Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries

Guofeng Xu, Liang Luo, Jianwen Liang, Shangqian Zhao, Rong Yang, Changhong Wang, Tianwei Yu, Limin Wang, Wei Xiao, Jiantao Wang, Jinqiu Yu, Xueliang Sun

ARTICLE INFO

Keywords:
Electrochemical stability
Ion conductivities
Halides
Solid-state electrolytes
All solid-state batteries

ABSTRACT

All-solid-state batteries (ASSBs) have gained substantial attention because of their intrinsic safety and potentially high energy density. To enable ASSBs, developing solid-state electrolytes (SSEs) with high electrochemical stability is of foremost significance. Here we report a multi-metal chloride SSEs with an excellent electrochemical stability (up to 4.5 V vs. Li+/Li), which originates from the strong Zr-Cl bonding. In addition, a high room-temperature ionic conductivity of 1.58 mS/cm was achieved via increasing the Li vacancies in the structure as well as balancing carrier and vacancy concentration. Coupled with nickel-rich cathodes (LiNi0.12Mn0.05Co0.85O2) and high-voltage LiCoO2 (4.5 V vs. Li+/Li), ASSBs demonstrated superb electrochemical performance. This work provides an in-depth structural understanding of multi-metal chloride SSEs and feasible strategies to realize high-energy-density ASSBs.

1. Introduction

The next-generation all-solid-state batteries (ASSBs) using inorganic solid-state electrolytes (SSEs) have two outstanding advantages: guaranteed safety and the ability to easily achieving a high energy density of above 400 Wh/kg [1–4]. Researchers have made a lot of innovations and developed a series of inorganic ionic conductors including polymers, oxides, borohydrides and sulfides [5–14]. Among them, the high ionic conductivity of sulfides and the good chemical stability of oxides are particularly impressive [7,11,14]. However, the sulfide compounds have poor electrochemical stability and generate toxic H2S gas in the humid air. The processing of oxide electrolyte-based electrode needs to contact the cathode material directly. Researchers are committed to developing SSEs with better performance in application prospects, halides with properties between sulfides and oxides seem to be a good choice of making the best use of their advantages and bypassing the disadvantages.

Since 2018, ternary chloride Li3MCl6 [15–20] and Zr doped Li3MCl6 (M = Y, In, Er, Sc, Yb, etc.) [21–25] have been intensively reported with high temperature ionic conductivity of 10**-4 S/cm and electrochemical oxidation potential above 4 V vs. Li+/Li, showing a promising prospect. The ionic transporting is dependent on the synthetic procedure, the local structural environment, and the site occupancy of M/ vacancy [18,19,21]. The ionic conductivity have been optimized via high throughput computation [26], Br anion doping [25,27,28], and structural adjustment [19,21,29]. The moisture tolerance was improved by adopting element In [16,17,30], the machinability could be enhanced by the using of Ga and F [31], and the interface between the electrolyte and both cathodes and Li-metal anode has been optimized as well [32–38].
However, the electrochemical oxidation potential of Li-M(III)-Cl materials has been calculated to be 4.2 V vs. Li+/Li and tested to be ~4 V vs. Li+/Li so far, which is inadequate to match with the commercial layered LiMO2 (M = Ni, Co, Mn, and Al) cathodes of 4.3 V vs. Li+/Li or above with high capacities.

Cyclic voltammetry (CV) measurement on a Li/SSE/Au blocking cell is generally adopted to evaluate the electrochemical stability window of the solid electrolytes. However, the results are inaccurate, considering carbon additives in electrode composites can trigger the decomposition of SSEs, especially at high working voltage, for the sufficient transporting of electrons matching the migration of Li+ [39]. For instance, the electrochemical stability window of Li10GeP3S12 [11] and Li3PS4Cl [40] was reported to 5 V tested by CV while it’s not nearly that high practically. Mo [41] and Ceder [42] et al. used first-principles calculations to assess the electrochemical stability window of SSEs. The electrochemical window of sulfide SSEs was calculated as 1.7–2.4 V vs. Li/Li+, which is much closer to the actual situation. The electrochemical window of Li3YCl6 and Li2YBr6 were calculated as 0.62–4.21 V and 0.59–3.15 V vs. Li/Li+, which are much narrower than that measured using CV without carbon additives [43]. The oxidation potential of fluoride-based electrolytes can exceed 6 V vs. Li/Li+, but the ionic conductivity has not been reported to exceed 1 mS/cm. The oxidation potential of bromide and iodide-based SSEs is only about 3 V vs. Li/Li+. While the oxidation potential of chloride-based SSEs with high ionic conductivity is more than 4 V vs. Li/Li+, and varies with the non-Li metal element, for the different thermodynamics of Cl− oxidation reactions. For instance, the thermodynamic electrochemical stability window of Li3SmCl6 and Li3HoCl6 are 0.67–4.23 V and 0.64–4.25 V vs. Li/Li+.

