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A B S T R A C T   

Pt-based catalysts are widely applied in several catalytic electrochemical reactions for energy storage and con
version. The improvement of specific activity of Pt is typically achieved by introducing the transition metal to 
obtain the alloy structure. Different from the traditional alloy structure, herein, we report Pt catalyst modified 
with Co single atoms obtained by atomic layer deposition (ALD). The as-prepared catalysts show much higher 
mass activity and excellent stability compared to commercial Pt/C catalysts towards the hydrogen evolution 
reaction (HER) and oxygen reduction reaction (ORR). The atomic resolution TEM images and X-ray absorption 
spectroscopy (XAS) indicate the formation of atomically dispersed Co on Pt. First principle calculations reveal 
that the Co atom affects the electronic structure of the Pt catalysts, which resulted in the high HER and ORR 
performance. This work provides a new approach for the rational design of highly active and stable Pt-based 
catalysts, which hold great potential for application in various catalytic reactions.   

1. Introduction 

Pt-based catalysts have wide applications in several industrial areas 
due to their great electrochemical performance [1–5]. However, the 
widespread application of Pt is significantly hindered by its low abun
dance, limited supplies, and ever increasing price. Accordingly, opti
mizing the mass activity of Pt nanocatalysts is of great concern for 
minimizing the cost and achieving broader commercialization of Pt. 
Various methods have been developed for improving two key factors of 
Pt catalysts; the utilization efficiency and specific activity [6–9]. The 
improvement of Pt specific activity can be achieved by introducing 
transition metals to tune the surface electronic structure and atomic 
coordination. Compared with pure Pt catalysts, Pt-based multi-metallic 
nanocatalysts have shown great promise in enhancing the ORR [10–15] 
and HER [16–18] activities due to their intrinsic ligand and geometric 

effects. In addition to the alloy structure, it is found that the single 
atom-modified Pt exhibits extremely high activity compared with pure 
Pt and Pt-based alloy structures [19,20]. For example, Li and co-workers 
created Ni single atom-modified Pt nanowires through an electro
chemical dealloying approach [20]. However, the aforementioned 
method is limited by the accuracy control of dealloying process, and it is 
not suitable for potential industrial application. Therefore, it remains a 
great challenge to develop a new strategy to obtain Pt-based catalysts 
with single atom modifications that can achieve good performance. 

As the electrocatalytic process occurs on the surface of the catalysts, 
the modification of surface structure can effectively change the catalytic 
activity compared to the bulk part. ALD is a powerful tool to engineer 
the surface structure of Pt catalysts, as it can enable precisely control 
over the deposition of single atoms and nanoclusters [21,22]. In 2013, 
our group firstly reported a practical synthesis method to fabricate Pt 
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single atoms on graphene nanosheets by the ALD [23]. The as-prepared 
Pt single atoms (SA) exhibit greatly enhanced electrochemical activities 
compared with commercial Pt/C catalysts. The preparation procedure of 
Pt SA can also be applied for the deposition of other metals. It can be 
expected that the deposition of single atomic transition metals will 
further improve the activity of Pt catalysts. 

Herein, for the first time, we successfully prepared Co SA-modified Pt 
nanoparticles (NPs) on nitrogen-doped carbon nanotubes (NCNT) 
through an ALD process. The detailed structure of the Co SA-modified Pt 
NPs has been investigated by scanning transmission electron microscopy 
(STEM), X-ray absorption near edge structure (XANES) and extended X- 
ray absorption fine structure (EXAFS). The as-prepared Co SA-modified 

Pt NPs showed much higher catalytic activity and stability compared to 
commercial Pt/C catalysts for both HER and ORR. Density functional 
theory (DFT) calculation results indicated that the Co atom affects the 
electronic structure of the Pt catalysts, which leads to the high HER and 
ORR performance. 

2. Results and discussion 

2.1. ALD preparation and characterization of Co SA-modified Pt NPs 

Fig. 1a shows the synthesis route for Co SA-modified Pt NPs on NCNT 
with ALD. NCNTs with an average diameter of 100 nm were prepared by 

Fig. 1. (a) A schematic illustration showing the preparation process of the Co SA-modified Pt NP catalysts. (b, c) Typical SEM and TEM image of the Co SA modified 
Pt NPs. (d) Aberration-corrected HAADF-STEM images of Co SA modified Pt NPs catalysts. (e, f) Two individual particles, showing the formation of Co SAs on Pt 
particles. (g) High resolution HAADF-STEM image and corresponding HAADF-STEM-EDS elemental mapping of Co SA modofied Pt NPs catalysts. (h) EELS spectrum 
of Co SA modofied Pt NPs catalysts. 
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ultrasonic spray pyrolysis as outlined previously [24]. Pt NPs were 
deposited onto the surface of NCNTs through an ALD process by using 
trimethyl(methylcyclopentadienyl)-platinum (IV) (MeCpPtMe3) and O2 
as the precursors with a nitrogen (99.9995%) purge gas. As shown in 
Fig. S1, the SEM images indicated that Pt NPs are successfully deposited 
onto the substrates after 20 Pt ALD cycles. Due to the N-doped sites on 
NCNT, the Pt atoms can be deposited onto NCNT more easily compared 
with that on graphene structure. The as-prepared NCNT-Pt catalyst has 
also been characterized by TEM. As shown in the typical low-resolution 
TEM image, the Pt NPs are well dispersed on the NCNT substrates 
(Fig. S2a). The high-resolution TEM image clearly shows uniform Pt 
particles formed and the surface of the NPs is smooth (Fig. S2b). The 
periodic fringe spaces are confirmed to be 0.22 nm, which agree well 
with the d values for the (111) of Pt. 

Further modification of the catalyst was conducted by deposition of 
Co SAs on Pt NPs by ALD using bis(ethylcyclopentadienyl)cobalt(II) as 
precursor. The typical SEM and HAADF-STEM images show that the size 
of Pt NPs is not changed after the deposition of Co (Fig. 1b and c). The 
(111) spacing of Co SA-modified Pt NPs is also found to be 0.23 nm 

(Fig. 1d). The high-resolution HAADF-STEM images clearly show that 
the surface of Pt NPs become rough, indicating the formation of isolated 
Co atoms formed on Pt NPs (Fig. 1e and f; Fig. S3). Furthermore, 
HAADF-STEM-EDS spectroscopy mapping profiles shown in Fig. S4 
clearly reveal the homogeneous distribution of C, N, Pt and Co elements 
on the NCNTs. In addition, the Energy-dispersive X-ray spectroscopy 
(EDX) elemental mapping (Fig. 1g) reveals that most of the Co atoms are 
sparsely deposited on the Pt NPs. The EELS spectrum of Co SA-modified 
Pt NPs catalysts also show a weak Co signal (Fig. 1h), which indicates 
the successful ALD deposition of Co atoms. The inductively coupled 
plasma optical emission spectrometer (ICP-OES) results showed that the 
loading of the Pt and Co loadings on NCNT are 14 and 0.9 wt%, 
respectively. 

2.2. X-ray absorption fine structure of Co SA-modified Pt NPs 

To further investigate the effect of Co SA on Pt structures, we carried 
out XANES and EXAFS measurements to study the electronic environ
ment of Pt and Co in the Co-modified Pt catalysts (Fig. 2). Fig. 2a and b 

Fig. 2. X-ray absorption studies of the Co SA- 
modified Pt NPs and regular Pt NPs in com
parison with Pt foil. (a, b) The normalized 
XANES spectra at the Pt L3-edge and L2-edge of 
the Co SA modified Pt NPs, regular Pt NPs and 
Pt foil. (c) The first derivative of the XANES 
spectrum at Pt L3 edge. (d) Corresponding K3- 
weighted magnitude of Fourier transform 
spectra from EXAFS of Co SA modified Pt NPs, 
Pt NPs and Pt foil. (e) The normalized XANES 
spectra at the Co K-edge of the Co SA modified 
Pt NPs, regular Pt NPs and Pt foil. (f) Corre
sponding K3-weighted magnitude of Fourier 
transform spectra from Co K-edge of Co SA 
modified Pt NPs and Co foil.   

L. Zhang et al.                                                                                                                                                                                                                                   



Nano Energy 93 (2022) 106813

4

shows the normalized XANES spectra at the Pt L3 and L2 edges, 
respectively. Detailed examination of the spectra was conducted by 
qualitative and quantitative analysis of the Pt L2 and L3 edges white lines 
(WLs, the sharp intense peak lead by the rising absorption edge) [25]. It 
is apparent that, with the exception of Pt foil, which has an intense 
L3-edge WL and a very weak L2-edge WL due to the large spin orbit 
coupling of the 5d and an even distribution of the 5d 5/2 and 5d3/2 
densities of states just above the fermi level in metallic Pt, both the Pt 
NPs and Co modified Pt catalysts exhibit substantial WL intensity at both 
edges. In addition, the Co modified Pt catalysts appear to have the most 
intense WL compare to Pt NPs and Pt foil. It has been shown that the area 
under the WL peak of L2,3-edge x-ray absorption spectra of the Pt metal is 
directly related to the unoccupied density of states of the Pt 5d orbitals. 
An increase in the L2,3-edge WL intensity indicates a decrease in the 
number of electrons in the occupied d band. In addition, a small positive 
shift in the threshold energy E0 can be observed for Co-modified Pt 
catalysts compared to Pt NPs and Pt foil. The detailed E0 position can be 
determined by the first derivative of the XANES spectrum at the Pt L3 
edge (Fig. 2c). Among the three samples, the E0 for Co modified Pt 
catalysts is 11,564.5 eV, which is slightly higher than that of 11564 eV 
of Pt NPs. This result suggests that Pt experiences a more oxidized 
environment when modified by Co SAs. To further explore the impli
cation of the unoccupied densities of 5d states in Pt, quantitative WL 
intensity analysis was conducted based on a reported method to deter
mine the occupancy of the 5d states in each sample. The Pt L3- and Pt 
L2-edge threshold and WL parameters are summarized in Table 1. From 
the analysis, the Co-modified Pt catalysts have the highest total unoc
cupied density of states of Pt 5d character (0.85), while the Pt foil sample 
had the lowest of 0.67. It has been demonstrated in literature that the 
vacant D-orbitals of Pt atoms play a vital role in the activity of catalysts 
[20,22,26]. 

Furthermore, to study the local structure environment of Pt, the 
EXAFS spectrum was studied. The magnitude of Fourier transforms (FT) 
of the Pt EXAFS for different samples were plotted in Fig. 2d. The EXAFS 
R space curve fitting attributes the FT magnitude peak at around 2.6 Å to 
the Pt–Pt or Pt-Co bonding. When we carefully compare the EXAFS 
peaks of Pt NPs and Co modified Pt NPs, we found that the peak position 
slightly shifted from 2.58 Å to 2.51 Å. The peaks are fitted to quantita
tively obtain the coordination number (CN) and bonding length of Pt-Pt 
(Fig. S5 and Table S1). As shown in Table S1, the Pt-Pt for the Pt NPs and 
Co-modified Pt NPs have relatively lower CN (9.4 and 8.7) relative to Pt 
foil (12) due to the presence of nano-sized Pt nanoparticles on the 
substrates. In addition, we found the bonding distance of Pt-Pt for the 
Co-modified Pt NPs decreased to 2.73 Å, which is also lower than that of 
Pt foil (2.76 Å). This result indicated that, with the deposition of Co 
atoms on Pt, the Pt electronic structure was tuned. The formation of Pt- 
Co bond (3.04 Å) caused the reconstruction of Pt surfaces, reducing the 
bond distance of Pt-Pt bond to 2.73 Å. This result also provided the 
evidence for the formation of Pt-Co bond on Pt surface [27]. It should be 
mentioned that a very small Pt-Co bond (CN=0.1) is simulated, which 
also indicates that Co is deposited on the Pt surface. 

X-ray absorption spectroscopy (XAS) was also used to study the Co 
local electronic structure of the Co-modified Pt NPs (Fig. 2e). Qualitative 

examination of the Co K-edge XANES spectra whiteline clearly shows a 
shift in edge position to higher energies compared to Co foil, indicating 
the partial oxidation of Co on Pt surface using the ALD process. The 
EXAFS of the Co K-edge was also studied in detail. The Fourier trans
forms of the EXAFS region for Co-modified Pt NPs and Co foil are plotted 
in Fig. 2f. The Co-modified Pt NPs exhibited an obvious Co-O peak at 
around 1.6 Å. Two different types of Co-O, Co(II)-O and Co(III)-O, might 
exist on the Co modified Pt catalysts [28]. A relative weak peak was 
observed at around 2.3 Å, which can be attributed to the Co-M (M=Co or 
Pt) bond. The atomic resolution TEM images showed the formation of Co 
single atoms on Pt. In addition, the corresponding fitting results about Pt 
L3 edge and Co K edge also indicated the peak at 2.2 Å belonged to Co-Pt 
peak instead of Co-Co peak. The detailed peak attribution is provided in 
Fig. S6 and the detailed fitted parameters are summarized in Table S2. 
As shown in Fig. S6, the R space curve fitting agrees well with the 
experimental data. From the Co K-edge R space fitting results, the Co 
atoms have the CN of 0.8 for Co-Pt, also suggesting the formation of Co 
single atoms on Pt surface. In addition, the fitting bond length of Co-Pt is 
2.83 Å, which is close to that of Pt-Co (3.04 Å). The relatively longer 
distance of Co-Pt bond is due to the formation of Co-O bond during the 
ALD process. 

2.3. Electrocatalytic performance of Co SA-modified Pt NPs 

The HER activity of the Co SA-modified Pt NPs was firstly measured 
in comparison to the Pt NPs and commercial Pt/C catalysts by con
ducting linear sweep voltammetry measurements in 0.5 M H2SO4 at 
room temperature (Fig. 3a–c). The polarization curves show that the Co 
SA-modified Pt NPs exhibit better HER performance compared with Pt 
NPs and commercial Pt/C, as shown in Fig. 3a. The specific activity for 
each catalyst is calculated from the polarization curves by normalizing 
the current with the geometric area of the electrode (Fig. S7). The Co SA 
modified Pt NPs exhibited a current density of 158 mA/cm2 at an 
overpotential of 0.07 V. When normalized to the metal loading, the mass 
HER activities for the Co SA-modified Pt NPs at an overpotential of 
0.07 V is 11.5 A mg− 1(Fig. 3b), which is 3.5 and 16.4 times greater than 
that of the Pt NPs (3.3 A mg− 1) and Pt/C catalysts (0.7 A mg− 1), 
respectively. In addition, we prepared the Pt NPs with 5 cycles Co ALD 
deposition (5ALD Co-Pt NPs/NCNT) and tested the electrochemical 
performance. As shown in Fig. S8, the mass HER activity reduced to 
4.3 A mg− 1 at the overpotential of 0.07 V, which indicated that 
increasing the Co deposition on Pt catalysts might cover the active sites 
on Pt surface, thus affect the electrochemical performance of the cata
lysts. To evaluate the durability of the as-prepared Co SA modified Pt 
catalysts, accelerated degradation tests (ADTs) were adopted between 
+0.4 and − 0.15 V (versus RHE) at 100 mV s− 1 for 5000 cyclic voltam
metry sweeps. As exhibited in Fig. 3c, the polarization curve of Co SA 
modified Pt NPs after 5000 cycles retained a similar performance to the 
initial test, resulting in a loss of only 17% of its initial current density at 
an overpotential of 0.07 V (Fig. 3c). Furthermore, we examined the HER 
performance of Co SA-modified Pt NPs, Pt NPs and commercial Pt/C 
catalysts in 1.0 M KOH at room temperature(Fig. 3d–f). Fig. S9 reveals 
the current densities in alkaline solution were 32.7, 13.7 and 17.8 mA/ 

Table 1 
Pt L3,2-edge threshold and whiteline (WL) parameters.  

Sample Pt L3 edge WL Pt L2 edge WL h5/2 h3/2 Total 

E0 (eV)a EPeak (eV)b ΔA3
c E0 (eV) EPeak (eV) ΔA3 

Pt foil  11564  11,566.7  6.46  13,273  13,276.1  1.47  0.61  0.07  0.67 
Pt NPs on NCNT  11564  11,566.7  7.10  13,273  13,276.1  3.53  0.64  0.16  0.81 
Co SA modified Pt NPs  11,564.5  11,567.0  7.15  13,273.3  13,276.3  4.39  0.65  0.20  0.85  

a Position of the first inflection point of the edge jump for the corresponding Pt L3 edge. 
b Peak position. 
c Area under the difference curve for normalized edge jump, the normalized edge jump for the Pt L3 and L2 edge corresponds to a value of 2.5 × 103 cm− 1 and 

1.16 × 103 cm− 1, respectively. 
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cm2 on the Co SA modified Pt NPs, Pt NPs and commercial Pt/C catalysts 
at − 0.07 V, respectively. In addition, the Co SA-modified Pt NPs still 
exhibited the best mass activity (2.7 A mg− 1 at the overpotential of 
0.07 V) among these three catalysts (Fig. 3e). After 5000 cycles ADT 
test, the Co SA modified Pt NPs showed only a loss of only 7% of its 
initial current density at an overpotential of 0.07 V in 1.0 M KOH so
lution (Fig. 3 f). It can be found that the electrocatalytic abilities of the 
Co SA-modified Pt NPs exhibited superior HER performance in both acid 
and alkaline solution compared to the commercial Pt/C catalyst. 

We also evaluated the ORR performance of the Co SA-modified Pt 
NPs, Pt NPs and commercial Pt/C catalysts. Cyclic voltammograms (CV) 
were recorded in 0.10 M aqueous HClO4 at a scanning rate of 
50 mV∙s− 1(Fig. 4a). The ECSA for the Co SA modified Pt NPs, Pt NPs and 
Pt/C catalysts were 63.6, 70.3 and 34.3 m2/g, respectively. The polari
zation ORR curve showed that the Co SA modified Pt NPs exhibited 
better activity than that of the Pt NPs and Pt/C (40%) (Fig. 4b). In order 
to compare the activity for different catalysts, we normalized the kinetic 
current to the Pt mass (Fig. 4c and d). The kinetic current density (jk) was 
derived from the Koutecky-Levich equation [29]. As shown in Fig. 4e, 
the Co SA modified Pt NPs exhibited greatly improved specific activity, 
with jk, specific values of 0.77 mA /cm2 based on the ECSA at 0.9 V vs. 
RHE, which was 1.5 and 3.8 times greater than that of the Pt NPs 
(0.51 mA/cm2) and Pt/C catalyst (0.20 mA/cm2), respectively. The 
mass activities of the Co SA modified Pt NPs, Pt NPs and Pt/C catalysts 
were 0.49, 0.26 and 0.11 A/mg, respectively, showing similar trends to 
that of the specific activities. As shown in Fig. 4f, the Co SA-modified 
NPs had obviously improved jk, mass relative to the Pt/C catalyst. 
These results indicate that the shortened Pt-Pt bond distance by the Co 
modification can greatly improve the performance of the catalysts for 
ORR. It should be pointed that the increase of Co ALD cycles also 
affected the ORR performance of the catalysts. As shown in Fig. S10a, 
the ECSA of the catalysts significantly reduced due to the high coverage 
of Co on Pt surface. In addition, the mass activity reduced to 0.17 A/mg 
(Fig. S10b–d), indicating the significant role of Co single atom 

modification. We also tested the long-term stability of the catalysts 
through ADT between +0.6 and +1.1 V (vs. RHE) at 100 mV s− 1 for 10, 
000 cyclic voltammetry sweeps. For the mass ORR activities at 0.9 V, the 
Co SA-modified Pt NPs, which achieved the best activity towards ORR, 
only showed a 20.8% loss in mass activity after 10,000 cycles (Fig. S11). 
In addition, the TEM images of post-testing samples indicated that the 
particles are still well-dispersed on the NCNT (Fig. S12a and b). EDX 
mapping indicated that Co and Pt are not dissolved in the solution 
during the ADT test (Fig. S12c). These results indicate that the Co 
SA-modified Pt NPs exhibit good durability. 

2.4. The enhanced mechanism elucidated by DFT calculations 

Density functional theory (DFT) calculations were conducted to 
further elucidate the mechanism behind the improved HER and ORR 
performance enabled by Co SA-modified Pt NPs. Pt (111) and Co SA 
modified Pt (111) were used for the calculation models (Fig. 5a) based 
on the HAADF-STEM and EXAFS results discussed above (Fig. 1, 
Tables S1 and S2). The hydrogen adsorption free energies (ΔGH*) and all 
potential adsorption sites for hydrogen are first calculated to probe the 
activity of HER. Furthermore, in order to get simulation results closer to 
the real reaction conditions, a volcano-type kinetic model, which ex
presses the experimental exchange current i0 as a function of ΔGH* 
(Fig. 5b) was employed [30]. An obvious volcano plot is shown in 
Fig. 5b. On the left part of the volcano plot, hydrogen bond energy is 
strong, leading to the difficulty in H2 generation. On the contrary, the 
right part of the volcano means proton transfer becomes rough, which 
result in the weak hydrogen bond. Generally, hydrogen-binding on Pt 
(111) is strong and concentrated on the left side of the volcano. In 
addition, the calculations for the Co SA-modified Pt(111) show that 
ΔGH* decreases to region of optimal HER activity. Moreover, the d band 
center of Pt(111) (− 1.94 eV) and Co SA-modified Pt(111) (− 2.04 eV, 
− 2.30 eV) (Fig. S13) also demonstrate that Co SA species can modify the 
electronic structure of the surface Pt atoms by lowering of the d band. 

Fig. 3. (a) The HER polarization curves recorded on Co SA modified Pt NPs, regular Pt NPs and commercial Pt/C catalysts in 0.5 M H2SO4 at room temperature. (b) 
The current mass activity at − 0.07 V in acid solution. (c) Durability measurement of the Co SA modified Pt NPs catalysts. (d) The HER polarization curves recorded 
on Co SA modified Pt NPs, regular Pt NPs and commercial Pt/C catalysts in 1.0 M KOH at room temperature. (e) The current mass activity at − 0.07 V in alkaline 
solution. (f) Durability measurement of the Co SA modified Pt NPs catalysts in alkaline solution. 
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Therefore, the adsorption strength of hydrogen is weakened, leading to 
the optimal HER activity. 

To further explore the ORR performance between Pt(111) and Co SA 
modified Pt(111), theoretical calculations for the reaction mechanism 
were explored. The free energy diagrams of the ORR on Pt(111) and Co 
SA modified Pt(111) are shown in Fig. 5c. In the case where the elec
trode potential is zero (U = 0 V), the elementary reactions of ORR on 
both surfaces are exothermic, and the adsorption of O* and OH* is 
weakened on Co SA modified Pt(111). Moreover, previous studies [31, 
32] on the ORR mechanism indicate that O protonation to OH is the 
rate-determining step, and thus catalysts with weakly binding oxygen 
species have better ORR activity. Therefore, the Pt atoms electronically 
modified by Co SA species are beneficial for the ORR performance. 
Additionally, when the electrode potential is 1.23 V, OH protonation on 
Co SA modified Pt(111) is found to be more facile than Pt(111). This 
further suggests that the Co SA modified Pt(111) could provide more 
available sites for ORR, which is consistent with the stability of Pt(111) 
and Co-SA modified Pt(111) found experimentally [33–35]. 

3. Conclusion 

In conclusion, we have successfully synthesized Co SA-modified Pt 
catalysts on NCNTs by ALD. The obtained Co SA-modified Pt NPs 
showed significantly improved activity and excellent stability compared 

to commercial Pt/C catalysts for both HER and ORR. X-ray absorption 
spectroscopy indicates that the structure model of Co SA-modified Pt 
NPs contain one Co-Pt bonding configuration. Furthermore, the DFT 
calculation results reveal that the Co SA-modified Pt(111) show 
decreased ΔGH* to the value of the optimal HER activity region. During 
the ORR process, the adsorption of O* and OH* weakened on Co SA 
modified Pt(111), which is beneficial for the ORR performance. This 
work paves a new way for the rational design of bimetallic catalysts, 
which have great potential for application in various catalytic reactions. 
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