity represents the processing aptitude of
a server in the million instructions per second (MIPs) gauge.
This processing power measurement unit has been used in pre-
vious research (e.g., in [48] and [49]). Moreover, some cloud
providers (such as Amazon [50], Azure [51]), as well as vari-
ous researchers (such as [52]) use the number of cores offered
in a machine to measure the computing power. However, in this
work we used MIPs for this purpose because this measurement
is more precise and suitable for optimization problems. It pro-
vides the ability to model tasks/requests with a higher level of
granularity, instead of simply allowing the task to request the
entire processing core. Memory (in MB), storage capacity (in
GB), and bandwidth (in Mb/s) are also considered along with
the processing power (MIPs).

It is assumed that any of the previous works can be used to
determine the location of the SDN controller depending on the
desired performance metric such as latency or fault tolerance
[40]–[43]. Considering these metrics are outside the scope of
this work, the placement of the controller was not considered.
However, the model was built in a generic manner such that
the objective metrics (ratio of served connection, computational
and network resources utilization, etc.) were not significantly
affected by the controller’s placement.

B. Analysis of Results

We compared and evaluated the performance of the ap-
proaches proposed in [18]– i.e., NCP fixed window–as well as
other approaches in the literature (namely, ViNEYard [19] and
G-MCF [24]), against the optimal solution obtained in this study
by the OVNP model and ENCP using the dynamic window tech-
nique. This comparison was made using different real-world
performance metrics such as ratio of served connections (which
represents the admission rate of the proposed model), provision-
ing average revenue, and the utilization of substrate resources.

B.1 Ratio of Served Connections

The first metric is the ratio of served connections. This metric
represents the effectiveness of the proposed provisioning model.
Reducing the number of rejected cloud service requests is the ul-
timate goal for any service provider. For different arrival rates,
we studied the ratio of served cloud connection requests, as
shown in Fig. 4. The proposed optimal model outperforms the
other approaches at low and high arrival rates. The optimal so-
lution obtained by the OVNP model exhibits stable and efficient
provisioning, even with a loaded substrate network. The single-
stage node and link provisioning model provide excellent per-
formance. With a crowded network, the OVNP model tended to
have an approximately 57% higher ratio of served connections.

As the number of served connections increases, the overall
throughput is positively influenced. In terms of the service rate
and other QoS metrics, we consider only cases where the virtual
network request requirements are completely satisfied. This im-
plies that a request is either served with the exact requirements
for the lifetime specified, or the request is blocked. There is no
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Fig. 4. Ratio of served connections in OS3E network topology
for 30, 000 cloud connections.
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Fig. 5. Ratio of served connections in NSFNET network topol-
ogy for 3, 000 cloud connections [9].

fluctuation or degradation in the service, because the resources
allocated to a request are not released until the connection life-
time is over.

B.2 Scalability

To evaluate the scalability of the proposed model, all the con-
sidered algorithms were simulated using the same setup adopted
in [9], which consisted of 14 nodes, 3,000 cloud connection re-
quests, and 200 VMs. Figs. 4 and 5 show the ratio of served
connections for the simulation setup presented in section V-A
and the one considered in [9], respectively. The number of cloud
connection requests was increased from 3,000 to 30,000. This
number can be increased further by expanding the time frame
considered. However, this will not affect performance, owing to
the online nature of the problem. This is evident through the ob-
servation that similar trends appear at both simulation scales.
Even with the larger, more realistic scale considered in this
study, the proposed OVNP algorithm outperforms other works
presented in the literature. This shows the scalability of the sim-
ulation environment – the results remained consistent even with
the larger number of physical nodes, connection requests, and
VMs.
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Fig. 6. Average revenue per unit time for OS3E network topology.

B.3 Generated Profit per Unit Time

The second metric – namely, generated profit per time unit –
is of great importance to cloud service providers. The revenue
is defined similarly to the previous work in [14], [18], and [24].
Serving a high number of client requests does not necessarily
lead to high revenue; rather, high revenue results from serving a
higher number of requests with fewer requested resources and a
shorter duration. This can be seen in Figs. 4 and 6 when we com-
pare the NCP fixed window and G-MCF fixed window. The G-
MCF fixed window tends to serve slightly more cloud requests
at low and high arrival rates than the NCP fixed window; how-
ever, the generated revenue for NCP at low arrival rates is higher
than that for G-MCF (as shown for arrival rate = 1). In contrast,
our optimal OVNP model has a higher ratio of served connec-
tions and higher revenue at low and high arrival rates. The pro-
posed optimal algorithm outperforms the other approaches in
terms of generated profit per time unit.

B.4 Resource Utilization

The third metric is resource utilization. We considered CPU,
memory, storage, and link bandwidth for this purpose, as shown
in Figs. 7–10. These figures compare the resource utilization of
the proposed optimal OVNP model with that of the four methods
presented above. Note that the OVNP model has the best com-
putational resource utilization, including optimal CPU power,
memory, and storage.

