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A B S T R A C T   

Lithium metal coupled with high voltage cathodes has been extensively investigated to meet the demand for 
higher energy density batteries. However, only a few electrolytes are compatible with both lithium anode and 
high voltage LiNi0.5Mn0.3Co0.2O2. Pure poly(ethylene oxide) electrolyte shows high-stability against lithium 
metal but has limited oxidation stability (typically < 3.8 V). Nitrile-based electrolyte with -C≡N groups exhibits 
excellent electrochemical stability against high voltage electrodes. Here, a novel type of poly(ethylene oxide) 
based polymer in plastic crystal (succinonitrile) electrolyte is designed to achieve stable cathode/electrolyte and 
anode/electrolyte interfaces simultaneously through strong intermolecular interactions. Li-Li symmetric cells 
with the polymer in plastic crystal electrolyte runs stably for 700 h at 1 mA cm− 2. Even with a high cut-off 
voltage of 4.4 V, the Li// LiNi0.5Mn0.3Co0.2O2 cell delivers a high discharge capacity of 169 mA h g− 1 and a 
capacity retention of 80% after 120 cycles. Our work highlights development of PEO-based electrolytes with 
higher energy density by inter-molecular design.   

1. Introduction 

With the growing interest in developing higher energy density bat
teries, solid-state batteries with a Li metal anode have attracted great 
attention during recent years [1]. Currently, Bluecar in France has 
commercialized with a Li/solid polymer electrolyte/LiFePO4 chemistry 
[2]. The solid polymer electrolyte used is poly(ethylene oxide) (PEO) 
electrolyte, which demonstrates high safety due to elimination of 
flammable solvent while possessing excellent flexibility [3]. Commer
cialized PEO electrolyte is only compatible with 3.6 V LiFePO4 cathode, 
resulting in an energy density of 250 W h kg− 1 at most, which prevents 
these batteries from meeting the increasing demand for long-range EVs. 
However, high voltage layered structured cathodes (such as LiCoO2, 
LiNi0.5Mn0.3Co0.2O2) for PEO-based SSBs experience notable capacity 
decay during cycling [4,5]. The reason for the capacity decay is related 
to the strong oxidation capability of transition metal ions at the high 
valence state [6]. As reported by Li et al., pure PEO decomposed at a 
cut-off voltage of 4.5 V. With LiCoO2 as the cathode, the decomposition 
voltage decreases to 4.2 V due to the strong oxidative phase of 
de-lithiated Li1− xCoO2 [7]. To overcome this problem, two strategies 

have been adopted including cathode interface engineering and use of 
interlayers. Coating layers such as Al2O3 and lithium ion conductors 
(Li1+xAlxTi2− x(PO4)3) have been shown to prevent the direct contact of 
PEO and the high voltage cathode, thus limiting the side reaction [7–9]. 
Interlayers have been introduced to construct a stable cathode electro
lyte interface (CEI) layer on the cathode, which have been effectively 
demonstrated in elongating the lifetime of a solid polymer battery 
[10–12]. 

Marchiori et al. investigated the electrochemical window of PEO 
polymer by density functional calculation (DFT). The result indicated 
that the theoretical oxidation voltage of PEO is 3.65 V [13]. To extend 
the electrochemical window of PEO electrolyte, sandwich structure 
electrolytes [14–16], composite electrolytes [17–20], and co-polymer 
electrolytes [21–23], were proposed in previous reports [24,25]. How
ever, the modified PEO electrolyte still showed limited stability against 
high voltage electrolyte in long term cycling. Recently, Wu et al. re
ported a new type of polymer in the ionic liquid system (Li(DME)0.7F
SI-PEO0.6). This electrolyte was proven to be stable up to 4.5 V due to the 
donation of lone electron pairs of ether oxygen atoms (from DME and 
PEO) to Li cations [26]. Succinonitrile based plastic crystal electrolyte 
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(PCE) have been widely investigated for its high ionic conductivity and 
high voltage stability [27]. In addition, SN based PCE showed negligible 
vapor pressure and low flammability, indicating high safety properties 
in lithium ion batteries. However, it is unstable against Li metal due to 
the side reactions, namely, polymerization of nitriles catalyzed by 
lithium metal [28,29]. 