Whereas few studies on the electrochemical stability of halide-based SSEs have been reported, and further experiments, calculations, and analyses are highly needed to improve the electrochemical stability and provide deep insights into the real electrochemical stability of the chloride SSEs.

Herein, we report a series of multi-metal chloride SSEs with a high-electrochemically stability (4.5 V vs. Li+/Li), which are achieved by originally adopting non-Li metal elements with low cathodic limit as the non-Li metal element, and further introduction of stable Zr-Cl bond. All the CV tests herein use the electrode with carbon additives, the electrochemical window obtained by the test is very close to the theoretical value. The oxidation potential of the chloride electrolyte is high enough to be directly coupled with the bare cathode materials. A new revelation of local structure in the practical multi-metal chloride SSEs is discovered by perfectly combining first-principles calculation with an atomic-level observation of X-ray absorption spectroscopy. The electrochemical stable potential of Li-M-Cl materials depends largely on the characteristics of the non-Li metal element M. The fine structure of Li2.55Y0.42Zr0.49Cl6 at different electrochemical states revealed using X-ray absorption spectroscopy confirmed the constant Zr-Cl bond of 2.3 Å and Zr centered spherical cluster. A general rule of ion transporting optimization scheme of Li-M-Cl electrolyte material has been explored via adopting a two-step method, which including the Li-deficiency and the synergistic effect of simultaneously regulating carrier concentration and vacancy concentration, through which the ion conductivity of Yb-based and V-based chloride solid electrode are improved to both 1.58 mS/cm at room temperature (RT), and the all-solid-state cells using LiNi0.80Co0.12Mn0.08O2 (4.3 V vs. Li+/Li) and LiCoO2 (4.5 V vs. Li+/Li) as cathode materials demonstrating excellent electrochemical performance.

2. Results and discussion

2.1. Design of electrochemically stable electrolyte

From the point of work function theory, the higher the ionization energy of the element, the lower the valence band maximum (VBM), Element with lower electron energy of highest occupied molecular orbital (HOMO) is hard to lose electrons and has better oxidation stability, and element with higher electron energy of lowest unoccupied molecular orbital (LUMO) is hard to obtain electrons and has better reduction stability [43–46]. The relative electrochemical stability between compounds composed of various M elements can be evaluated by the band-gap width of HOMO-LUMO energy levels. In terms of atomic orbital theory, electron structures are stable when atomic orbitals are fully full, half full or empty according to the special cases of Hund’s rule [47,48]. Li3MCl6 exhibits a stable octahedral structure for rapid transport of Li+ when element M has a stable trivalent ion and the ion radius is around 80–90 pm. Among the seven elements that fit the criteria in Table 1, the valence electron structure of ytterbium is 4f156s2, both the outermost 6s and 4f orbitals are in full state, while all the unused orbitals are in the empty state, all the orbital structures are stable, suggesting stable chemistry of Yb and a wider electrochemical window of Li-Yb-Cl.

The density of states (DOS) calculations was carried out to simulate the electrochemical stability by HOMO-LUMO band gap values, as shown in Figs. 1 and S1. Because the DOS diagram is aligned according to the deep energy level at ~45 eV, it is inappropriate of comparing oxidation and reduction stability simply by comparing the HOMO and LUMO energy values. Here, the oxidation and reduction potential of Li3YbCl6 and Li3YCl6 are simulated and intercompared by the cathodic limit and anodic limit after aligning the HOMO and LUMO values with their respective vacuum energy levels, as the dash area in Fig. 1 shows. The band-gap width of Li3YCl6 was calculated as 4.48 eV via the HOMO-LUMO method, which is narrower than the value based on Heyd-Scuseria-Ernzerhof functional [43], the value calculated using the same method can be compared with each other. The band-gap width of Li3YbCl6 with Pnma and P-3m1 space group are 5.78 and 5.83 eV, both wider than that of the Li3YCl6, which implies the better electrochemical stability of Li3YbCl6 than Li3YCl6. The anodic limits of Li3YbCl6 with Pnma and P-3m1 space group are 3.15 and 2.94 eV, higher than the 2.77 eV of the Li3YCl6, the cathodic limits are ~2.63 and ~2.89 eV, lower than ~1.71 eV of the Li3YCl6, which indicates the higher oxidation potential and lower reduction potential of the Li3YbCl6. The anodic limit of Li3YbCl6 with space group Pnma is higher than the P-3m1 structure, which suggests the higher oxidation potential of the Pnma structural Li3YbCl6, and the favorable ability for the matching with layered cathode materials. The electrochemical stability of Li-M-Cl halide SSEs is not very relevant with the space group, but mainly depends on the characteristics of non-Li metal elements M. Density of states diagrams for other 5 LiMCl6 materials in addition to Y and Yb are shown in Fig. S1. The HOMO-LUMO band gap identify with the trend of the electrochemical window calculated based on phase equilibrium [43,45]. It was expected that the oxidation potential of Li-M-Cl SSE is only related to the oxidation reaction of Cl−, however, the calculation results here show that the oxidation potential of Cl− in different Li-M-Cl compounds is inconstant, which is related to the binding of M-Cl. Preliminary verification of the calculation is consistent with our previous design model, and it verified the feasibility of designing materials with high electrochemical stability by using work function theory and atomic orbital theory.

The crystal structure of the halide SSEs can be simply concluded into the following three categories: the monoclinic C2/m symmetric, including Li-In-Cl, Li-Se-Cl, and most bromides; Pnma space group of the orthogonal crystal systems, involving the metastable Li-Y-Cl, Li-Yb-Cl, and Li-Lu-Cl. P-3m1 space group structure of a trigonal system, including most Li-In-Cl, Li-Sc-Cl, and most bromides; Pnma space group structure of a trigonal system, including most Li-In-Cl, Li-Sc-Cl, and most bromides; Pnma space group structure of a trigonal system, including most Li-In-Cl, Li-Sc-Cl, and most bromides; Pnma space group structure of a trigonal system, including most Li-In-Cl, Li-Sc-Cl, and most bromides; Pnma space group structure of a trigonal system, including most Li-In-Cl, Li-Sc-Cl, and most bromides; Pnma space group structure of a trigonal system, including most Li-In-Cl, Li-Sc-Cl, and most bromides; Pnma space group structure of a trigonal system, including most Li-In-Cl, Li-Sc-Cl, and most bromides; Pnma space group structure of a trigonal system, including most Li-In-Cl, Li-Sc-Cl, and most bromides; Pnma space group structure of a trigonal system, including most Li-In-Cl, Li-Sc-Cl, and most bromides.
be unstable and unsynthesizable. However, as Fig. 2b shows, the controllable preparations of Li\textsubscript{3}YbCl\textsubscript{6} electrolyte materials with both space groups of P-3m1 and Pnma are achieved by simply adjusting the preparation process conditions of a high-temperature melting method. This suggests that the conditions used to judge whether the material can exist stably through energy above hull are with certain limitations and easy to misunderstand the experiment and it is important to verify the calculated results through actual experiments. Meanwhile, Li\textsubscript{3}YbCl\textsubscript{6} shows good electrochemical oxidation stability. The forward and reverse linear voltammetry curves in Fig. 2c of the Pnma symmetrical Li\textsubscript{3}YbCl\textsubscript{6} indicate that it could maintain electrochemical stability at 4.5 V vs. Li+/0. In Fig. 2d, the electrochemical stability of Li\textsubscript{3}YbCl\textsubscript{6}, Li\textsubscript{3}YCl\textsubscript{6}, and Li\textsubscript{3}InCl\textsubscript{6} are compared with cyclic voltammetry curves, it was found that the stability of Li\textsubscript{3}YbCl\textsubscript{6} is much better than the others in terms of both initial reaction potential and electrochemical reaction degree. The impedance of Li\textsubscript{3}YbCl\textsubscript{6} for the Pnma space group is much lower than that of the P-3m1 space group. The impedance of Li\textsubscript{3}YbCl\textsubscript{6} for the Pnma space group is much lower than that of the P-3m1 space group. The decrease of Li+ carrier concentration begins to affect the ionic conductivity of halide SSEs, the first step is the Li-deficiency strategy, the second is the synergistic effect of carrier concentration and vacancy concentration. Firstly, samples of Li\textsubscript{3-x}Yb\textsubscript{x}Cl\textsubscript{6} (x = 0.017, 0.034, 0.053, 0.071) with different levels of lithium-deficiency were synthesized to initatively create lithium vacancies. The Yb3+ has a charge of plus three and Li+ has a charge of plus one, when one Yb3+ ion replaces one Li+ ion, two Li vacancies are created in order to maintain charge balance [20, 21]. As shown in Fig. 3a–c, all the prepared samples present crystal structure with the Pnma space group of the orthogonal crystal system. The X-ray diffraction peaks slightly shift to the left with the increase of Yb substitution, as show in Fig. 3b and c. According to the Bragg’s equation, the left shift of the XRD peak represents a decrease of the spacing between the crystal planes. Considering that when one Yb atom enters the lattice, three Li atoms must come out to create Li vacancies, therefore, the left shift of the XRD peaks indicates the successful Yb doping on Li-site. The decrease of the impedance is attributed to the decrease of the energy barrier caused by the introduction of lithium vacancies. However, with the continuous introduction of Li vacancies, the increase of YbCl\textsubscript{3} impurity leads to the decrease of ionic conductance instead. As Fig. 3d shows, the XRD pattern of sample Li\textsubscript{3-3x}Yb\textsubscript{1.5}Cl\textsubscript{6} (x = 0.053) following Rietveld refinement was performed, and the refinement converged to the final stoichiometry of Li\textsubscript{2.852}Yb\textsubscript{1.049}Cl\textsubscript{6}, which means the successful creating of lithium vacancies. In addition, the refined results show that the cell parameters increase with the doping of Yb, as shown in Table S2. When the Yb-doping amount is x = 0, the cell volume is 861.193 Å3 and when doping amount increases to x = 0.034, the cell volume increases to 862.349 Å3. The increased cell parameter provides better kinetic condition for the migrating through the lattice of Li+, as a result, the ionic conductivity increases from 0.2 mS/cm to 0.5 mS/cm with the Yb-doping amount increasing from x = 0 to x = 0.034. When the Yb-doping amount continues to increase to x = 0.053, the cell volume increases to 863.018 Å3, however, the decrease of Li+ carrier concentration begins to affect the ionic conductivity.
conductivity, resulting in the ionic conductivity of Li$_{3}$–3xYb$_{1}$+xCl$_{6}$ ($x = 0.053$) decreased to 0.4 mS/cm. Therefore, the approach of creating lithium vacancies through Yb-doping has limited effect on the improvement of ionic conductivity, and more efficient strategies should be developed to co-regulate the lithium vacancies and the concentration of Li$^+$ carrier. Ab initio molecular dynamics (AIMD) of first-principles calculation is adopted in order to explore the effect of lithium-deficiency on lithium migration. The materials with the occupancy rate of $x = 0.0417$, 0.0625 and 0.083 in Li$_{3}$–3xYb$_{1}$+xCl$_{6}$ were calculated and the theoretical ionic conductance at RT is 11.024 mS/cm when $x = 0.083$, twice of the initial Li$_{3}$YbCl$_{6}$, which is in accordance with the experimental results of 2.5 times, as shown in Fig. S4. The difference between the measured and calculated values of the ionic conductivity is revealed as channel-blocking defects of the susceptible 1D diffusion channel [43].

The second step not only considered the increasing of Li vacancies through multivalent cation doping but also took into account the adjustment of Li$^+$ carrier concentration to achieve the synergistic effect of vacancies and carrier concentration, which compensates for the loss of lithium ions after the addition of multivalent cations. On the optimal condition that Zr$^{4+}$ replaced 50% of Mg$^{2+}$ according to Nazar’s research [21], the content of Li was further adjusted to increase the concentration of lithium carrier based on the basic component Li$_{2.5}$Yb$_{0.5}$Zr$_{0.5}$Cl$_{6}$. As shown in Fig. 3d, all the samples prepared to demonstrate crystalline with the Pnma space group of the orthogonal crystal system after Zr doping. The X-ray diffraction peaks between 30$^\circ$ and 38$^\circ$ of Li$_{2.556}$Yb$_{0.492}$Zr$_{0.492}$Cl$_{6}$ ($y = 0.016$) sample slightly shifts to the right in Fig. 3e and f, which indicates a smaller crystalline interplanar spacing. It is assumed that the synergistic effect of Li vacancy concentration and Li$^+$ carrier concentration achieves the effect of the lowest ion migration barrier, which enhances the ionic conductivity of Yb-based chloride solid electrolyte to 1.58 mS/cm at RT by sample Li$_{2.556}$Yb$_{0.492}$Zr$_{0.492}$Cl$_{6}$, as demonstrated in Fig. 3h. Superimposed electrochemical processes of the electrodes have been analyzed by the relaxation time distribution (DRT) method in Fig. S5, the spectra were calculated from the impedance plots of Fig. 3g to separate the bulk and grain boundary resistances.

Fig. 2. (a) Ionic arrangement of trigonal and orthorhombic structure of Li$_3$YbCl$_6$. (b) X-ray diffraction patterns of Li$_3$YbCl$_6$ with Pnma and P-3m1 space group. (c) Negative (ocv = ~0.6 V) and positive (ocv = ~4.6 V) linear voltammetry scanning curves. (d) Cyclic voltammetry curves, (e) Nyquist plots of Li$_3$YbCl$_6$ with Pnma and P-3m1 space group for Li$^+$-blocking symmetric BE/C/SSE/C/BE cells at RT.
The major peak components at the higher and lower frequency were attributed to resistance in the bulk and grain boundary, respectively, for the ionic transport in the pellets of single-phase material [50]. The ratio of bulk impedance to grain boundary impedance is 1:4, so the apparent ionic conductivity is 20% of bulk ionic conductivity. For the sample of 1.58 mS/cm, the bulk ionic conductivity should be 7.9 mS/cm, which is closer to the result calculated by the AIMD method in Fig. S5. Fig. 3i shows the Arrhenius curves, the corresponding activation energies (E_a) calculated based on Arrhenius equation are 0.324, 0.317, 0.336, 0.358 eV, which are comparable to reported halide SSEs. In addition, the electronic conductivity of the Li$_{2.556}$Yb$_{0.492}$Zr$_{0.492}$Cl$_6$ sample was tested to 3.7*10$^{-9}$ S/cm as Fig. S6 shows. The strategy also works for Y-based chloride Li$_{2.766}$Y$_{0.462}$Zr$_{0.462}$Cl$_6$, as is shown in Fig. S7. As thus, a universal two-step method is proposed to improve the ionic conductivity of chloride solid electrolytes. The substitution of different amounts of Zr$^{4+}$ results in different activation energy, as is simulated in Fig. S8.

Zirconium K-edge X-ray absorption fine structure (XAFS) was employed to reveal the local environment around the Zr atoms of the Li$_{2.556}$Yb$_{0.492}$Zr$_{0.492}$Cl$_6$ SSE before and after electrochemical cycling. Fig. 4b and c show the normalized K-edge XAFS spectra and the corresponding $\chi(k)$ spectra [51] of Li$_{2.556}$Yb$_{0.492}$Zr$_{0.492}$Cl$_6$ before and after 30 cycles with LiNi$_{0.83}$Co$_{0.12}$Mn$_{0.05}$O$_2$. The identical main edge position at ~18020 eV indicates the constant tetravalent oxidation state of Zr [23, 52]. Three differences are observed in the zone I, II, and III, especially in the zone I, which is related to the Zr2/Zr3 site disorder [21]. The sharpened peak in the region I is due to the reconstruction of the Zr2/Zr3 disorder during the electrochemical process. Fig. 4d shows the R space $\chi(R)$ spectra of pristine Li$_{2.556}$Yb$_{0.492}$Zr$_{0.492}$Cl$_6$. The strongest peak at a distance of ~2.3 Å expresses the shortest Zr-Cl coordination of octahedral ZrCl$_6^{2-}$ and the multiple peaks display the long-range ordering of
2.3. Electrochemical performance and mechanism

As can be seen from Fig. 5a, the electrochemical reaction degree of the optimized \(\text{Li}_{2.556}\text{Yb}_{0.492}\text{Zr}_{0.492}\text{Cl}_6 \) sample is much less than that of the initial sample \(\text{Li}_3\text{YbCl}_6 \) and \(\text{Li}_3\text{YCl}_6 \), considering that the electrochemical reaction degree can be expressed by integral area, which means the electrochemical stability is further improved via the introduction of zirconium. The cyclic voltammetry curve shows good reversibility after 20 cycles in Fig. 5b. For the oxidation process, the current density is \(10^{-5} \) mA/mg at the cut-off voltage of 4.5 V vs. \(\text{Li}^+/	ext{Li} \), and remains stable as the cycle goes on. While for the reduction process, the current density at the cut-off voltage of 0 V increases gradually as the cycle progresses, and reaches \(10^{-4} \) mA/mg after 20 cycles, indicating that the chloride electrolytes can be directly contacted with the high-voltage layered cathodes, but cannot be coupled with the lithium anode to construct the battery. Therefore, Li-In alloy anode is necessary. Besides, calculated mechanical properties in Table S3 suggest the Yb-based chloride exhibits better mechanical flexibility than Y- and In-based chloride, and the chemical stability of the material in air is also improved by the introduction of Zr, as shown in Fig. S10, the \(\text{Li}_{2.556}\text{Yb}_{0.492}\text{Zr}_{0.492}\text{Cl}_6 \) sample delivers ionic conductivity of 1.1 mS/cm after exposing to an environment with dew point temperature of \(-40^\circ \)C for 24 h, the ionic conductivity retention of the \(\text{Li}_{2.556}\text{Yb}_{0.492}\text{Zr}_{0.492}\text{Cl}_6 \) sample is 76.4%, while the retention of \(\text{Li}_3\text{YbCl}_6 \) is only 26.6%. Based on the theoretical calculations by Mo et al. [12], the improvement of moisture stability for chloride solid electrolytes is due to the adjusting of hydrolysis reaction energy by doping/substituting proper cations. The outstanding electrochemical and chemical stability suggest the excellent application prospect of the Yb-based chloride electrolyte for ASSBs with high energy density. The electrochemical properties of the \(\text{Li}_{2.556}\text{Yb}_{0.492}\text{Zr}_{0.492}\text{Cl}_6 \) sample matched with high voltage cathode materials were investigated. Because the potential of \(\text{Li}^+ \) intercalation for Li-In alloy is 0.6 V higher than that of the lithium anode, so the cut-off voltage of 3.7 V and 3.9 V vs. \(\text{Li}^+/	ext{Li} \) in Fig. 5c and e are exactly