Fig. 10 shows the average link utilization for the different al-
gorithms. Several observations can be made. First, G-MCF has
high link utilization, which is not desirable as this can lead to
more rejected requests arriving in future timeframes. This is
verified by the low acceptance ratio of the G-MCF algorithm,
showing that the link provisioning process is not efficient. Sec-
ond, all algorithms have an average link utilization of approx-
imately 52%. This further proves the effectiveness of the pro-
posed OVNP model, as it served a significantly higher ratio of
connections while having similar link utilization to other algo-
rithms proposed in the literature. Note, the links connected to
datacenters had higher link utilization levels than other links in
the network.
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Fig. 7. Normalized CPU utilization.
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Fig. 8. Normalized memory utilization.
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Fig. 9. Normalized storage utilization.

B.5 Average Hop Count per Virtual Link

Fig. 11 shows the average hop count per virtual link for the
different algorithms. The figure shows that OVNP outperforms
the other algorithms as it has the lowest average hop count. This
leads to lower latency as well as lower cost because the virtual
link is mapped on a smaller number of physical links. This is
the result of the node mapping being optimal.
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Fig. 11. Average hop count per virtual link.

VI. SUMMARY OF CONTRIBUTION

The models described in the related work section deal with the
problem of virtual network provisioning; however, all of the pre-
vious approaches, available in the literature, relaxed one or more
of the challenges or environment constraints imposed on the vir-
tual network provisioning process. These flexible approaches
were taken to reduce the complexity/search space of the prob-
lem. The search space dimensions are three-fold, namely the
bandwidth, computational resources, and the time dimension.
The effect of the constraints studied falls within these three di-
mensions. The constraints considered for achieving an optimal
solution are node and link requirement constraints, the online
nature of request arrivals, diversity of virtual network topolo-
gies, and limited physical computational and network resources,
imposing challenges on the provisioning process. These con-
straints better model real life scenarios and network characteris-
tics.
• The node and link requirement constraints directly affect the

virtualization process. This is because joint provisioning of
both the node and links simultaneously can improve the pro-
visioning efficiency. In contrast, performing the node and
link provisioning in two stages can reduce the efficiency since
the virtual network would lose some of its flexibility when it

is provisioned.
• The online nature of requests complicates the virtualization

design as it increases the size of the search space. Moreover,
the unpredictable nature of the statistics of incoming VNRs
forces the system to solve the provisioning problem contin-
uously. On the other hand, if the VNRs are assumed to be
known in advance (i.e., offline), the search space is reduced
since the controller knows all the VNRs that need to be provi-
sioned a priori and hence can more efficiently map them onto
the substrate network.

• The diversity of virtual network topology constraint provides
the controller with more options to provision the VNRs. If
a specific virtual network topology is assumed, this can re-
duce the utilization efficiency of the available resources since
the topology is not flexible. However, this work assumes a
flow metrics-based approach which can better “compress” the
VNRs onto the substrate. This leads to improved admission
control performance.

• The limited physical computational and network resource
constraints limit the number of VNRs that are provisioned
onto the substrate network. If the computational resources
were infinite, more virtual nodes can be mapped onto the
physical nodes. Similarly, if the network resource (i.e., the
bandwidth) is infinite, a greater number of virtual links can be
mapped to the physical link. Hence, the performance would
be exaggerated with such assumptions (infinite resources).
Each one of the previous models, which relaxed one or more
of these constraints, has been analyzed in the related work
section. The relaxation was in attempt to reduce the search
space size and hence the complexity of solving the problem.
However, this study addressed all of these challenges and
environment constraints, and introduced the most complete
problem configuration.
To the best of our knowledge, this is the first work that tack-

les all these constrains in totality. Moreover, it is the first to
address these problems via the dynamic windowing methodol-
ogy as in [18], along with mathematical modeling that accounts
for one-stage provisioning of SDN-enabled virtual networks in
geo-distributed cloud computing datacenters.

The contributions of this paper can be summarized as follows.
• Comprehensively formulating the problem of virtual network

provisioning in SDN-enabled geographically distributed
cloud datacenters as a MILP problem. This is done with the
objective of maximizing the ratio of the served cloud client
connection requests while simultaneously minimizing the re-
sources used during the provisioning process. In our work,
SDN-enabled virtual networks comprise aggregated cloud
connection requests.

• Formulating the problem of virtual machine provisioning to
cloud datacenters and cloud connection request provisioning
to substrate network in a single stage.

• Studying the time complexity of the proposed ENCP heuris-
tic and comparing it with that of previous works.

• Comparing the proposed OVNP model with well-known ap-
proaches in the literature (as well as the ENCP model) via
simulation, and verifying that our approach demonstrates the
best performance capabilities by using various real-world
metrics.
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VII. CONCLUSION

We modeled the optimization problem of maximizing the
ratio of served cloud connection requests while minimizing
the cost of provisioning these requests in SDN-enabled geo-
distributed cloud computing datacenters as a MILP problem. To
solve the problem optimally, the open-source GNU linear pro-
gramming kit (GLPK) was employed in a discrete event simula-
tor. Node and link provisioning was solved in a single stage. We
evaluated the proposed model against four other approaches; nu-
merical results showed that our OVNP model achieved a higher
ratio of served connections, higher profits, higher computational
resource utilization, and lower average hop count per virtual
link.
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