In this work, we propose a new concept of polymer in plastic crystal 
electrolyte (PIPCE) to fabricate PEO-based electrolytes through mixing 
PEO with the succinonitrile-based plastic crystal (LiTFSI-SN0.05-x wt.% 
FEC, X = 0, 10, 20%). The PIPCE electrolyte of (LiTFSI-SN0.05-10 wt.% 
FEC)− 15 wt. %PEO shows an electrochemical oxidation potential up to 
4.97 V vs Li/Li+, almost 1.5 V higher than that of pure PEO. A stable Li 
metal plating/stripping in Li-Li symmetric cell is achieved for 700 h with 
a plating capacity of 1 mAh at room temperature (30 ◦C). The full cell 
using LiNi0.5Mn0.3Co0.2O2 (NMC532) as cathode can be stably cycled 
with this electrolyte for 120 cycles under a high charge cutoff voltage of 
4.4 V. Such a superior performance can be traced to the strong inter
molecular interaction of polymer and salt, which results in stable elec
trode/electrolyte interfaces as revealed by microstructural analysis. 

2. Results 

A series of polymers in plastic crystal electrolyte (PIPCE) were pre
pared by mixing PEO polymer with PCE electrolyte. Later on, the PIPCE 
electrolyte was loaded onto the PE separator for battery assembly, with a 
thickness of 22 µm (Fig. S1). The ionic conductivities of different PIPCE 
were measured by impedance spectroscopy using stainless steel as a 
blocking electrode, and PIPCE was immersed in Glass Fiber for 

convenience. Room temperature (30 ◦C) conductivities for 5% PEO 
PIPCE, 15% PEO PIPCE and 25% PEO PIPCE are ~3.1 × 10− 4 S cm− 1, 
1.0 × 10− 4 S cm− 1, and 0.9 × 10− 4 S cm− 1, respectively (Fig. 1a). For 
pure PEO electrolyte, the ionic conductivity is measured to be about 
8 × 10− 6 S cm− 1 at room temperature (Fig. S2). Conductivity of PIPCE is 
higher than nano-SiO2/PEO electrolyte in the temperature range of 
30–60 ◦C as well [20]. PEO dissolved in SN will increase the viscosity of 
the PCE electrolyte and decrease the lithium ion mobility (Fig. S3). 
Temperature dependence of ionic conductivity for three PIPCEs were 
measured between 4 and 60 ◦C, as shown in Fig. 1b. The 
Vogel-Tammann-Fulcher empirical formula was used to fit the profiles 
(Fig. S4). Activation energy of PIPCE is 13.84 kJ mol− 1, 10.39, and 
3.90 kJ mol− 1 respectively for 5% PEO PIPCE, 15% PEO PIPCE, and 25% 
PEO PIPCE. The oxidation stability of PIPCEs was also investigated by 
linear sweep voltammetry (LSV). As shown in Fig. 1c, the oxidation 
phenomenon starts at 4.73 V for 5% PEO based PIPCE. With increasing 
content of PEO, the oxidation voltage is increased to 4.97 V (15% PEO 
and 25% PEO based PIPCE), 1.47 V higher than that of pure PEO (3.5 V). 
The transference number of lithium ion was obtained with potentiostatic 
polarization test and electrochemical impedance measurement. Higher 
lithium transference number denotes the reduced anion movement and 
reducing ion concentration gradients, resulting in better Li metal anode 
stability. The lithium transference number (tLi

+) of 5% PEO PIPCE, 15% 
PEO PIPCE, and 25% PEO PIPCE are 0.48, 0.31, and 0.24, respectively 
(Figs. 1d and S5). The number is higher than that of pure PEO solid 
polymer electrolyte (0.19). 

To better understand the high oxidation properties of PIPCEs, FTIR 
and Raman spectra of PIPCEs were measured. According to the FTIR 

Fig. 1. Electrochemical performance of prepared PIPCEs. (a) Impedance of PIPCE electrolytes at 30 ◦C (b) Temperature dependence of the ionic conductivity for 
PIPCEs and PEO (g) LSV curves of PIPCE electrolytes and PEO. (h) Lithium ion transference number of PIPCE electrolytes and PEO. 
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results in Fig. 2a, two peaks at ~2254 cm− 1 and ~2275 cm− 1 are 
assigned to free SN and Li coordinated-SN, respectively [30]. With an 
increasing amount of PEO, SN interaction with Li is decreased due to the 
redshift of free SN peak from ~2254 cm− 1 to 2252 cm− 1. Furthermore, a 
Li-(C-O-C) peak at 1300 cm− 1 emerges, which indicates that PEO in
teracts with Li-ion [31]. In addition, PEO coordination with Li-ion is 
further demonstrated by the peaks that appeared at ~1080 cm− 1 

(Fig. S6), similar to the reported PEO polymer electrolyte [32,33]. From 
the Raman spectra in the region of 730–760 cm− 1 in Fig. 2b, the peak 
ascribed to free TFSI- is depressed with increasing content of PEO. This 
means that the TFSI anion interaction with Li cation is enhanced and 
anti-oxidation capability is increased [26]. Therefore, Li-ion was 
observed to interact with the SN molecule, PEO molecule, and TFSI 
anion, simultaneously. Thus, the reduction of free SN on Li metal and 
oxidation of PEO on NMC surface is hampered due to these strong 
intermolecular interactions. Phase content is identified with X-ray 
diffraction (Fig. 2c), only two diffraction peaks of SN are observed in 
PIPCE [34]. Diffraction peaks of PEO at 18.9◦ and 23.1◦ are undetected, 
indicating that PEO is in an amorphous state. No LiTFSI salt peaks are 
observed due to the full dissociation of lithium salt in the PIPCE. Ther
mal properties of the PIPCE was evaluated by thermogravimetric anal
ysis, as shown in Fig. 2d. The PIPCE is thermally stable over 150 ◦C, and 
SN is decomposed at 230 ◦C [35]. In addition, flammability tests were 
performed on PIPCEs using a lighter at room temperature (Video S1-S3). 
All three PIPCEs do not catch fire, which indicates high safety for 
practical application. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106205. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106205. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106205. 

To evaluate the anode stability of PIPCE against Li metal, symmet
rical cells were assembled and tested with different capacities. For 5% 
PEO based PIPCE, as illustrated in Fig. 3a, the voltage profiles were 
unstable at a current density of 0.5 mA cm− 2. The overpotential 
increased drastically due to the polymerization of nitrile at the Li metal 
surface. After a 550 h test, the overpotential rised up to 1 V and dropped 
down due to the formation of soft dendrites. The 15% PEO and 25 PEO 
PIPCEs were tested at 0.05 mA cm− 2, 0.1 mA cm− 2, and 0.2 mA cm− 2. 
The overpotential of 15% PEO PIPCE against Li metal is 8 mV, 16 mV, 
and 32 mV at each respective current densities (Fig. 3b). For 25% PEO 
PIPCE, the overpotential was measured to be 5 mV, 10 mV, and 20 mV 
(Fig. S7). Because of the stability of PIPCE at a low current density for 
400 h without short-circuiting, the current density was increased to 
1 mA cm− 2. As presented in Fig. 3c, the overpotential of 25% PEO PIPCE 
drastically increased to 250 mV while the overpotential of 15% PEO 
PIPCE was still 100 mV (Fig. 3d and e). Moreover, the cell with 25% PEO 
PIPCE was short-circuited at 244 h. This could be traced to the low 
lithium ion conductivity and low lithium transference number of this 
electrolyte. The lithium dendrite formation is easy at the Li metal surface 
under this condition. Even after a 700 h test, the Li//Li symmetrical cell 
with 15% PEO PIPCE still showed negligible overpotential change, 
suggesting good compatibility against Li metal. 

Li metal batteries with NMC 532 cathodes were cycled with a 4.2 and 
4.4 V cutoff voltage. The cycling performance of PIPCE was first inves
tigated under the voltage window of 2.7–4.2 V at a C-rate of 0.1 C, as 
shown in Fig. 4a. Li-NMC 532 cell with 5%, 15% and 25% PEO PIPCE 
delivered discharge capacities of 154, 140, and 101 mAh g− 1 and initial 
coulombic efficiencies (CE) of 84.7%, 76.32%, and 76.85%, 

Fig. 2. Physical performance of prepared PIPCEs. (a) FTIR spectra of PIPCE electrolytes in the range of 2225–2300 cm− 1 and 1200–1400 cm− 1. (b) Raman spectra of 
PIPCE electrolytes in the range of 730–750 cm− 1 (c) XRD patterns and (d) TG curves of PIPCE electrolyte. 
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respectively. This behavior is in accordance with the ionic conductivity 
of each electrolyte. After 40 cycles, the capacity retention rate of 15% 
PEO PIPCE was 100% and the average CE was close to 100%. The cell 
with 5% PEO PIPCE showed a discharge capacity of 136 mA h g− 1 after 
30 cycles, with a capacity loss of 11%. The 1st, 10th, and 40th charge 
and discharge profiles are well overlapped, as illustrated in Fig. 4b. The 
overpotential of the cell was small and did not change with cycling, 
suggesting high cathode stability. In addition, different ratios of fluo
roethylene carbonate (FEC) additive were evaluated with NMC cathodes 
in the voltage window of 2.7–4.2 V. PIPCE without FEC showed a quick 
decay during cycling, the initial capacity of 139 mA h g− 1 dropped to 
75 mA h g− 1 after 40 cycles (Fig. S8). With 10 wt% FEC, the stability is 
greatly enhanced and capacity was kept at 150 mA h g− 1 during cycling. 
Although the pure PCE electrolyte delivered a high reversible capacity 
(150 mA h g− 1), the capacity decreased to 110 mA h g− 1 after 100 cy
cles (Fig. S9). 

When the cutoff voltage was increased to 4.4 V, 15% PEO PIPCE 
showed the highest capacity of 169 mA h g− 1 and maintained a capacity 
retention of 80% after 120 cycles (134 mA h g− 1 was obtained) (Fig. 4c). 
The 1st, 10th and 100th charge and discharge profiles are presented in 
Fig. 3d. The overpotential of the cell slightly increased after 10 cycles 
and was kept at this level for the following cycles. 25% PEO PIPCE 
showed a capacity of 101 mA h g− 1 and capacity retention of 72% for 
120 cycles. The capacity loss of 5% PEO PIPCE was 40% and only 
92 mA h g− 1 was obtained after 120 cycles. In comparison, the capacity 
of NMC in pure PCE decreased from an initial 150 mA h g− 1 to 
73 mA h g− 1 (50% capacity was retained) at 120 cycles, due to the side 
reactions at the anode side. To understand the interface stability during 
charge-discharge, the impedances of Li/PIPCE/NMC were recorded after 
cycling. As illustrated in Fig. S10, R0 in equivalent circuit represents the 
contribution from PIPCE, R1 is the interfacial resistance of Li/PIPCE and 
R2 is the interfacial resistance of PIPCE/NMC 532 [36]. The interfacial 
resistance of Li/PIPCE is stable, indicating good stability at Li side. The 
interfacial resistance between PIPCE/NMC is changed from 50 ohm to 
232 ohm with a 4.2 V cutoff voltage, and to 318 ohm with a 4.4 V 
(Table S2). 

Due to the high stability, 15% PEO PIPCE was chosen for rate 

performance testing with a voltage window of 2.7–4.2 V (Fig. 4e). The 
cell demonstrated a charge capacity of 0.5 mA h cm− 2 (130 mA h g− 1) 
and retained a charge capacity of 0.487 mA h cm− 2 (126 mA h g− 1) 
after 100 cycles, corresponding to a capacity retention of 97.4%. Addi
tionally, the cell showed a capacity of 0.4 mA h cm− 2 (105 mA h g− 1) 
and 0.3 mA h cm− 2 (80 mA h g− 1) at a current rate of 0.2 C and 0.4 C. 
As the current is changed back to 0.1 C, the charge capacity goes back to 
0.46 mA h cm− 2 (118 mA h g− 1). Such a rate performance is better than 
most reported PEO based solid polymer electrolytes [37–39]. PIPCE is 
also superior to Ca-CeO2/PEO composite electrolyte in terms of oxida
tion voltage and charge capacity [40]. 

