Halide Heterogeneous Structure Boosting Ionic Diffusion and High-Voltage Stability of Sodium Superionic Conductors

Jiamin Fu1,4†, Shuo Wang3†, Duojie Wu2†, Jing Luo1, Changhong Wang2, Jianwen Liang1, Xiaoting Lin1, Yang Hu1, Shumin Zhang1, Feipeng Zhao1, Weihan Li1, Minsi Li1, Hui Duan1, Yang Zhao1, Meng Gu2*, Tsun-Kong Sham4*, Yifei Mo3*, Xueliang Sun1,2*

1 Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
2 Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China
3 Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
4 Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
5 Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, S7N 2V3, Canada

† These authors contributed equally to this work

* Corresponding authors:
Meng Gu (menggu1985@hotmail.com); Tsun-Kong Sham (tsham@uwo.ca); Yifei Mo (yfmo@umd.edu); Xueliang Sun (xsun9@uwo.ca).
Abstract:

The development of solid-state sodium-ion batteries (SSSBs) heavily hinges on the development of a Na\(^+\) conductor (SSC) that features high conductivity, (electro)chemical stability, and deformability. The construction of heterogeneous structures offers a promising approach to comprehensively enhancing these properties in a way that differs from traditional structural optimization. Here, we exploit the structural variance between high- and low-coordination halide frameworks to develop a new class of halide heterogeneous structure electrolytes (HSEs). The halide HSEs incorporating a UCl\(_3\)-type high-coordination framework and amorphous low-coordination phase achieved the highest Na\(^+\) conductivity (2.7 mS cm\(^{-1}\) at room temperature) among halide SSCs so far. By discerning the individual contribution of the crystalline bulk, amorphous region, and interface, we unravel the synergistic ion conduction within halide HSEs and provide a comprehensive explanation of the amorphization effect. More importantly, the excellent deformability, high-voltage stability, and expandability of HSEs enable effective SSSB integration. Using a cold-pressed cathode electrode composite of uncoated Na\(_{0.85}\)Mn\(_{0.5}\)Ni\(_{0.4}\)Fe\(_{0.1}\)O\(_2\) and HSEs, the SSSBs present stable cycle performance with a capacity retention of 91.0 % after 100 cycles at 0.2 C.

Keywords: solid-state electrolyte, heterogeneous structure, composites, UCl\(_3\)-type framework, Na\(^+\) diffusion.

Introduction
Given the growing scarcity of lithium resources, solid-state sodium-ion batteries (SSSBs) have garnered significant attention owing to their sustainable composition, high theoretical energy density, and inherent safety advantages.\(^1\) However, the development of solid-state sodium-ion batteries (SSSBs) imposes stringent requirements on superionic Na-ion conductors (SSCs), including high ionic conductivity (> 1 mS cm\(^{-1}\)) at room temperature (RT), excellent deformability for intimate solid-solid contact, and exceptional interfacial stability with electrode materials, yet no single SSC currently fulfills all these requirements simultaneously.\(^2\) Among several categories of SSCs, inorganic oxide SSCs\(^3\) show higher Na-ion conductivity of ~ 1 mS cm\(^{-1}\) and better electrochemical stability than that of polymer-based SSCs, but their rigid nature makes them extremely challenging to maintain tight inter-particle contact in SSSBs.\(^1\alpha\) Furthermore, closo-borates\(^4\), sodium thiophosphates\(^5\), and their analogues\(^6\) emerged in recent years due to their deformability and exceptional ionic conductivity (up to the level of 10 mS cm\(^{-1}\)). Nevertheless, their limited oxidative stability hinders them from reaching competitive energy densities with high-voltage cathodes.

Recently, the successful discovery of a range of Li-ion halide conductors\(^7\), which exhibit good deformability, high ionic conductivity, and (electro)chemical stability, has inspired research into sodium halide analogues as potential SSCs. However, due to the disparity in ionic radius between Li (76 pm) and Na (> 100 pm), the design principles for superionic lithium conductors cannot be directly applied to SSCs. As a result, the reported halide-based SSCs generally exhibit insufficient ionic conductivity. For instance, the trigonal structured Na\(_2\)ZrCl\(_6\)\(^8\) and its aliovalent substitution Na\(_{3-x}\)Er\(_{1-x}\)Zr\(_x\)Cl\(_6\)\(^9\) and Na\(_{3-x}\)Y\(_{1-x}\)Zr\(_x\)Cl\(_6\)\(^10\) present Na\(^+\) ionic conductivities of 0.018 mS cm\(^{-1}\) (30 °C), 0.04 mS cm\(^{-1}\) (25 °C), and 0.066 mS cm\(^{-1}\) (20 °C), respectively. Phillip Ridley et al.\(^11\) further increased the RT ionic conductivity of
Na_xY_{0.25}Zr_{0.75}Cl_{3.75+x} to 0.4 mS cm^{-1} by reducing the NaCl content and transitioning to an amorphous state. The authors suggest that the bigger free volume and higher number of Na^+ vacancies in the amorphous state likely account for the high ionic conductivity. However, no halide SSC has achieved an ionic conductivity above 1 mS cm^{-1} as comparable to the lithium analogues.

The construction of heterogeneous structures offers an alternative approach to enhancing ion conduction distinct from traditional structural optimization. Hiram Kwak et al. recently reported an intriguing finding of improving the Na^+ conductivity of 0.011 mS cm^{-1} for Na_2ZrCl_6 to 0.11 mS cm^{-1} for ZrO_2-Na_2ZrCl_6 even if the bulk ZrO_2 is not conductive. Similarly, an increase in ionic conductivity by one to two orders of magnitude has frequently been observed in various heterostructure systems, such as crystal-crystal (LiI·Al_2O_3, LiI·Li_3PO_4, and Li_2ZrCl_6·ZrO_2), crystal-glass (AgI·Ag_3BO_3, P_2S_5·Li_2S·LiI, and LiBH_4·fumed silica), and polymer-inorganic (PEO·Al_2O_3 and PEO·Li_7La_3Zr_2O_12), which are usually attributed to the effect of space charge layer at the interface. However, the exploration of halide heterogeneous-structure electrolytes (HSE) as potential SSCs is still on the way, and there remains a lack of clarity regarding the specific roles of heterogeneous components on ionic conductivity.