Fig. 4. (a) Observed and calculated powder X-ray Rietveld refinement profiles for \(\text{Li}_{2.556}\text{Yb}_{0.492}\text{Zr}_{0.492}\text{Cl}_6 \). (b) Normalized Zr K-edge XAFS spectra, (c) the corresponding \(\chi(k) \) spectra of \(\text{Li}_{2.556}\text{Yb}_{0.492}\text{Zr}_{0.492}\text{Cl}_6 \) before and after 30 cycles with \(\text{LiNi}_{0.83}\text{Co}_{0.12}\text{Mn}_{0.05}\text{O}_2 \). (d) Corresponding \(\chi(R) \) spectra, (e) Zr centered spherical cluster of \(\text{Li}_{2.556}\text{Yb}_{0.492}\text{Zr}_{0.492}\text{Cl}_6 \).
4.3 V vs. Li+/Li and 4.5 V vs. Li+/Li, respectively. As shown in Fig. 5c, single-crystalline LiNi\textsubscript{0.83}Co\textsubscript{0.12}Mn\textsubscript{0.05}O\textsubscript{2} (simplified as NCM83) exhibits discharge specific capacity of 209.8 mAh/g and coulombic efficiency of 91.5% at a charge-discharge rate of 0.1 C (20 mA/g), while the Li-Y-Zr-Cl electrolyte delivers a lower specific capacity of 200.6 mAh/g and coulombic efficiency of 89.3%. The Li-Yb-Zr-Cl (Li\textsubscript{2.556}Yb\textsubscript{0.492}Zr\textsubscript{0.492}Cl\textsubscript{6})/NCM83 electrode shows a smaller loss of reversible capacity than the Li-Y-Zr-Cl(Li\textsubscript{2.766}Y\textsubscript{0.462}Zr\textsubscript{0.462}Cl\textsubscript{6})/NCM83 electrode. The sulfide with good reduction stability is needed as a buffer layer to isolate the chloride and the anode [49]. The phenomenon was further explored through electrochemical impedance spectroscopy as is shown in Fig. 5d. The charge transfer impedance in the intermediate...
frequency region of the Li-Yb-Zr-Cl/NCM83 electrode is significantly lower than that of the Li-Y-Zr-Cl/NCM83 electrode when the electrode is charged to 4.3 V vs Li/Li\(^+\), which indicates that the interface impedance of the Yb-based electrode is much smaller at high potential region. Combined with the cyclic voltammetry curves of the SSEs, it can be seen that the electrochemical decomposition reaction of the Y-based electrolyte occurs below 4.3 V vs Li/Li\(^+\).

The Yb-based chloride SSE is electrochemically stable at 4.5 V, it is expected to match the cathode material with high voltage to construct the ASSBs with high energy density. Here, LiCoO\(_2\) with a stable electrochemical property at 4.5 V vs. Li/Li\(^+\) was used to verify the electrochemical stability of different electrolytes. The charge-discharge curves in Fig. 5e show that LiCoO\(_2\) exhibits discharge specific capacity of 193.9 mAh/g and coulombic efficiency of 93.3% at a charging cut-off voltage of 4.5 V vs Li/Li\(^+\), while the Li-Y-Zr-Cl/C cathode delivers a lower specific capacity of 150.0 mAh/g and coulombic efficiency of 89.2%. Electrochemical impedance spectroscopy was measured at different electrochemical states, as is shown in Fig. 5f. The impedance of Yb and Y electrodes is similar at open-circuit voltage (OCV), however, charge transfer impedance in the intermediate frequency region of the Li-Yb-Zr-Cl/LCO electrode is dramatically lower than that of the Li-Y-Zr-Cl/LCO electrode when the electrode is charged to 4.5 V vs Li/Li\(^+\), indicating the very low electrochemical sensitivity of Yb-based chloride electrode.

As shown in Fig. 6a and b, after the 50th electrochemical cycle at 0.3 C at the voltage range of 2.5–4.3 V versus Li\(^+\)/Li, the Li-Yb-Zr-Cl/NCM83 electrode delivers the discharge specific capacity of 170.6 mAh/g and 141.8 mAh/g at 1 C and 3 C, respectively. Whereas the Li-Y-Zr-Cl/NCM83 electrode delivers that of 157.7 mAh/g and 124.6 mAh/g. The Li-Yb-Zr-Cl/LCoO\(_2\) electrode shows the discharge capacities of 160.0 mAh/g and 134.0 mAh/g at 1 C and 3 C, respectively, much higher than 119.0 mAh/g and 90.4 mAh/g of the Li-Y-Zr-Cl/LiCoO\(_2\) electrode at the voltage range of 2.5–4.5 V versus Li\(^+\)/Li, as Fig. 6c and d shows. It can be indicated that the higher voltage, the more obvious the electrochemical advantage of Li-Yb-Zr-Cl for Li-Y-Zr-Cl solid electrolyte.

X-ray photoelectron spectroscopy (XPS) measurements of Li\(_{2.55}\)Yb\(_{0.492}\)Zr\(_{0.492}\)Cl\(_6\) and Li\(_{2.766}\)Y\(_{0.462}\)Zr\(_{0.462}\)Cl\(_6\) before and after electrochemical cycling with LiNi\(_{0.83}\)Co\(_{0.12}\)Mn\(_{0.05}\)O\(_2\) were carried out to reveal the surface chemistry changes during the electrochemical process, as are shown in Fig. 7a and b. After the 30th of electrochemical cycling, the Y3d spectrum of Li\(_{2.766}\)Y\(_{0.462}\)Zr\(_{0.462}\)Cl\(_6\)/(LYZC)/NCM83 electrode displays oxygen-containing substances which can be indexed to Y\(_2\)O\(_3\)/Y\(_2\)(CO\(_3\))\(_3\) according to Janek’s research [35]. While the Yb4d spectrum of Li\(_{2.55}\)Yb\(_{0.492}\)Zr\(_{0.492}\)Cl\(_6\)/(LYbZC)/NCM83 electrode remains the same as the pristine Li\(_{2.55}\)Yb\(_{0.492}\)Zr\(_{0.492}\)Cl\(_6\).

