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h i g h l i g h t s
� 3D TiO2@C core-shell nanowires were constructed on the titanium foam.

� 3D hierarchical catalysts were obtained by growing Pt nanowires on the TiO2@C.

� Pt/TiO2@C exhibits much better methanol oxidation properties than commercial Pt/C.
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Three-dimensional (3D) hierarchical Pt/TiO2@C core-shell nanowire networks with high

surface area have been constructed via wet chemical approaches. The 3D TiO2 nanowire

framework was in situ synthesized within a porous titanium foam by hydrothermal

method followed by carbon coating and self-assembled growth of ultrathin Pt nanowires.

Structural characterization indicates that single crystalline ultrathin Pt nanowires of 3

e5 nm in diameter were vertically distributed on the anatase TiO2 nanowires covered with

a 2e4 nm thin carbon layer. The 3D hierarchical Pt/TiO2@C nanostructure demonstrates

evidently higher catalytic activities towards methanol oxidation than the commercial Pt/C

catalyst. The catalytic current density of the hierarchical catalyst is 1.6 times as high as

that of the commercial Pt/C, and the oxidation onset potential (0.35 V vs. Ag/AgCl) is more

negative than the commercial one (0.46 V vs. Ag/AgCl). Synergistic effect between the ul-

trathin Pt nanowires and the TiO2@C core-shell nanostructure accounts for the enhanced
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Carbon coating
Methanol oxidation
catalytic properties, which can be determined by X-ray photoelectron spectroscopy (XPS)

investigation. The obtained hierarchical Pt/TiO2@C nanowire networks promise great po-

tential in producing anode catalysts for direct methanol fuel cells applications.

© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Fuel cells can convert chemical energy directly into electrical

energy with high efficiency and almost zero-emission, which

promises great potential for developing sustainable energy to

alleviate the shortage of fossil fuels as well as environmental

pollution [1e5]. Among various fuel cells, direct methanol fuel

cells (DMFCs) have the advantages of high energy densities,

facile fuel storage and transportation, good safety and low

operating temperatures [6e11]. In the DMFCs, platinum-based

catalysts are the most prevalent and efficient noble catalysts

[12e14]. However, high cost of platinum has limited its large-

scale application [15e18], while it remains greatly challenge-

able tomake Pt replaceable. Recently, structural manipulation

of Pt in nanoscale has attracted great attention, in which Pt

nanowires exhibit enhanced electrocatalytic activity and

more stable electrochemical properties [19e21] due to their

ordered one-dimensional structure that more conducive to

the mass transfer of electrode reactions [22].

On the other hand, commercial carbon black substrates for

supporting Pt catalyst suffer fromcorrosion effect that leads to

aggregation and loss of Pt especially at the high potential area.

In addition, inert surface characteristics of the carbon black

also restrict performance of the fuel cells [23e27]. During the

exploration of new catalyst supports, titanium oxide is

considered as one of themost promising catalyst substrates in

terms of high corrosion resistance and electrochemical sta-

bility, cost effectiveness [27e30] as well as strong synergistic

effect with platinum in enhancing the catalytic properties [31].

Nevertheless, low electrical conductivity of titanium oxide

restricts its potential as an efficient catalyst support [32]. And

as a new metal material, titanium foam has the dual function

of foam structure and titanium, and has high strength, shock

absorption, anddampingproperties. Using it as a substrate can

not only maintain the characteristics of the porous structure,

but also improve its surface activity and electrical conductivity

[33]. Therefore, it is expected to design novel catalyst systems

with high surface area, superior electrical conductivity and

high durability [33,34], which can greatly utilize low loading Pt

with competitive catalytic performance [35e37].

In this article, three dimensional hierarchical Pt/TiO2@C

nanowire networks have been constructed. It can be intui-

tively understood the preparation process of Pt/TiO2@C from

the schematic diagram as shown in Fig. 1. Firstly, three

dimensional titanium oxide nanowire networks were in situ

synthesized within a porous titanium metal foam which

provides high specific surface area for active sites, mass

transport and side reaction product removal. Secondly, the

TiO2@C core-shell nanowires were formed by coating a thin

carbon layer to obtain high electrical conductivity [38e40].
Thirdly, ultrathin Pt nanowires were obtained on the surface

of the TiO2@C core-shell nanowires by a self-assembly

method. In this case, the titanium foam can be regarded as

both a substrate and a current collector owing to its excellent

electrical conductivity. