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Abstract

Building-integrated photovoltaic (BIPV) systems allow solar panels to per-
form additional functions beyond energy generation for buildings, such as
regulating interior lighting conditions and incoming radiative heat. How-
ever, optimizations of BIPV solar shades generally do not consider all of these
factors, instead often focusing on power production alone. In this work, we
explore a design framework for optimizing the configuration of BIPV shading
devices to maximize a combination of power generation, interior daylighting
quality, and radiative heating and cooling loads. This is applied to a simple
room in five different locations and climates, as well as a case study of an
office building. The low computational cost of this model allows for the full
mapping of the influence of all design parameters on the value of the sys-
tem, while demonstrating less than 7% error in predicting the performance
of a benchmark experimental system. It is observed that the location and
building geometry have significant influences on the relative values of heat,
daylighting, and power production, with the overall combined value varying
by up to 40% between the compared climates. The optimal design in many
locations depend on user preferences as well, with many efficient solutions
possible for varying trade-offs between the values of natural light vs. energy
savings (a difference of up to 50%), as well as the system upfront cost vs.

performance, further reinforcing the importance of tailored building-specific
design for BIPV solar shades.
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1. Introduction

Photovoltaics (PV) are one of the fastest-growing segments of the renew-
able energy industry (Debbarma et al., 2017). Building-integrated photo-
voltaic (BIPV) systems represent a way to expand the beneficial aspects of
PV, allowing buildings partially meet their power needs by generating elec-
tricity (Biyik et al., 2017) and thereby reducing their environmental impact
(Ravyts et al., 2020). BIPV utilizes photovoltaic materials to replace con-
ventional building components such as window covers and shades, facades,
and roofs, helping to reduce the cost of PV by using the solar cell structure
for an additional purpose (Peng et al., 2011).

There are three main factors that window-mounted BIPV systems can di-
rectly influence: the quality of interior daylighting (Yoo, 2019; Ghosh et al.,
2020), the radiative heat transfer through the windows, and the power gen-
eration by the PV system (Zhang et al., 2017; Alrashidi et al., 2019). These
factors are all fully interconnected, as they all depend on how the incoming
sunlight toward the window is managed by the BIPV system. The incoming
light however is a function of the local climate and weather conditions, as
these factors vary both the distribution of both direct and diffuse incoming
light (in power, angle, and timing), as is the relative benefit of heat. An
ideal BIPV system would thus need to maximize this inextricable trade-off
between increasing produced power, reducing detrimental lighting conditions
and warm-weather heat gain, while also increasing beneficial lighting condi-
tions and cold-weather heat gain.

While the full optimization of a BIPV shade considering heat, power, and
daylighting is thus needed, this previously has not been performed. Prior
studies on optimization of BIPV shading devices have generally focused on
tuning of either one (Yoo, 2019; Zhang et al., 2017; Sun et al., 2015, 2012;
Asfour, 2018; Paydar, 2020) or two design parameters (Bahr, 2014; Taveres-
Cachat et al., 2019, 2017; Nielsen et al., 2011), usually optimizing angle, as
well as either the number or length of shades, but not both.

The majority of these investigations are additionally single-objective op-
timizations as well, focusing on maximizing the electricity production of the
PV system alone. When the influences of building heating or cooling are
considered, this is usually restricted to the influence of shades on the cooling
load reduction, with potential detrimental effects on increasing the heating
load during cold weather being neglected (Zhang et al., 2017). In systems
that consider interior lighting performance, the analysis of daylighting has



been purely in terms of energy saving, and the user preference for natural
light over artificial light has not been considered. Previous works have also
generally not considered the influence of diffuse and direct light separately in
terms of interior daylighting quality, and thus the negative influence of glare
(from direct light) could not be fully captured (Bahr, 2014). Finally, most
works consider a single location for their analysis, obscuring the dependence
of the specific chosen environment on the analysis.

These limitations largely arise from the computational cost of the simula-
tions needed to predict system performance. While BIPV systems generally
have very simple geometries, often full 3D modelling software is utilized to
calculate the system performance (Xie et al., 2018). This, combined with
the large number of calculations that are needed to fully map a design space
make such investigations impractical, particularly when comparing multiple
locations and climates.

Herein, we work to address all of these current limitations, by combin-
ing a multi-objective optimization with multi-parameter design of a louvered
BIPV shading system. This framework considers the impact of electricity
generation from the crystalline silicon solar cells, heating load modifications
(both beneficial and detrimental) from the change in direct and diffuse light
transmitted through the window, as well as modifications to the interior
lighting conditions in both direct and diffuse light intensities. This is per-
formed by a simple but accurate model tailored to the specific geometry of
this system. The individual performance factors are then combined into an
overall value function of the system, and optimized through the design of
the length, angle, and number of photovoltaic shades in a BIPV system for a
specific location on earth, considering both local lighting conditions as well
as weather.

The main results generated from this model are threefold: First, we
demonstrate that historical average data can provide superior optimization
results when compared to more commonly used high resolution single-year
data. Second, we demonstrate how both location and design constraints can
lead to vastly different trade-offs both between lighting quality and power
optimization, as well as system complexity and value. And finally, we show
how building parameters can significantly influence the final optimization,
not only in specific optimal values, but even in the trade-offs between pa-
rameters. Overall, these results motivate the need for frameworks such as
the one developed herein for building-specific optimizations of solar shade
installations.
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Figure 1: Schematic flowchart of the model framework, showing input data, optimized
parameters, and final design specification outputs.

2. Methodology

Generally, the optimization framework developed herein works by com-
bining a geometric model of the BIPV shade with both measured data on
weather and insolation, as well as empirical relationships governing photo-
voltaic performance. This begins by the system taking in design constraints,
weather and radiation data of a specific location, building properties and ori-
entation, solar cell properties, and other optional environmental effects such
as surrounding obstacles. The overall value of the design is maximized with
a multi-objective optimization which takes into account three factors: the
power generation of PV panels, the radiative heat transfer into the building,
and the interior lighting quality. It is then able to provide optimum design
parameters of the BIPV shading system consisting of the angle, length, and
number of the shades on each window. Fig.1 displays an overall flowchart of
the methodology of the framework studied in this work.

2.1. Geometric Modeling

In order for full optimization of the three design parameters and multiple
objectives considered here to be feasible, the model must be computation-



ally inexpensive. For this reason, we consider a simple geometric model of
the shade, combined with historically measured data for the insolation and
environmental conditions of the location of interest, and empirical fits to ex-
perimental data for the PV performance. This allows the most significant
factors influencing the performance of the solar shade to be considered, with-
out the need for prohibitively expensive full daylighting or optoelectronic PV
simulations to be performed.

The geometric model of the window and BIPV shades is summarized in
Fig. 2, showing both direct and diffuse light contributions passing through
the window in Fig. 2 (a) as well as on the photovoltaic shades in Fig. 2 (b).
Full details of the calculations of the flux on each surface are given in the
Supporting Information.
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Figure 2: Areas exposed to direct and diffuse radiation (yellow hashed regions) for windows
(represented by the vertical line), and shades (represented by the three slanted lines), in
(a) and (b), respectively. Both are functions of the solar angle ¢, shade angle 3, distance
between shades (H) and shade louver length (L).

2.2. Energy Modeling

The energy modeling in this framework consists of three separate com-
ponents: electricity produced by the PV cells, heat transferred through the
window, and daylighting inside the building.

The electrical output of the PV cells is determined both by the average
light intensity on the panels, as well as the thermal environment. The in-
fluence of solar cell temperature, wind speed, and radiation intensity on the
module efficiency are included using fits to empirical models (Schwingshackl



et al., 2013; Mattei et al., 2006; Reich et al., 2005). We here utilize mono-
crystalline silicon as the PV material due to its current market dominance.
These relationships are incorporated into the weather-dependant efficiency,
n, modifying the base PV power conversion efficiency of 17.9%. Details of
these parameters are given in the Supporting Information.

The amount of electricity production by panels, (Ey,), is determined
by the product of the illuminated area (as, calculated from the appropri-
ate lengths, X34 as shown in Figure 2, and the width of the shades), the
insolation (Ipp4) and the cell efficiency (n) as

Egen = ns(asIPOAn) (1>

This is then multiplied by the total number of shades (n,) to get the total
energy production.

The amount of thermal energy passing through the windows is determined
similarly by the insolation, illuminated window area (a,,), and transmittance
of the windows (7},) as

ngn = nw(awIPOATw> (2>

The transmission factor of the window is taken to be 79.3% (T. Chow and
Lin, 2010). This heat transmission can be either desirable or undesirable
depending on the local temperature, which is incorporated in the value func-
tions, discussed below.

The light that comes through the windows consists of two parts: beam
(direct) light and diffuse light. Generally, natural diffuse light is always
considered desirable, while beam light causes glare, which can be undesirable
if the intensity is too high. Sunshades are often designed to allow sufficient
diffuse light into the room, while preventing excessive beam light to reduce
glare. The intensity of beam (L;) and diffuse light (Lg) are thus calculated
separately, as ,

b,db,d
" 0.0079a; 3)

Here, a, and ay are window areas exposed to beam and diffuse light, re-
spectively, and as is the total area of the floor space. The factor 0.0079
is the approximate conversion coefficient of lux to %5 (1 luz = 0.0079 %)
(Michael et al., 2020) and is explained below. Additional details on this

modelling framework are provided in the Supporting Information.

Lyq =



2.3. Optimization

Four value functions are defined for optimization, accounting for power
generation, incoming heat, and lighting quality. Each value function can be
used as a criterion for optimization alone, or in combinations together. The
value functions correspond to the total value of that energy source over the
course of the year.

First, the power value function is defined as the amount of electricity
produced by the PV cells during a year, calculated as the sum over the
hourly electricity generation for the year,

8760

Ve =Y Egen. (4)
h=1

While generating electricity is always desirable, incoming heat through
windows is only preferable when outdoor temperature is below the desired
room temperature. On warm days, any incoming heat is treated as needing to
be removed by the building’s cooling system, and thus negating the benefits of
some power generation. These effects are incorporated with a coefficient (Cp)
corresponding to if heat is considered to have positive or negative value. The
value of (Cp) is determined by the coefficient of performance of the building
HVAC system, with a negative sign when the external temperature is over
20°C, positive sign when less than 18°C, and set to zero at temperatures
between these values. Accordingly, the heat value function is calculated as
the summation of the value-weighted heat passing through windows every
hourly time step for the year,

8760
Vi =Y CpHyen. (5)
h=1

Similarly, the lighting value also can be positive or negative, and a lighting
coefficient is used to weight the light value function. Diffuse light is consid-
ered to always be beneficial, while direct is undesirable due to glare pro-
duction, particularly if the intensity is too high. According to the LEED®)
standard, the favorable overall range of light in an office environment is be-
tween 300 lux and 3000 luz. Accordingly, the diffuse light coefficient (c;) is
always positive and increases linearly to a value of 1 for diffuse light at 300
luz in the room. The direct light coefficient (c;) is negative and decreases
linearly with the direct light intensity, saturating at a value of -2 if the direct
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light is more than 3000 lux in the space, corresponding to an unacceptable
level of glare. These values are chosen so that the optimization will still
penalize large amounts of total (direct + diffuse) light passing through the
window. Finally, an additional coefficient, (), is also defined to account for
user preference of natural light vs. artificial light. The light value function
(V1) is thus defined to be

8760
VL =7 Z(CbLb =+ Cde)PLaf (6)

h=1

where P; is the average amount of power needed to light a space with no
natural light, and for an office room is around 2.5-=. With v =1, the V7 is
simply the power savings from artificial lighting being offset by natural light,
v < 1 would indicate a (unlikely) preference for artificial light, and v > 1, a
preference for natural light. Here v is taken to be 3, as this is found to give
reasonable trade-offs with the other value functions, as discussed below.

While any of the three above value functions could be used alone, it is
most useful to combine power, heat and light together in one overall value
function (Vp) to optimize the interplay between these components. The
overall value function is converted into units of dollars based on the price of
the electricity, Pg, to allow easier comparison to the other costs, such as the
price of the equipment, and is defined as

Vo = Pe(Ve + Vi + Vi) (7)
where Pg is assumed 0.13 W&;h and the unit of Vj is in yfar.

A stochastic Monte Carlo optimization method (Glynn, 1986) is used to
find the best combination of angle, length, and quantity of shades for each
window. This method generates random sets of values for design parameters
within fixed bounds in every iteration until it converges to optimum results,
and is chosen for its simplicity and low computational cost. Furthermore, it
allows more complete comparison of the trade-offs between different param-
eters than a more complex (e.g. gradient-based) optimization strategy. For
more details, see Supporting Information section S3.

For each stochastically generated parameter combination, the optimiza-
tion runs by stepping through each hour of the year, utilizing the empirical
weather and insolation information to compute the hourly contribution to
each value function. The sum of the hourly contributions yields the over-
all performance of the specific combination of angle, length, and number of
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Figure 3: Comparison of insolation data for two data sets — historical monthly averages
(NASA data set, blue) and single-year hourly data (EPW data, red) of (a) diffuse radiation
(b) direct radiation for London, Canada over a year.

shades. Here, we limit the shade length to 50 cm, and the total area of
shades equal to the window area. Angles can vary from 0° (fully closed) to
90° (parallel to the ground), and the number of shades is limited only by the
above limits on total length and area.

2.4. Input Data

In order to calculate the incoming solar radiation, two data sets were
considered. The first data set is monthly averages taken from the NASA
POWER Project (NASA, 2020), referred to here as the “NASA” data set.
These data are averages of 30 years (Jan 1984 - Dec 2013) and since the
available data are only monthly averages, in order to estimate hourly radi-
ation intensity, the monthly averages are first interpolated to daily values.
To account for variations with each day, an expected hourly radiation profile
is calculated based on the air mass at the corresponding solar angle (Meinel
and Meinel, 1976), and then normalized so that it integrates to the historical
daily value.

The second data set is provided by EnergyPlus, generally referred to as
“EPW?” data. The EPW data are much higher resolution hourly measure-
ments, but only taken from one arbitrary year, which varies with location.
Fig. 3 compares the diffuse and direct radiation intensity in NASA and EPW
data sets for London, Canada, with the former data depicted as the shaded
blue region, and the latter as the orange lines. It is clear that the EPW data
has significantly larger peaks and troughs, since these data are collected from
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a single year leading to increased variability, while the NASA data is more
smooth, due to the 30 year averaging.

Initially, neither data set is convincingly optimal over the other, as one
could imagine that either the high variability of a single year data set at
hourly intervals would provide the most accurate representation of the actual
isolation conditions of a location (important for the non-linear response of
PV efficiency included here), but also could suffer from potentially being non-
representative of a normal (long-term average) condition. For this reason,
we compare our optimization on both data sets to determine the influence of
using historical vs. single-year data, as discussed below.

2.5. Model Validation

In order to validate the accuracy of the model developed here, predictions
from the present work are compared to both a range of simulation data from
Energy3D software (Xie et al., 2018), as well as experimental measurements
of a large scale BIPV installation. Energy3D allows full three-dimensional
modeling, rendering, and simulation of photovoltaic installations, but at a
much higher computational cost (0.2 seconds/simulated day, vs. 0.11 mil-
liseconds/simulated day for the present work, or almost 2,000x slower).

First, the power production of a single 1.2m x0.6m monocrystalline silicon
panel with a power conversion efficiency of 18% is compared in five different
angles in three different locations (Los Angeles, Berlin and Singapore). Sim-
ulations are run testing both single shades on the south wall of a building in
Figure 4 (a), as well as shades with self-shading effects in Figure 4 (b). It is
observed that the trends both for changing the angle within each location,
as well the relative performance between cities agree qualitatively very well.
The two simulations utilize different sources of weather (radiation, tempera-
ture, and wind speed), so exact agreement would not be expected. Overall,
we observe mean differences of 10% for un-shaded panels, and 18% for self-
shading. It is important to note that much of this difference is due to the
model developed here predicting uniformly lower values than Energy3D. This
is likely due to the present work including the non-linear influence of mean
insolation on PV efficiency, more detailed weather data (separating specific
direct and diffuse light contribution), as well as a more detailed temperature
model for PV efficiency (utilizing local wind speeds as well as insolation and
ambient temperatures).

The higher accuracy of the present model is demonstrated through com-
parison with experimental data from (Lee et al., 2017) for a case study of
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Figure 4: Total power generation comparison between the present work and existing PV
simulation software. Comparisons between a single shade at a range of angles between the
shade and the south wall of a building, when (a) un-shaded, and (b) self-shaded by an
equal sized shade 0.5 m above. (c) Comparison of simulation results of the present work
to existing Energy3D software and experimental data (Lee et al., 2017).

a BIPV installation in South Korea in Figure 4 (c). The results show that
while the general shape of the two models and experimental data all agree
fairly well, the present work fits significantly better with the experiment,
with the higher complexity Energy3D model significantly over-predicting the
power output, particularly in the first half of the year. This indicates that
the lower energy generation the present work calculates in (a) and (b) may
indeed be more accurate as well.

Finally, we note that even without any specific experimental data input
into the model, using only solar panel specifications and general location
information, our work is still able to predict the total observed annual power
generation with less than 7% error, especially significant when compared to
the 60% error produced by existing software.
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3. Results and Discussion

We begin our investigation of this optimization process by comparing the
influence of the two data sets mentioned above, the NASA and EPW data
sets. Then, we discuss the results for the simple case study in five different
locations, and finally a realistic office case study.

3.1. Simple Room

We first explore the optimization for a simple example room with a square
55 m? footprint, no obstructing surroundings, and with two south-facing and
two east-facing windows of area 1.51 m?, schematically depicted in Figure 6
(a), in five different locations: London, Canada; Tehran, Iran; Los Angeles,
USA; Berlin, Germany; and Singapore. These locations were chosen as rep-
resentatives of different geographical locations and climates on earth. The
overall variations in value of the systems are as high as 40% between the
varied climates.

The optimization is run for the example room in these five different loca-
tions to calculate the optimum design configurations for both NASA data (30
year average) and EPW data (1 year of high-resolution data). Next, model
is re-run to calculate the overall value function (V) of the system with both
data sets for each of the two design configurations. As seen in Figure 5 (a),
both configurations (the two columns for each location) show quite similar
performance, as does each data set (red and green bars within one column),
despite their significant differences on an hourly basis.

While each configuration by definition will perform better on its own data
set, it is useful to investigate if one configuration performs better on the al-
ternate data set than the other — this can indicate if it is more important
to incorporate long term averages (NASA data) or to include the more sig-
nificant fluctuations within a single year (EPW data) in the optimization.
We observe that the long-term average (NASA data set based) configuration
shows slightly better performance on the EPW data set (99%), when com-
pared to the one-year (EPW data set based) configuration when analyzed
using the NASA data set (97%). This indicates that generally basing the
optimization on a long term average yields a design that will perform better
both on a specific year, as well as in the long term average, than basing the
optimization on the more significant fluctuations within a sample year. In
light of this, all subsequent optimizations are based on the NASA data.
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Figure 5: Comparison of NASA and EPW data sets for five different locations. (a) overall
value function of simple case for NASA and EPW data set in both average and single year
configuration (b) energy breakdown of simple case with NASA data set.

We next examine the contribution of the specific value functions to the
Vo of the Average configuration in Figure 5 (b). It can be seen that in
warmer locations (Tehran and Los Angeles) the power production has higher
value, but in colder locations (Berlin) heat can significantly exceed the value
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of power production. In tropical locations (Singapore), where sun is higher
in the sky, blocking direct light to prevent heating and providing comfort-
able daylighting conditions offers the most value. This is likely due to more
substantial self-shading of the solar louvers preventing significant power pro-
duction. This also highlights that while locations can have very similar values
of Vo (e.g. London and Berlin), the components of the value functions can
be significantly different.

In order to better understand the trade-offs generating these varying op-
tima in Vp, we explore the optimization of the London, Ontario (Canada)
location in detail. Figures 6 displays the variation of the overall value func-
tion in different sets of design parameters for 200,000 iterations, with each
iteration plotted as a single point in each figure, and corresponding to one spe-
cific combination of design parameters (length, number, and angle of shades).
Each parameter is isolated in a separate sub-figure (b-d) to investigate the
influence of that parameter, while the variation of the other parameters is
visible through the vertical spread of the points. The optimum configuration
is thus the point at the highest vertical position in each sub-plot, from which
the ideal value for each parameter can be found.

As seen in Figure 6 (b), when the shades are at the angle of 5 = 65°
to the window, the system will be at its maximum overall value. Although
panels generate more electricity at smaller angles, this would cause the room
receive less diffuse light and heat, indicating that the heat and light value
functions are pushing the optimum condition to higher angles.

Figure 6 (c) and (d) also illustrate that highest overall value function is
achieved by using 3 shades with a length of 50 cm. As the number of the
shades increases, the overall value function decreases. This is likely due to an
increased number of shades allowing less light and heat into the room, as well
as causing significant self-shading of the panels — upper panels block light to
the lower panels, especially when the sun is high. Therefore, only the leading
edge of the solar cells will receive both direct and diffuse light. This effect
is further compounded by the cell efficiency falling with decreasing average
illumination as well, further reducing the power production.

While the optimization shown here was done by requiring the south and
east side windows to have the same configuration, the different directions
can also be independently optimized. However, if two directions are allowed
to have different configurations, we see that there is only a 2.52% difference
in Vp. We thus keep the configuration the same for both directions for the
simplicity of the design.

14



(a) (b
200
180
&
TS = 160
i 2 140
il 5
! c
i 2 120
S5m ! 5
i < 100
i z
H ® 80
; 2 Il
v S 60 il Attt
(LY
40 Il
20
0 20 60 80 100
angle of sunshades
(c) (d)
200 200 T
180 180
& —~
= 160+ £ 160}
S &
B 140+ g 140
c 8]
2 5
o 120 2 120
3 g
S 100} S 100
% 2
g 80 © 80
e} g
60 & 60f
40 40
20 L L - L 20 . . .
0 0.1 0.2 0.3 0.4 0. 0 5 10 15 20 25
lenath of sunshades (m) number of sunshades

Figure 6: Optimization of the simple room solar shade for the example location of London,
Ontario (Canada). (a) Schematic of the simple room, with windows on the south and east
walls, denoted by thick black lines. Optimization profiles, with each point representing
a single configuration, showing the response of the overall value function to changes in
(b) angle (c) shade louver length and (d) number of the shades. The overall optimal
configuration corresponds to the vertical maximum of each plot.

Table 1: The optimal design parameters for the simple room in all five studied locations.

Location | London, Tehran Los Berlin Singapore
Canada Angeles
Latitude | 42.98°N 35.68°N 34.05°N 52.52°N 1.35°N
Angle 65° 57° 54° 90° 42°
Number 3 3 3 3 6
Length 50 cm 50 cm 50 cm 50 cm 25 cm
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Figure 7: Comparison of trade off between the light and heat+power value functions for
the simple case study in (a) London (Canada), and (b) Singapore. Red lines indicate the
efficient solutions, with single-objective optima points indicated at each end (al, a2, bl
and b2). Points a3 and b3 are optima points for the presently used value of v = 3.

The optimal design parameters are listed in Table 1 for all five cities. A
few trends between these values are apparent — in non-tropical environments
(all but Singapore), the optimal design shows a common 3 shades of 50 cm
length. This corresponds to the maximum amount of shade material, given
that shades are at their maximum length. This allows the minimization of
self shading by maximizing the distance between shades, while still utilizing
the maximum area of PV material allowed. In warm climates (Tehran, and
Los Angeles), a lower angle allows for more significant blocking of radiant
heat, while colder climates increase the angle to improve heat gains in the
winter (lower solar angles) while still blocking more light in the summer
(higher solar angles). Singapore shows that even more significant blocking
of incoming radiation to the windows is optimal, doubling the number of
shades at half the length, and lowering their angle. Even with this, the heat
function is still negative, as seen in Figure 5.

While power generation and heat flux can be clearly quantified, lighting
quality cannot, as it depends on the user preference for natural light. This
leads to a potential trade-off, and that different user preferences can lead to
different optimal configurations. Figure 7 displays different configurations
with their associated energy savings (the sum of beneficial heat and power
generation of the system) and light value functions for the cities of London,
Canada in (a) and Singapore in (b), chosen for their significantly different
climates. In this figure, each point represents the design configuration of
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shades, and each point on the red line can be considered an efficient so-
lution that can be optimal for different preferences of the relative value of
daylighting quality.

As seen in Figure 7 (a), if lighting quality is considered significantly more
valuable than energy (power + heat), point (al) is the optimal configuration;
conversely, if there is no consideration for lighting quality, the energy savings
are maximized at point (a2). The exterior region between point (al) and
(a2) (shown with the red line) represents efficient solutions for any decision
where there is preference both for improved lighting quality and energy sav-
ings, at varying relative values. It can be seen that by changing the relative
value of lighting, the optimal energy production is varied by a factor of more
than 50%. For the relative value of natural lighting over artificial lighting
considered here (7 = 3), (a3) is the optimum condition.

Figure 7 (b) shows a similar trade-off for Singapore. However in this
case, the line of efficient solutions is far more narrow, showing that in order
to slightly improve energy savings, there must be a significant reduction
in lighting quality. Furthermore, the optima (bl) indicates that if lighting
quality is of the highest importance, it may not be feasible to use photovoltaic
shades, due to the low energy savings, and passive shades may be more cost
effective. Finally, it should be noted that both V;, and Vp + Vy can become
negative, as glare and incoming heat on warm days respectively can both
lead to negative value of the system.

3.2. Economic considerations

So far, we determined the optimum design configuration of BIPV shades,
however in real installations, the recurring yearly value of the system must
be weighed against the upfront cost. The relationships depicted in Figure 6
can be used to demonstrate trade-offs in performance when certain design
constraints are implemented or modified. For example, if it was known that
system cost would be reduced substantially by limiting the sunshade length
to 25 cm (through reduced amount of support structures, etc.), Figure 6 (c)
shows that reducing the louver length from the optimal 50 cm to 25 cm could
still maintain 98% of the overall value, through adjustment of other design
parameters. Similarly, if one was interested in comparing to a system with
a single shade, it can be seen that the overall system value would be only
58% of the optimal configuration, while moving to two shades increases this
to 87%. It is important to note that while the overall value function may
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stay at a similar level between design modifications, the balance between the
three specific value functions may change significantly.

One of the most significant contributions to the cost of any BIPV system
is the photovoltaic cells utilized, which can account for more than 70% of the
total system cost (Yang and Zou, 2016). In Figure 8 we explore specifically
this trade-off between the overall value function (V) of the system and the
amount of PV material utilized. As we would expect from the above dis-
cussion, the value monotonically increases with increasing PV area, however
it is also now clear that the marginal benefit of increasing the amount of
photovoltaic area on the shade system changes significantly. This is observ-
able as the slope of upper surface of the distribution of designs. One can
see the slope along the upper surface in London (a) first increases and then
decreases as the amount of PV area increases, but Singapore (b) shows two
more obvious regions. It can also be seen that in Singapore in particular,
the value largely plateaus around 2.5 m?, indicating that even though the Vp
keeps going up after this, the reduced slope indicates that a smaller system
will still produce most of the value of a larger (more expensive) one. Specifi-
cally, we see that increasing the area for this system by a factor of 2.5x only
increases the value of the system by less than 25%.

Furthermore, the value of the window without any shades is also denoted
through the red circle on the zero PV area axis. This can either be pos-
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Figure 8: Overall value of the system shown as a function of the total area of PV shades
used, for the cities of (a) London and (b) Singapore, with each blue point representing
a different design solution. The value of windows without any shades is indicated by the
larger red circle.
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itive (as in the case of colder climates where having unobstructed window
will allow significant heat gains) or negative (as seen quite significantly in
Singapore). This means that the true value of going from a bare window to
an optimized shade is actually the difference between the blue point and red
circle, suggesting that while the absolute overall value in Singapore appears
low, when taken relative to the significant negative value of having no window
shades, the value is actually much higher (more than twice) that originally
predicted, and even higher than other locations. Plots for the remaining
cities are available in Supporting Information Figure S1.

While plots such as those in Figure 8 can help us understand the general
trends in costs wvs. value, the actual decision of which point is economically
optimal will depend on the current price of PV cells and modules, installation
and frame material costs, as well as the discount rate of the owner (how
much more one values upfront costs relative to future savings). This further
motivates the need for optimization methods such that presented here to be
utilized individually for any specific building installation being considered.

3.3. Detailed Case Study

This model is finally implemented for conditions of a sample office build-
ing in London, Canada, allowing a realistic case study to be demonstrated.
The office is located on the second floor of a building with an area of 380
m?. The office has 10 windows, 7 south-facing and 3 east-facing. The area
of each window is 3.6 x 2.1 m2. A schematic of the office is shown in Figure
9 (a). To ensure a view for the office workers, 50 ¢cm at the bottom of each
window is fixed to be open, and not covered with any shades. The working
time at the office is 8 am to 5 pm, and so the negative effect of direct light or
positive effect of diffuse light as well as the effect of heating (either positive
or negative) are only considered in this period of time, as it is assumed that
the area is unoccupied outside of these hours. The coefficient of performance
of the heating and air conditioning systems of the office are both taken to be
2 due to the use of heat pumps for climate control in the building.

The ideal parameters for this case study (those which maximize the overall
value function) are to utilize two shades on each window, a shade length of 50
cm, and an angle of 5 = 90° to the window. Figure 9 (b) displays the energy
breakdown of the BIPV shading system of the office. Interestingly, this varies
significantly from the simple room optimization shown above, as while the
length of the shades is still at the maximum value, the number of shades is
not. This is seen in the relative scale of the value functions as well, most
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Figure 9: Case study optimization. (a) Schematic of the office, with windows shown as
thick black lines. (b) Energy break-down for the optimal configuration. (c¢) Trade-off plot
showing the interaction between light and power+heat value functions, with the overall
dominant solution indicated by the red circle.

dramatically in the impact of the light value function. This demonstrates
the strong sensitivity of the optimization to the specific configuration of the
building being considered, and motivates the case for building-specific design
of PV solar shades.

As seen in Figure 9 (c), the configuration generating maximum energy
(electricity and beneficial heat) also has the highest light value function,
indicating a single dominant solution, and that the optimized configuration
is therefore independent of the choice of 7. This also differs significantly from
the simple room example, indicating that not only the optimal condition, but
the interaction between the different objective functions varies strongly with
building-specific parameters.

Overall, this optimized system would use 3.8 kW of photovoltaic cells, and
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shows a generation of $1,237 in value per year. Based on the cost of electricity
and the historical energy usage of the specific office, this corresponds to 15%
of the total yearly energy costs for the office.

4. Conclusions

Herein we have developed an efficient computational model to optimize
the configuration of photovoltaic sunshades while maximizing the combined
value of incoming radiative heat, PV power production, and interior lighting
quality. The consideration of both beneficial and detrimental heat gain, as
well as the separation of direct and diffuse light are essential to the accurate
calculation of system value, as is the recognition of different values between
natural and artificial light.

A general trend is observed that in non-tropical climates the value of
BIPV systems increases as fewer, longer shades are utilized, and with the
optimal angle determined by the the particular location and building spec-
ifications. While this trend can help motivate the overall design of BIPV
shades, we show that the trade-offs between cost and complexity, as well
as lighting quality and energy savings motivate a need for location- and
building-specific optimization of the system.

The ability of this model to fully map the design space also provides
benefits to optimization, allowing direct exploration of the impact of vary-
ing design constraints on the overall value of a system. This can facilitate
specific building-tailored design of BIPV solar shades by allowing systems
of differing design constraints to be compared, and considered along with
the corresponding changes in system cost, complexity, and aesthetics. This
proves particularly useful as in some locations (e.g. Singapore, studied here)
significant reductions in parameters such as the total PV area still maintain
much of the system value. Finally, comparison to the proper initial condition
(e.g. un-shaded windows for retrofit applications, or a lack of windows for
new buildings) can additionally offer significant differences (by a factor of two
or more) in some locations, again reinforcing the need for location-tailored
design.

5. Data Availability

Data used for the optimizations herein can be found at the NASA POWER
project, available at https://power.larc.nasa.gov.
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