Ex-situ Zirconium K-edge X-ray absorption fine structure was also employed to observe the local structure of the Li\(_{2.55}\)Yb\(_{0.492}\)Zr\(_{0.492}\)Cl\(_6\) at different electrochemical states. The overall normalized Zr K-edge spectra are shown in Fig. 8a, the corresponding \(k^2\)\(\chi\) (k), \(\chi\) (\(\gamma\)), \(\chi\) (\(\delta\)) spectra of k space, R space, and q space are presented in Fig. 8(b-d). The whole spectrum, including the details of peak position, did not show significant changes, which indicates the local structural environment of the Zr atom is stable under different electrochemical states, even after 30th electrochemical cycles with LiNi\(_{0.83}\)Co\(_{0.12}\)Mn\(_{0.05}\)O\(_2\). The constant Zr-Cl bond of ~2.3 Å is obviously smaller than the Zr-Cl bond of Li\(_{2}\)ZrCl\(_6\) [23]. Which explains the elevated ionic conductivity and enhanced electrochemical stability observed in CV curves with the doping of Zr into the Li-M-Cl system. The trough at 10 Å\(^{-1}\) of wavenumber in k space for \(k^2\)\(\chi\) (k) and q space can be indexed to the lithium vacancies at the second shell of the Zr centered spherical cluster, indicates the Zr helps remain the stability of the crystal structure under the circumstance of introducing extra lithium vacancies.

Fig. 7. X-ray photoelectron spectroscopy of (a) Li\(_{2.766}\)Y\(_{0.462}\)Zr\(_{0.462}\)Cl\(_6\) and (b) Li\(_{2.55}\)Yb\(_{0.492}\)Zr\(_{0.492}\)Cl\(_6\) before and after 30 cycles with LiNi\(_{0.83}\)Co\(_{0.12}\)Mn\(_{0.05}\)O\(_2\).
3. Conclusion

In summary, chloride solid electrolyte with excellent electrochemical stability is designed ab initio based on work function and atomic orbital theories, ytterbium is perceived as the optimal non-Li metal element of Li-M-Cl SSEs for the low cathodic limit and fully full atomic orbitals. The electrochemical stable potential of Li-M-Cl materials depends largely on the characteristics of the non-Li metal element M and Li-Yb-Cl shows excellent electrochemical oxidation stability above 4.5 V vs. Li+/Li. A general two-step method to improve the ionic conductivity of halide SSEs by Li-deficiency strategy and the synergistic effect of carrier concentration and vacancy concentration is proposed, the ion conductivities of Yb-based and Y-based chloride SSEs are elevated to both 1.58 mS/cm. The fine structures of Li$_{2.556}$Yb$_{0.492}$Zr$_{0.492}$Cl$_6$ at different electrochemical states are revealed, constant Zr-Cl bond of 2.3 Å and Zr centered spherical cluster has been confirmed. The electrochemical stability above 4.5 V vs. Li+/Li is insured by originally adopting ytterbium as the non-Li metal element, and further enhanced by the introduction of stable Zr-Cl bond, which makes the all-solid-state cells using LiNi$_{0.83}$Co$_{0.12}$Mn$_{0.05}$O$_2$ (4.3 V vs. Li+/Li) and LiCoO$_2$ (4.5 V vs. Li+/Li) as cathode materials demonstrating excellent electrochemical performance. It offers a good prospect of constructing ASSBs with high energy density by using high-voltage cathode materials such as Li-rich manganese-based material of 4.6–4.8 V vs. Li+/Li and spinel LiNi$_{0.5}$Mn$_{1.5}$O$_4$ of 4.8–5.0 V vs. Li+/Li. And the results further provide new guidance to the designing and exploiting for SSEs with wide electrochemical windows, high ion transporting efficiency and excellent application properties.

CRediT authorship contribution statement

Declaration of Competing Interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Acknowledgements

This research was supported by the Innovation Fund Project of GRINM (No. 2020TS0301), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chair Program (CRC), and Western University. This work was also supported by the Guangdong Provincial Science and Technology Commission, Guangdong Key Area R&D Program (2020B0909030004), the Youth Fund Project of GRINM (No. G12620203129015), the Beijing Natural Science Foundation Committee, Haidian Original Innovation Joint Fund Project (L182023), and the Beijing Outstanding Talents Youth Funding Scheme (No. 2018000097607G375).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.nanoen.2021.106674.