To understand the oxidation stability of 15% PEO-based PIPCE 
against an NMC cathode, X-ray Photoelectron Spectroscopy (XPS) 
analysis was performed on cycled cells. As presented in Fig. 5a, the C 1s 
spectra after cycling can be deconvolved into three peaks at 284.1, 
286.3, and 292 eV, which can be assigned to the C–C, C–O/C≡N, and 
C–F bond. The C-O/C≡N peak is attributed to PEO and SN decomposi
tion in the formation of cathode electrolyte interphase on NMC [41]. 
Three peaks at 397.1, 398.5, and 399.5 eV of N 1s spectra can be 
assigned to N rich compounds, C––N–C and C≡N bond, respectively. The 
formation of C––N-C and N rich compound indicates the polymerization 
of nitrile groups on NMC cathode under a 4.2 V cutoff voltage [42]. The 
S 2p spectra at 168.7 eV and 169.8 eV (doublet) indicate the presence of 
SO2F species at the NMC surface, which is the result of TFSI- decom
position at high voltage. No oxidation phase such as sulfate is observed, 
indicating good phase stability of NMC at high voltage [26]. Three peaks 
at 684.6 eV, 687.2 eV, and 688.4 eV can be observed in the F 1s spec
trum. The LiF content in NMC with a 4.4 V cutoff voltage is higher than 
that cycled with a 4.2 V cutoff voltage. High content of LiF at the surface 
is beneficial for suppressing decomposition of SN and PEO molecules at 
high voltage [43]. 

To further analyze the structure evolution of NMC cathode after 
cycling, scanning electron microscopy (SEM) and transmission electron 
microscopy (TEM) were performed. After 100 cycles, SEM images of the 
NMC under 4.2 V and 4.4 V showed that the NMC particles were covered 
by thin films without obvious damage (Fig. 5a). With selected area 
electron diffraction pattern (SAED), it was observed that the R-3m 

Fig. 3. Voltage profiles of Li metal plating/stripping in Li//Li cells (a) 5% PEO PIPCE under a current density of 0.5 mA cm− 2 and an areal capacity of 
0.5 mA h cm− 2. (b) 15% PEO PIPCE under a current density of 0.05, 0.1, and 0.2 mA cm− 2. (c) 15% PEO and 25% PEO PIPCE under a current density of 1 mA cm− 2 

and an areal capacity of 1 mA h cm− 2 and (d, e) Enlarged view of (c). 
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crystal structure of NMC remains as pristine after charging to 4.2 V and 
4.4 V (Fig. 5b). Even at 4.4 V, no crack is observed from TEM images, 
indicating good compatibility between the PIPEC electrolyte and the 
NMC cathode. From the high-resolution transmission electron micro
scopy (HRTEM) images in Fig. 5b, CEI layers are observed for NMC when 
charged to 4.2 V and 4.4 V. The thickness of CEI is 4.4 nm and 8 nm, 
respectively. The CEI film can effectively suppress the phase transition 
of NMC at high voltage [43]. To detect the surface structure information, 
the lattice fringes of NMC charged to 4.2 V and 4.4 V were analyzed. In 
both samples, the surface lattice can be assigned to the (104) crystal 
plane of R-3m (Fig. 5b), suggesting surface stability of NMC in PIPCE 
electrolyte. 

In addition to ensuring a stable cathode interface, the Li anode 
interface also plays an important role in achieving high electrochemical 
performance. The chemical information of solid electrolyte interphase 
(SEI) on Li metal after cycling was analyzed, as presented in Fig. 5c. The 
C 1s spectra after cycling can be deconvolved into three peaks at 284.1, 
286.3, and 289 eV, which can be assigned to C-C, C-O/C≡N, and lithium 

carbonate. The C-O/C≡N peak can be attributed to PEO and SN 
decomposition at the Li surface. Three peaks at 397.1, 398.5, and 
399.5 eV of N 1s spectra, can be assigned to the Li3N, C––N–C, and C≡N 
bond. The formation of C––N-C and Li3N indicates the polymerization of 
nitrile groups on the Li anode. The Li3N content with a 4.4 V cutoff 
voltage is similar to those with a 4.2 V cutoff voltage. The S 2p spectra at 
168.7 eV and 169.8 eV (doublet) indicate the presence of SO2F species 
at the NMC surface, which is the result of TFSI- decomposition. F 1s 
shows two peaks at 684.6 eV and 688.4 eV. The LiF content with a 4.4 V 
cutoff voltage is higher than a 4.2 V cutoff voltage, as a result of 
decomposition of LiTFSI salt. The co-existence of mechanically stable 
LiF and ionically conductive Li3N is beneficial to suppress side reactions 
between Li metal and SN [44]. To prove the high stability of PIPCE with 
cathode, NMC 811 is employed (Fig. S11). Initial charge and discharge 
capacity of NMC 811 is 161.3 and 127.4 mA h g− 1, corresponding to a 
CE of 79%. Discharge capacity increase to 175 mA h g− 1 within 5 cycles, 
the number is 140 mA h g− 1 after 30 cycles (~80% capacity retention). 