Besides the common close-packed anion structures of Li^+ superionic conductors, we have lately proposed another group of UCl_3-type frameworks, in which highly distorted octahedral sites constitutes a fast one-dimensional (1D) diffusion channel for Li^+/Na^+ hopping. However, the limitation of 1D transport characteristics restricts its macroscopic ionic conductivity across mismatched grains. Yi-Chen Yin et al. take advantage of high-valence cationic doping to obtain three-dimensional (3D) transport within the single structure,
leading to a high Li\(^+\) ionic conductivity of 3.02 mS cm\(^{-1}\) at 30 °C. When the UCl\(_3\)-type lattice maintains the fast 1D channels without aliovalent substitution, we found that the UCl\(_3\)-type lattice possesses an appealing capability to induce amorphization in surrounding low-coordination halides, creating interparticle conduction buffers to achieve fast macroscopic ion diffusion.\(^{[21]}\) These behaviors fulfill the key focuses of HSEs development, including the sustained structural integrity of each component and fast ion diffusion in the different components. Hence, incorporating UCl\(_3\)-type frameworks into halide HSEs represents a promising strategy for effectively exploiting the rapid 1D diffusion and amorphization capabilities inherent to the UCl\(_3\)-type framework, thereby enhancing Na\(^+\) ion conductivity synergistically.

In this study, we delve into the structural characteristics of polycationic halides that incorporate the UCl\(_3\)-type frameworks and different ternary metal halides. By exploiting the structural variances between high- and low-coordination halide frameworks, we have developed a novel class of halide HSEs that exhibit an outstanding ionic conductivity of up to 2.7 mS cm\(^{-1}\). This achievement marks the highest value recorded among halide SSCs to date.

The heterogeneous structures of the HSEs were identified by the X-ray diffraction (XRD), pair distribution function (PDF), high-resolution transmission electron microscopy (HRTEM), and extended X-ray absorption fine structure (EXAFS). By combining \textit{ab initio} molecular dynamics (AIMD) simulations with low-temperature electrochemical impedance fittings, we clarified the individual contributions of the crystalline bulk, amorphous region, and interface to ionic conductivity. Notably, we distinctly highlighted the substantial role of the amorphization effect in this context. Furthermore, the halide HSEs demonstrated excellent deformability, high-voltage stability, and expandability. The cold-pressed...
composite using uncoated Na$_{0.85}$Mn$_{0.5}$Ni$_{0.4}$Fe$_{0.1}$O$_2$ (NMNFO) and HSEs presented stable cycle performance with a capacity retention of 91.0 % after 100 cycles at 0.2 C in SSSBs, outperforming that of using Na$_3$PS$_4$ as catholyte. The composition of halide HSEs is highly designable and extendable, allowing for a tunable cathode-electrolyte interphase (CEI) design for different cathode materials and requirements.

Results and discussion

Construction and characterization of halide heterostructures

Two types of sodium metal ternary halides, categorized based on the distinct metal-halogen coordination numbers (C.N.), were mechanochemically synthesized in this study: 1. High coordination frameworks (HCF, C.N. > 6), represented by UCl$_3$-type Na$_{3x}$M$_{2-x}$Cl$_6$ (M = La, Sm). Fig. 1a-b presents the Rietveld refinements of XRD patterns of Na$_{0.75}$Sm$_{1.75}$Cl$_6$ (HCF-Sm) and Na$_{0.75}$La$_{1.75}$Cl$_6$ (HCF-La). HCF-Sm and HCF-La are constituted by [MCl$_9$]$^{6-}$tricapped trigonal prism with Na atoms partially occupying Wyckoff sites 2b (octahedral sites) and 2c (La, Sm sites), as shown in Fig. 1d. In the UCl$_3$-type structure, the AIMD simulations revealed fast Na$^+$ conduction in the numerous face-sharing distorted octahedra sites along the c-axis (Fig. S1a-b). 2. Low coordination frameworks (LCF, C.N. ≤ 6) represented by dispersed [MCl$_6$]$^{6-}$octahedra, such as NaTaCl$_6$ (LCF-Ta). According to the Rietveld refinements of XRD pattern (Fig. 1c), the crystalline LCF-Ta comprises an [TaCl$_6$]$^{-}$octahedral framework located at the corners of the unit cell ($P2_1/c$) edge-sharing by two [NaCl$_3$]$^{6-}$capped trigonal prism (Fig. 1e). Different from the UCl$_3$-type structure, Na$^+$ ions in LCF-Ta are confined at equilibrium sites surrounding by orderly distributed [TaCl$_6$]$^{-}$.
octahedra as depicted in AIMD simulations (Fig. S1c). The formation of a 3D diffusional network in LCF-Ta requires overcoming a substantial activation energy barrier, which gives rise to an experimental Na^+ conductivity of $5.0 \times 10^{-2} \text{ mS cm}^{-1}$. In contrast, the 1D diffusion of HCF-Sm and HCF-La hinders macroscopic percolation due to lattice mismatching between polycrystalline and results in low experimental Na^+ conductivities of 1.1×10^{-4} and $5.5 \times 10^{-5} \text{ mS cm}^{-1}$ at RT (Fig. S1d-f), respectively. Both types of Na-based halide materials currently have their limitations, leading to low apparent ionic conductivities. Following Pauling’s rules for ionic compounds, the cation-anion radius ratio r^+/r^- determines the C.N. of the cation and the stability of the cation within the coordinated polyhedron of anions. Therefore, the dissolution of $[\text{SmCl}_6]^-$ and $[\text{TaCl}_6]^-$ into each other becomes challenging. A combination of the two shall likely form a heterogeneous structure rather than a solid solution, thus fully utilizing the fast 1D Na^+ diffusion in UCl$_3$-type HCFs and their capability of inducing amorphization.