References

[24] C. Ya, Y. Li, K.R. Adair, W. Li, K. Goubisch, Y. Zhao, M.J. Williams, M.A. Thibs, C. Wang, F. Zhao, Q. Sun, S. Deng, J. Liang, X. Li, R. Li, T.-K. Sham, H. Huang, X. Sun, Tuning ionic conductivity and electrode compatibility of Li1+yFe0.5B0.5, for high performance all-solid-state Li battery, Nano Energy 77 (2020), 105097.
Dr. Guofeng Xu received his Ph.D. degree in metallurgical engineering from University of Science and Technology Beijing in 2017. Then he joined the China Automotive Battery Research Institute, where he continued his research on advanced cathode oxides, solid-state electrolytes as well as all-solid-state Li-ion batteries.

Dr. Changhong Wang is currently a research scientist in GLABAT Solid-State Inc. Canada. He obtained his M.S. degree in Materials Engineering in 2014 from University of Science and Technology of China (USTC) and received his Ph.D. degree in Mechanical and Materials Engineering from the University of Western Ontario (UWO), Canada. He also served as a research assistant in Singapore University of Technology and Design (SUTD) from 2014 to 2016. Currently, his research interests include solid-state sulfide electrolytes, all-solid-state batteries, and bio-inspired artificial synapses.

Liang Luo is a research engineer in Rare Earth Functional Materials (Xiongan) Innovation Center Co., Ltd. and National Engineering Research Center for Rare Earth Materials, GRINM Group Co., Ltd. He received his M.S. degree in 2018 from Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. His current research focuses on the application of rare earth halides in solid-state electrolytes and scintillation crystals.

Yu Tianwei is currently a PhD candidate in Prof. Jiantao Wang’s Group at the Department of Innovation in China Automotive Battery Research Institute Co., Ltd and General Research Institute for Nonferrous Metals. He received his Bachelor’s degree in Materials Science and Engineering from Beijing University of Technology in 2018. Currently, he is working on the synthesis and characterization of halide solid-state electrolytes and the development of high performance solid-state lithium metal batteries.

Dr. Jianwen Liang is a Mitacs Postdoc Fellow in Prof. Xueliang (Andy) Sun’s Group at the University of Western Ontario (Western University), Canada. He received his B.S. degree in Chemical Engineering and Technology from Wuyi University in 2010 and PhD degree in inorganic chemistry from the University of Science and Technology of China in 2015. He joined Prof. Sun’s group in 2017 and his current research interests include sulfide and halide solid electrolytes as well as all-solid-state Li/Li-ion batteries.

Dr. Wei Xiao is a senior engineer in GRIMAT Engineering Institute Co., Ltd. He received his B.S. degree in Material Physics in 2007 and Ph.D. degree in Material Physics & Chemistry in 2013 from University of Science and Technology Beijing. He also served as a research scholar in California State University, Northridge from 2011 to 2013. His research mainly focuses on material genomics computing technology and theoretical design of nonferrous metals.

Dr. Shangqian Zhao received his B.S. degree in Physics from Jilin University in 2009 and his Ph.D. degree in Condensed Matter Physics from Institute of Physics, Chinese Academy of Sciences in 2014. He is currently a senior scientist of China Automotive Battery Research Institute Co., Ltd., Beijing, China. His research interests focus on mass production of solid electrolytes and development of high-capacity solid-state Li/Li-ion batteries.

Prof. Jiantao Wang is the general manager of Department of Innovation in China Automotive Battery Research Institute Co., Ltd, recipient of 2015 Beijing Nova program, professor in General Research Institute for Nonferrous Metals. He obtained his B.S. in Analytical Chemistry from University of Science and Technology Beijing in 2006, and received his Ph.D. in Organic Chemistry in Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, in 2011. His research interests include advanced electrode materials, high-energy Li-ion batteries and solid-state batteries.
Dr. Jinqiu Yu is a senior engineer in Rare Earth Functional Materials (Xiongan) Innovation Center Co., Ltd. and National Engineering Research Center for Rare Earth Materials, GRINM Group Co., Ltd. He received his B.S. degree in chemistry from Wuhan University in 2006, and received his Ph.D. in physical chemistry from Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, in 2011. His current research interests focus on the preparation technology of anhydrous rare earth halides and their applications in fields of scintillation crystals and solid-state electrolytes.

Prof. Xueliang Sun is a Canada Research Chair in Development of Nanomaterials for Clean Energy, Fellow of the Royal Society of Canada and Canadian Academy of Engineering and Full Professor at the University of Western Ontario, Canada. Dr. Sun received his Ph.D. in materials chemistry in 1999 from the University of Manchester, UK, which he followed up by working as a postdoctoral fellow at the University of British Columbia, Canada and as a Research Associate at L’Institut National de la Recherche Scientifique (INRS), Canada. His research interests are focused on advanced materials for electrochemical energy storage and conversion.