The morphology of Li metal after 100 cycles under a cutoff voltage of 

Fig. 4. Long term cycling performance of in Li//NMC 532 cells (a, c) at a cutoff voltage of 4.2 V and 4.4 V for PIPCEs. (b, d) Charge discharge profile of Li//NMC 532 
cells with 15% PEO PIPCE at different cut-off voltages. (e) Rate performance of Li//NMC 532 cells with 15% PEO PIPCE. 
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4.2 and 4.4 V was investigated by SEM. As shown in Fig. 5d, the surface 
of Li metal with a 4.2 V cutoff voltage shows a smoother morphology 
than the cell with a 4.4 V cutoff voltage. In the enlarged view, the 
deposited lithium at a cutoff voltage of 4.2 V shows a spherical 
morphology while a platelet Li deposition morphology is observed for 
deposition at a 4.4 V cutoff voltage. Additionally, the cross-section 
image of Li metal anode was recorded. As presented in Fig. S12, the 
corrosion layer on top of the Li metal anode is about 50 µm, close to PEO 
in quasi ionic liquid electrolyte [26]. To prove the high stability of PIPCE 
with anode, commercial Graphite is investigated (Fig. S13). First charge 
and discharge capacity of Graphite is 304.6 mA h g− 1 and 
382.8 mA h g− 1, corresponding to a first CE of 79.6%. Discharge 

capacity increase to 350 mA h g− 1 in the following cycles, which proves 
that the PIPCE can be used for Graphite as well. 

Based on the above analysis, we propose that the improved perfor
mance of PIPCE compared to pure PCE/PEO is due to the strong inter
molecular interactions (Fig. 6). The Li-ion is strongly bonded with SN, 
PEO, and TFSI ions. As a result, SN-LiTFSI offers the fast lithium ion 
transportation path while EO donates lone electron pair to Li cations. In 
addition, solvent-ion structure is tuned due to co-solvent effect of SN, 
FEC and PEO. SN reduction by Li metal and oxidation of PEO is sup
pressed because of interactions between PEO, SN and Lithium salt. FEC 
solvent addition is beneficial for the formation of F rich SEI and CEI 
component. SEI layer is composed of robust LiF and conductive Li3N, 

Fig. 5. XPS profiles of NMC 532 cathodes after cycling with a charge cutoff of 4.2 V (a) and 4.4 V (c). (b) TEM, SAED, and HRTEM images of NMC 532 cells with 
different cut-off voltages. (d) SEM images of Li metal with different cut-off voltages. 

Fig. 6. Schematic of PIPCE electrolytes with inter-molecular interactions and stable interphase engineering at electrolyte/electrode interface.  
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which can stabilize the Li anode. At the cathode side, the CEI film is a 
mixed electronic/ionic conductor and nitrile polymer film can act as a 
buffer layer. Therefore, the oxidation of PEO by de-lithiated NMC is 
suppressed. As a result of stable SEI and CEI formed at the electrolyte/ 
electrode interface, the Li/PIPCE/NMC cell is stable during long term 
cycling. 

3. Conclusion 

In this work, we developed a PIPCE strategy to widen the electro
chemical window of PEO-based electrolytes for high-voltage Li metal 
batteries. Due to the intermolecular interactions, the oxidation voltage 
of 15% PEO PIPCE is increased to 4.97 V. The electrolyte demonstrates 
thermal stability as evidenced by thermal measurement and fire tests. 
Stable lithium plating/stripping performance of 700 h under a capacity 
of 1 mA h cm− 2 is achieved. Full cells using NMC 532 as the cathode can 
deliver an initial capacity of 169 mA h g-1 and maintain a capacity 
retention of 80% after 100 cycles at a cutoff voltage of 4.4 V, which is far 
better than pure PEO and pure PCE electrolytes. Our result suggests that 
PIPCE is a promising direction for realizing high voltage Li metal bat
teries in the future. 
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