The optimal composition and synthesis conditions of halide HSEs between HCF and LCF were investigated. The diffraction patterns of the heterostructures are shown in Fig. 1f-g and Fig. S2. As the LCF-Ta content decreases, the diffraction peaks become weaker, leading to a noticeable increase in the dominance of the HCF-Sm/HCF-La diffraction peaks. The resulting HSEs exhibit enhanced ionic conductivities (Fig. 1h) and lower activation energies (Fig. S3) compared with that of the individual LCF-Ta sample. As illustrated in Fig. 1i-j, both in $(1-\chi)[\text{HCF-Sm}]\cdot\chi[\text{LCF-Ta}]$ and $(1-\chi)[\text{HCF-La}]\cdot\chi[\text{LCF-Ta}]$, the ionic conductivity is optimized within the range of $\chi = 0.35–0.5$. Notably, the composition $0.62[\text{HCF-Sm}]\cdot0.38[\text{LCF-Ta}]$ demonstrates an exceptional ionic conductivity of 2.7 mS cm^{-1} at $25 \degree\text{C}$, while $0.57[\text{HCF-La}]\cdot0.43[\text{LCF-Ta}]$ exhibits a comparable ionic conductivity of 1.8 mS cm^{-1} at $25 \degree\text{C}$. These
values represent the highest conductivities achieved to date for halide SSCs (0.02-0.11 mS cm\(^{-1}\)). In addition, as proof of the generality of the halide HSE design, LCF-Ta was further replaced with Na\(_2\)ZrCl\(_6\) (LCF-Zr) or Na\(_2\)HfCl\(_6\) (LCF-Hf), respectively. The corresponding ionic conductivity also increased from the level of 0.01 mS cm\(^{-1}\) (pristine Na\(_2\)ZrCl\(_6\) or Na\(_2\)HfCl\(_6\)) to the level of 0.1 mS cm\(^{-1}\) (heterostructures) as shown in Fig. 1k. The synchrotron-based X-ray diffraction (SXRD) observed similar sharp peaks from HCF-Sm/LCF-La and large bumps around \(2\theta = 4^\circ\ (\lambda = 0.3497 \text{ Å})\) from LCF-Zr/LCF-Hf (Fig. S4a-b), confirming the formation of heterostructures.

To investigate the structural characteristics of HSEs, we conducted SXRD and PDF measurements on 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]·0.43[LCF-Ta], as depicted in Fig. 2a-b. After heterogenized and synthesis of HSEs, the diffraction peaks relevant to LCF-Ta seem greatly quenched. Indeed, the crystalline LCF-Ta transforms into an amorphous state instead of forming a solid solution with HCF-Sm or HCF-La. The distribution of distances \(G(r)\) between pairs of atoms in 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]·0.43[LCF-Ta] can be found in Fig. 2c. The peak at approximately 2.4 Å characterizes the Ta-Cl distance in octahedron of LCF-Ta, and the peak at ~2.8–2.9 Å characterizes the Sm/La-Cl distance in tricapped trigonal prisms of HCF-Sm/La. Both 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]·0.43[LCF-Ta] present a mixed characteristic of [TaCl\(_6\)]\(^{-}\) octahedron and [MCl\(_9\)]\(^{6-}\) tricapped trigonal prisms (M = La, Sm), which confirms that 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]·0.43[LCF-Ta] are a composite of crystalline HCF-Sm/HCF-La and amorphous LCF-Ta. Similarly, [ZrCl\(_6\)]\(^{2-}\) or [HfCl\(_6\)]\(^{2-}\) octahedrons have been identified in the PDF of HSEs using LCF-Zr or LCF-Hf (Fig. S4c-d). The “box-car fitting” was utilized to extract quantitative information about the...
length scale of local atomic order from the PDF analysis of complex materials.[23]

Examination of the PDF through a box-car fitting method (box length of 6 Å, where the centroid of the refinement range is shifted to higher r in 1 Å steps) showed that fitted ratio of LCF-Ta in 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]·0.43[LCF-Ta] changed as a function of fitting length scale. The ratio of LCF-Ta rapidly declines at around $r_{\text{max}} = 9$ Å and approaches ca. zero at $r_{\text{max}} = 18$ Å, which confirms the amorphization of LCF-Ta.

Figure 1 HCF-Sm/La, LCF-Ta, and their heterogeneous composite. Synchrotron-based X-ray diffraction patterns ($\lambda = 0.3497$ Å) and the Rietveld refinements of (a) Na$_{0.75}$Sm$_{1.75}$Cl$_6$ (HCF-Sm), (b) Na$_{0.75}$La$_{1.75}$Cl$_6$ (HCF-La), and (c) NaTaCl$_6$ (LCF-Ta). (d) The crystal structure of UCl$_3$-type Na$_{0.75}$M$_{1.75}$Cl$_6$ (M = La, Sm). (e) The crystal
structure of NaTaCl₆. (f-g) The X-ray diffraction patterns (λ = 1.5406 Å, Cu Kα) of HCF-La, HCF-Sm, LCF-Ta and their composites (1-x)[HCF-Sm]·x[LCF-Ta] and (1-x)[HCF-La]·x[LCF-Ta]. (h) Arrhenius plots of the LCF-Ta, 0.62[HCF-Sm]·0.38[LCF-Ta], and 0.57[HCF-La]·0.43[LCF-Ta]. The ionic conductivities of (i) (1-x)[HCF-Sm]·x[LCF-Ta] and (j) (1-x)[HCF-La]·x[LCF-Ta] at 25 °C. (k) The ionic conductivities of HSEs based on 0.62[HCF-Sm]·0.38LCF and 0.57[HCF-La]·0.43LCF using different LCFs.

The crystalline-amorphous heterostructure of 0.62[HCF-Sm]·0.38[LCF-Ta] particles was further confirmed by HRTEM analysis. The HRTEM image of 0.62[HCF-Sm]·0.38[LCF-Ta] (Fig. 2d-e) clearly shows several grains that are spread throughout the particle and interconnected by the amorphous region. Combined XRD and the SEAD (Fig. S5a) results, the crystalline regions were identified as HCF-Sm, and its (020) and (011) planes were indicated in Fig. 2d. Moreover, the corresponding energy-dispersive X-ray spectroscopy (EDS) mapping on the whole particle (Fig. S5b) demonstrates a uniform distribution of Na and Cl elements but a slightly localized distribution of Sm and Ta elements, which further supports that the 0.62[HCF-Sm]·0.38[LCF-Ta] sample is a mixture rather than a solid solution.

To distinguish the Na⁺ diffusion of different components, we studied the low-temperature electrochemical impedances of 0.62[HCF-Sm]·0.38[LCF-Ta], HCF-Sm, and LCF-Ta. The LCF-Ta presents a symmetric impedance semicircle (Fig. S6a) at -70 °C, whereas both HCF-Sm (Fig. S6b, 5 °C) and 0.62[HCF-Sm]·0.38[LCF-Ta] (Fig. 2f, -70 °C) present an asymmetric impedance semicircle. By fitting the impedance result of 0.62 HCF-Sm·0.38 LCF-Ta, the origins of ionic conductivity were differentiated as the bulk-phase HCF-Sm,
amorphous LCF-Ta, and interface/grain boundaries according to the capacitances from low to high, as depicted in Fig. 2g.[24] The ionic diffusions in these three regions exhibit a remarkable enhancement when compared to those observed in pristine HCF-Sm or LCF-Ta. Thus, the study of synergistic ion conduction among the crystalline region, the amorphous region, and the interface between crystalline and amorphous warrants thorough investigation.

Figure 2 Crystalline-amorphous heterogeneous structures and enhanced ionic conductivities. (a) The high-resolution X-ray diffraction patterns (λ = 0.3497 Å) and (b) pair distribution functions (λ = 0.1905 Å) of LCF-Ta, HCF-La, HCF-Sm, 0.62[HCF-Sm]·0.38[LCF-Ta], and 0.57[HCF-La]·0.43[LCF-Ta]. (c) The fitted mass ratio of LCF-Ta in 0.62[HCF-Sm]·0.38[LCF-Ta], and 0.57[HCF-La]·0.43[LCF-Ta] verse r_{max} from the box-car fitting method. (d-e) HRTEM image taken from the particle edge of
0.62[HCF-Sm]·0.38[LCF-Ta]. (f) The electrochemical impedance plot of 0.62[HCF-Sm]·0.38[LCF-Ta] at -70 °C. (g) The schematic diagram of heterogeneous halide composites.

The synergistic effect enabled by heterogenization

To decipher the ion transport in the complex system of HSEs, we began by individually considering the impacts of the crystalline region, the amorphous region, and the interface. Previous studies have examined the space charge layer effect at interfaces\(^{[12, 25]}\) and the diffusion mechanism in UCl\(_3\)-type frameworks\(^{[21-22]}\). Here, we employ simulations to evaluate the influence of amorphous LCF-Ta on Na\(^+\) diffusion. To generate the amorphous structure, we conduct thermal quenching of the crystalline LCF-Ta at temperatures of 1200 K and 2000 K and obtain two amorphous structures with increased disordering (Fig. 3a-c). While Ta-Cl remains local octahedral configurations in the amorphous structures, a notable change in Ta cation ordering is observed in amorphous LCF-Ta, leading to the diverse local environment of Na\(^+\) sites (as illustrated in Fig. 3d and Fig. S7). The disordering of the [TaCl\(_6\)]\(^-\) framework was further illustrated by the calculated radial distribution functions as shown in Fig. 4a-b, and the continuous symmetry measure (CSM) analysis suggests stronger distortion of the [TaCl\(_6\)]\(^-\) octahedrons in amorphous LCF-Ta (Fig. 4c, 2000K-quenched > 1200K-quenched > Pristine), which is correlated with ionic conductivity as shown in Fig. 3e. According to the mechanism of ion diffusion in frustration as illustrated in Ref. 26,\(^{[26]}\) the Na\(^+\) hopping between these disordered sites has reduced barriers, thus enhancing the ionic conductivity as shown in AIMD simulations (Fig. 3e, 2000 K-quenched > 1200 K-quenched > Pristine).

Extended X-ray absorption fine structure (EXAFS) is a technique that enables the analysis of local structural information around a specific element absorber, making it an ideal tool for...
investigating the local coordination of specific elements in complex systems. The Fourier-transformed (FT) k^2-weighted $\chi(k)$ of Ta L_3-edge EXAFS spectra of LCF-Ta, 0.62[HCF-Sm]·0.38[LCF-Ta], and 0.57[HCF-La]·0.43[LCF-Ta] are present in Fig. 4d. The backscattering signals from the first shell of Ta atoms settle at $R \sim 2.4 \, \text{Å}$ (after phase correction) in LCF-Ta, 0.62[HCF-Sm]·0.38[LCF-Ta], and 0.57[HCF-La]·0.43[LCF-Ta], consistent with the Ta-Cl distance obtained from the PDF analysis. Similarly, the Sm L_3-edge EXAFS spectra of 0.62[HCF-Sm]·0.38[LCF-Ta] demonstrate only one characteristic peak located at $R \sim 2.8 \, \text{Å}$ in Fig. S8d, which is identical to that of HCF-Sm and should be ascribed to the backscattering from Cl$^-$ coordination in [SmCl$_6$]$^{6-}$ tricapped trigonal prisms. This excludes the probability that Ta and Sm are partially displacing each other in the mixture of LCF-Ta and HCF-Sm. Further, in the multiple-scattering region of Fig. 4d and Fig. S9, the focused hinge paths (Ta-Cl-Ta-Cl-Ta at $R > 4 \, \text{Å}$) are very sensitive to the bond angle of Cl-Ta-Cl as depicted in Fig. 4e-f (the closer to 180°, the stronger). After further differentiation of scattering signs in k-space (Fig. 4g-i), the peak intensity of $f1$ at $k \sim 6 \, \text{Å}^{-1}$ and $R \sim 4.2 \, \text{Å}$ can be viewed as a criterion of distortion of [TaCl$_6$]$^-$ octahedrons. Following the amorphization of LCF-Ta in the heterostructure, we observe a notable increase in the distortion of [TaCl$_6$]$^-$ octahedrons. This distortion causes a deviation of the central Ta atom, as evidenced by the decrease in the intensity of $f1$ in the heterostructure (Fig. 4i) compared to pristine LCF-Ta (Fig. 4h). The distorting tendency strongly corroborates with our computational simulations, revealing notable alterations in the local environment of Ta within LCF-Ta.

Based on the analysis of the amorphous region, the interplay between the three regions in halide HSEs can be summarized as follows: the LCF-Ta transition into an amorphous state
characterized by disordered $[\text{TaCl}_6]^-$ octahedrons when forming the heterogeneous interface with the UCl$_3$-type framework (i.e. HCFs); The disordering of $[\text{TaCl}_6]^-$ octahedrons leads to the diverse local environment of Na$^+$ sites with enhanced Na$^+$ ionic conductivity. These inter-grain amorphous regions then play a critical role in connecting different UCl$_3$-type frameworks, enabling long-range transmission within the grains and the amorphous region itself. The heterogeneous interface makes a substantial contribution to the overall ionic conductivity. However, comprehending and simulating this interface presents significant challenges, which will be the focus of our future research. Overall, the three regions synergistically enhanced the ionic conduction via the heterogenization of halide HSEs.
Figure 3 The effect of amorphization of LCF-Ta. Structures of (a) pristine LCF-Ta, (b) 1200 K-quenched LCF-Ta, and (c) 2000 K-quenched LCF-Ta. Below is the Na\(^+\) probability density marked by yellow isosurfaces from AIMD simulations at 700 K. (d) Schematics of Na\(^+\) diffusion in crystal versus amorphized LCF-Ta. (e) Arrhenius plot of Na\(^+\) conductivity of crystalline LCF-Ta, 1200 K-quenched LCF-Ta, and 2000 K-quenched LCF-Ta.

Figure 4 Local distortion in the amorphous LCF-Ta. Calculated radial distribution functions of (a) Ta-\(\text{Cl}\) distance and (b) Ta-Ta distance of LCF-Ta. (c) Continuous symmetry measure of Ta-\(\text{Cl}\) Octahedra in LCF-Ta. For each box, the centerline marks the median of the data set, the center square marks the mean of the data set, the outer edges mark the first and third quartiles, and the endpoints are either the extrema values or 1.5 times the interquartile range, whichever is smaller. Data are marked individually as diamonds. All the configurations are sampled at constant 2 ps intervals from the.
snapshots in AIMD simulation at 600K. (d) Fourier transform of the Ta L$_3$-edge EXAFS in R-space, with a k2-weighing, of LCF-Ta, 0.62[HCF-Sm]·0.38[LCF-Ta], and 0.57[HCF-La]·0.43[LCF-Ta]. (e-f) The schematic of the relationship between bond angle and the intensity of multiple scattering. (g) The Ta L$_3$-edge EXAFS region in k-space of LCF-Ta, 0.62[HCF-Sm]·0.38[LCF-Ta], and 0.57[HCF-La]·0.43[LCF-Ta]. Wavelet transform of the k2-weighted EXAFS data of (h) LCF-Ta and (i) 0.62[HCF-Sm]·0.38[LCF-Ta].

The SSSB performance using halide HSEs

In addition to their excellent ionic conductivity compared to other halide electrolytes, halide HSEs also possess favorable properties such as deformability and exceptional high-voltage stability. The deformability of solid electrolytes can be directly assessed by examining the relative porosity of cold-pressed pellets under a specific pressure. We pressed the electrolyte powders into a pellet under ca. 400 MPa. The cross-sectional morphologies of these pellets were examined by scanning electron microscopy (SEM). As depicted in Fig. S10, pores and voids are clearly observed in high-magnification images of Na$_3$PS$_4$ but absent in halide HSEs.

The estimated relative density of 0.62[HCF-Sm]·0.38[LCF-Ta], 0.57[HCF-La]·0.43[LCF-Ta], and Na$_3$PS$_4$ from SEM results are 92.2 %, 89.4 %, and 75.2 %, respectively, indicating that HSEs has better processibility than the typical sulfide SSC of Na$_3$PS$_4$.

The thermodynamic electrochemical windows (vs Na/Na$^+$) of HCF-Sm, HCF-La, LCF-Ta, and Na$_3$PS$_4$ were calculated using the grand potential phase diagram approach (Fig. 5a). The stable electrochemical windows were determined as 0.64–4.25 V for HCF-Sm and 0.41–3.76 V for HCF-La, respectively. LCF-Ta has a similar oxidation limit of 3.91 V but a high reduction limit of 2.15 V due to the reduction of Ta$^{5+}$. Overall, halide SSCs generally

This article is protected by copyright. All rights reserved.
demonstrate higher oxidation limits than sulfides, such as Na$_3$PS$_4$ (1.21 - 2.12 V). The experimental electrochemical windows of 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]-0.43[LCF-Ta] are measured using linear sweep voltammetry (LSV) analyses. Matching with theoretical prediction results, 0.62[HCF-Sm]-0.38[LCF-Ta] has a higher oxidation limit than that of 0.57[HCF-La]-0.43[LCF-Ta] (Fig. S11).

The chemical/electrochemical stabilities between LCF-Ta and other SSCs and various cathode materials were further evaluated by computation$^{[27]}$. Fig. S5b and Table S5-8 depict the reaction energy and decomposition products between SSCs and cathode materials including NMNFO, NaCrO$_2$, and Na$_3$V$_2$(PO$_4$)$_3$. The de-sodiation of these three cathode materials notably results in instability in contact with Na$_3$PS$_4$. Conversely, halide SSCs show greater stability as the Na content decreases. As the options of metal elements for halide HSEs are versatile (e.g., Sm/La and Ta/Zr/Hf) without significantly compromising the high ionic conductivity of the electrolyte, the electrochemical window of halide HSEs and composition of cathode electrolyte interface (CEI) are tunable.

As a proof of concept, the compatibility between different halide HSEs and cathode active materials was studied in SSSBs. A Na$_3$PS$_4$ interlayer was inserted between the HSEs and the Na$_{15}$Sn$_4$ alloy anode. NMNFO was selected as a representative cathode material due to its appropriate operating voltage up to 4 V. Fig. 5c presents the initial charge-discharge curves of NMNFO-based SSSBs using different electrolytes at 0.1 C (1 C = 120 mAh g$^{-1}$). As a control experiment, the cell using only Na$_3$PS$_4$ as the electrolyte showed little discharge capacity after being charged to 4 V. In sharp contrast, the cells using either 0.62[HCF-Sm]-0.38[LCF-Ta] or 0.57[HCF-La]-0.43[LCF-Ta] exhibited a reversible charge-discharge process. The interfacial reaction between different electrolytes and NMNFO was investigated.
by X-ray photoelectron spectroscopy (XPS). As indicated in Fig. S12a-b for the cell using Na₃PS₄, both S 2p and P 2p XPS spectra exhibited strong signals from P₂S₃ and bridging sulfur (P-[S]ₓ-P), indicating a severe decomposition of Na₃PS₄ at 4 V, and this result is consistent with previous reports on electrodes using Na₃PS₄.[8] As for the cells using halide HSEs, marginal changes of Sm 3d, La 3d, Ta 4f, and Cl 2p spectra were observed after being charged to 4 V (Fig. S12c-h), confirming the exceptional cationic stability of 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]·0.43[LCF-Ta] compared to that of Na₃PS₄. As we have exhibited above, the electrochemical performance of HSEs is far superior to that of Na₃PS₄ when charging the cell to 4 V vs Na/Na⁺.

The rate and cycle performance of cells using 0.62[HCF-Sm]·0.38[LCF-Ta] or 0.57[HCF-La]·0.43[LCF-Ta] are comparable, as depicted in Fig. 5d-g. Specifically, the 0.57[HCF-La]·0.43[LCF-Ta] cell showed capacity retention of 91.0 % after 100 cycles at 0.2 C, which is slightly higher than the 0.62[HCF-Sm]·0.38[LCF-Ta] cell (88.3 %). To be noted, the observed performance at high rates is mainly limited by the poor ionic conductivity of the interlayer Na₃PS₄ (~0.1 mS cm⁻¹). While the ionic conductivities of 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]·0.43[LCF-Ta] are comparable, the discharge capacity and Coulombic efficiency (CE) in the initial cycle is higher when using 0.62[HCF-Sm]·0.38[LCF-Ta] than using 0.57[HCF-La]·0.43[LCF-Ta] (~117.9 mAh g⁻¹ vs. ~95.1 mAh g⁻¹; 96.1 % vs. 85.8 %). This can be attributed to the higher oxidation limit of 0.62[HCF-Sm]·0.38[LCF-Ta] due to the use of HCF-Sm instead of HCF-La. Recent research has shown the critical role of metal elements in halide electrolytes in determining the high-voltage stability of the battery.[28] Within HSEs, the choice of components also affects the performance of the battery as the 0.62[HCF-Sm]·0.38[LCF-Ta] cell delivered higher...
discharge capacity whereas the 0.57[HCF-La]·0.43[LCF-Ta] cell exhibited better cycle performance.

Figure 5 Electrochemical stability and battery performance. (a) The calculated stable electrochemical window of different solid electrolytes. (b) Thermodynamic calculation of decomposition energies between solid electrolytes and cathode materials at sodiated and de-sodiated states. (c) The 1st charge/discharge profile of cells in which 0.62[HCF-Sm]·0.38[LCF-Ta], 0.57[HCF-La]·0.43[LCF-Ta], or Na3PS4 is used as catholyte at room temperature and 0.1 C (1C = 120 mAh g⁻¹). (d–e) the rate performance of cells using 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]·0.43[LCF-Ta] as catholyte at room temperature. (f) the charge/discharge curves of the cell in (e) at various current
densities. (g) The long cycle performance of cycled between 2.3–4 V vs. Na+/Na at 0.2 C at 25 °C.

Conclusion

In summary, our findings lead to a novel class of halide HSEs by utilizing the synergistic effect between high- and low-coordination halide frameworks, demonstrating an impressive combination of high ionic conductivity, excellent high-voltage stability, and deformability. The optimized 0.62[HCF-Sm]·0.38[LCF-Ta] and 0.57[HCF-La]·0.43[LCF-Ta] HSEs exhibited remarkable Na-ion conductivity of 2.7 mS cm⁻¹ and 1.8 mS cm⁻¹, which are among the highest value reported so far for halide SSCs. The diffusion mechanism in this class of halide HSEs was studied, revealing distinct contributions from crystalline bulk, amorphous region, and the heterogeneous interface between them. In particular, the effect of amorphized components in HSEs was studied. The amorphization process significantly increases the ionic conductivity of target components and assists in establishing connections between discrete UCl₃-type framework particles, thereby enabling fast long-range Na-ion conduction across the macroscopic HSEs. With good deformability and high-voltage stability of HSEs, direct integration with NMNFO cathode can be achieved by simple cold-pressing to demonstrate a stable cathode/catholyte interface and a capacity retention of 91.0 % after 100 cycles at 0.2 C for SSSBs. In addition, a theoretical study of interfacial reactions between SSCs and cathode materials revealed different interfacial products upon the choice of SSCs or cathode materials. The component in HSEs is versatile, allowing for a tunable CEI design for different cathode materials. Owing to the comprehensive advantages, the heterogeneous halide composite SSC is an ideal choice for achieving high-performance SSSBs.
Acknowledgments

The authors thank the support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chair Program (CRC), the Canada Foundation for Innovation (CFI), and Western University. The synchrotron-related characterizations were completed at the HXMA, SXRMB, and BXDS beamline in Canadian Light Source (CLS), which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. M. Gu wants to acknowledge the support from Guangdong Fundamental Research Association with the project no. 2022B1515120013, National Natural Science Foundation of China (52273225), Guangdong scientific program with contract no. 2019QN01L057. Y. Mo acknowledges the funding support from National Science Foundation Award# 2118838 and the computational facilities from the University of Maryland supercomputing resources.

Author contributions

J. Fu and S. Wang conceived the project. J. Fu performed the electrolyte synthesis and characterization. S. Wang performed the computational simulations. D. Wu conducted TEM measurements and analyses under the supervision of M. Gu. X. Ling helped with the fabrication of SSSBs. C. Wang, J. Liang contributed to the experiment design and data analysis. Y. Hu, S. Zhang, F. Zhao, W. Li, M. Li helped with synchrotron-related characterizations. H. Duan, Y. Zhao conducted the SEM and XRD measurements. J. Fu, S. Wang, D. Wu, and J. Luo formally analyzed all data and wrote the manuscript. M. Gu, T. K.
Sham, Y. Mo, and X. Sun supervised the project. All the authors participated in the reviewing and editing of the manuscript.

EXPERIMENTAL PROCEDURES

DFT Calculation

We performed all density functional theory (DFT) calculations using Vienna Ab initio Simulation package (VASP)\(^\text{[29]}\) within the projector augmented-wave (PAW) approach\(^\text{[30]}\) and Perdew–Burke–Ernzerhof (PBE) generalized-gradient approximation (GGA) functional\(^\text{[31]}\). The convergence parameters in static DFT calculations were consistent with the Materials Project\(^\text{[32]}\).

Generation of Amorphous structures

The supercell models of crystal NaTaCl\(_6\) (a total of 128 atoms) were heated from 100 K to target temperature (1200 K and 2000 K) at a constant rate within a period of 2 ps and then equilibrated for 20 ps. Finally, the configurations were quenched to 100K at a constant rate within a period of 2 ps. In all simulations, non-spin-polarized mode, a time step of 2 fs, and NVT ensemble using a Nose’-Hoover thermostat\(^\text{[33]}\) were used.

\textit{ab initio molecular dynamics (AIMD) Simulations}

To investigate ionic diffusion, we performed AIMD simulations on the supercell models of HCF-SM (a total of 68 atoms), HCF-LA (a total of 68 atoms), and LCF-TA (a total of 128 atoms). Non-spin-polarized mode and a \(\Gamma\)-centered \(k\)-point were used. A time step of 2 fs and NVT ensemble using a Nose’-Hoover thermostat\(^\text{[33]}\) was used in all simulations. The

This article is protected by copyright. All rights reserved.
structures were heated from 100 K to the targeted temperature (400-1000 K) at a constant rate during a period of 2 ps. The D was calculated as the mean square displacement (MSD) over the time interval Δt:

$$D = \frac{1}{2Nd\Delta t} \sum_{i=1}^{N} \langle [r_i(t + \Delta t) - r_i(t)]^2 \rangle_i$$

The ionic conductivity was calculated according to the Nernst-Einstein relationship:

$$\sigma = \frac{nq^2}{k_BT}D$$

where n is the mobile ions volume density and q is the ionic charge. The activation energy and ionic conductivity at the desired temperature were extrapolated according to the Arrhenius relation:

$$\sigma T = \sigma_0 \exp \left(\frac{-E_a}{k_BT} \right)$$

where E_a is the activation energy, σ_0 is the pre-exponential factor. The statistical deviation of the diffusivity was evaluated using the scheme established in our previous work\(^{[34]}\), then the simulations lasted 40 to 300 ps until the diffusivity converged within a relative standard deviation of 20-40%. The Na-ion probability density was calculated as the time fraction of Na-ions at each spatial location in the crystal structures during the AIMD simulations. The demonstration of crystal structure was performed by VESTA software\(^{[35]}\).

Thermodynamic calculations of Interface stabilities

To evaluate the interfacial stability between solid electrolytes (SE) and common cathode materials, the interface pseudo-binary reaction energy was calculated as:

\[\text{This article is protected by copyright. All rights reserved.} \]
\[\Delta E_D(\text{SE, cathode}, x) = E_{\text{eq}}(C_{\text{interface}}(C_{\text{SE}}, C_{\text{cathode}}, x)) - E_{\text{interface}}(\text{SE, cathode}, x) \]

where \(C_{\text{SE}} \) and \(C_{\text{cathode}} \) are the compositions of solid electrolyte (SE) and cathode materials, normalized to one atom per formula. The \(x \) is the molar fraction of the SE. The energies of materials were obtained from Material Project database. More details can be found in previous studies\(^{[36]}\).

Thermodynamic calculations of Electrochemical window

The electrochemical window was evaluated using the method in our previous studies\(^{[36a, 37]}\). A grand potential phase diagram was used to identify the phase equilibria of a given phase in equilibrium with the Na reservoir at chemical potential \(\mu_{\text{Na}} \) referenced to Na metal. The stable electrochemical window of the phase was estimated as the range of \(\mu_{\text{Na}} \), where the phase is neither oxidized nor reduced.

Synthesis methods

All preparation processes and sample treatments were carried out in an Ar-filled glovebox (\(\text{O}_2 < 1 \text{ ppm}, \text{H}_2\text{O} < 1 \text{ ppm} \)). The UCl\(_3\)-type halides HCF-Sm/HCF-La and ternary halides NaTaCl\(_6\), Na\(_2\)ZrCl\(_6\), and Na\(_2\)HfCl\(_6\) were synthesized by ball-milling the starting materials of NaCl (Sigma Aldrich, 99.9 % purity), SmCl\(_3\) (Sigma Aldrich, 99.9 % purity) and LaCl\(_3\) (Sigma Aldrich, 99.8 % purity), TaCl\(_5\) (Sigma Aldrich, 99.99 % purity), ZrCl\(_4\) (Sigma Aldrich, 99.9 % purity), and HfCl\(_4\) (Sigma Aldrich, 99.9 % purity) at the stated stoichiometric ratio. For ball-milling synthesis, the mixture of precursors was sealed in a zirconia jar (100 mL) under vacuum and ball-milled at 500 rpm for 60 cycles. Each cycle included 10-min milling and 5-min resting. The heterogeneous composite was synthesized by
ball-milling as-prepared HCF-Sm/HCF-La and NaTaCl₆/Na₂ZrCl₆/Na₂HfCl₆ at 500 rpm for another 20 cycles or directly from the precursors at 500 rpm for 90 cycles.

Characterization

Lab-based X-ray diffraction (XRD) measurements were performed on Bruker AXS D8 Advance with Cu Kα radiation (λ = 1.5406 Å). Kapton tape was used to cover the sample holder to prevent air exposure. Scanning electron microscope (SEM) images and element mappings were obtained using a Hitachi S-4800 field-emission scanning electron microscope (FE-SEM, acceleration voltage 5 kV) equipped with energy dispersive spectroscopy (EDS). High-resolution transmission electron microscopy (HRTEM) images, energy dispersive spectrometry (EDS) mapping, and selected area electron diffraction (SAED) patterns of the studied samples were performed by a Cs-corrected Titan Themis 80–300 TEM, operated at 300 kV, fitted with a Bruker Quantax Super-X EDS detector. The sample powder was directly dispersed on a Cu grid without the assistance of solvent.

Elemental maps were acquired at a beam current of 200 pA and an acquisition time of 10–15 min. A standard-based quantification method (Linemarker TEM) was used for the elemental quantification of the acquired elemental maps.

Synchrotron-based powder diffraction and pair distribution function were collected using the Brockhouse High Energy Wiggler beamline at the Canadian Light Source (CLS) with a wavelength of 0.3497 Å. The samples were loaded into 0.8 mm inner diameter polyimide capillaries and sealed with epoxy in an Ar-filled glove box. The X-ray diffraction Rietveld refinement and pair distributed function fittings were conducted by GSAS-2 and PDFgui software. [38] X-ray absorption spectra (XAS) were collected from the Hard X-ray Micro-Analysis (HXMA) and Soft X-ray Micro characterization (SXRMB) beamlines of CLS, the
samples were mixed with BN and pressed into pellets to achieve an absorption length of 1. Samples for Cl K-edge were spread on carbon tape and measured within a vacuum chamber. All XAS data were analyzed with the Athena software, and the EXAFS data were processed using the Artemis program.[39]

Electrochemical characterizations

The temperature-dependent ionic conductivities of prepared SSEs were obtained via the EIS measurements of model cells on a multichannel potentiostat 3/Z (German VMP3). The applied frequency range was 1 Hz to 7 MHz and the voltage amplitude was 20 mV. The test cell was fabricated by pressing electrolytes into a pellet (~400 MPa, 120 mg samples, diameter of 1 cm, thickness ~0.5-0.6 mm). About 5 mg of acetylene black carbon was then spread onto both sides of the pellet and pressed with ~150 MPa.

The model SSSB was assembled by using the NMNFO as the cathode, Na-Sn (15:4) as the negative electrode, and halide HSEs and/or Na₃PS₄ as the separator (see diagram of battery architecture in Fig. S11). 100 mg of the electrolyte powder to be tested was pressed at ~200 MPa to form an SSE layer (1 cm diameter). The cathode composite (NMNFO: SSC: carbon black (CB) = 60:40:2) was uniformly spread onto the surface of one side of the electrolyte layer and pressed with ~400 MPa for one minute. Then about 7 mg of the cathode composite was placed on one side of the SSC pellet and pressed at the same pressure, and on the opposite side of SSC, the Na₃PS₄ and an excess of Na-Sn alloy (60 mg) were pressed in order. Galvanostatic charge-discharge for SSSB was conducted on the LAND battery test system (CT3002AU-5V10mA) at room temperature with a stack pressure of ~80 MPa. The LSV measurement used the same configuration except that the cathode composite was replaced by the mixed powder of the SSC and CB in a weight ratio of 9:1 using a mortar and
a pestle. The scan ranges from the open-circuit voltage (OCV) to 6 V (vs Na/Na\(^+\), positive scan) or OCV to 0 V (vs Na/Na\(^+\), negative scan), respectively. The scan rate was 0.1 mV s\(^{-1}\).

Competing interests

The authors declare that they have no competing interests.

Data and materials availability

Data is available upon reasonable request to the authors.

Supporting Information

Supporting figures and tables.

References:

This article is protected by copyright. All rights reserved.
The development of solid-state sodium-ion batteries heavily hinges on the development of a Na\(^+\) conductor that features high conductivity, (electro)chemical stability, and deformability. In this study, the halide heterogeneous structure electrolytes incorporating a UCl\(_3\)-type high-coordination framework and amorphous low-coordination phase achieves the high Na\(^+\) conductivity (2.7 mS cm\(^{-1}\) at room temperature) and good solid-state sodium-ion battery performance.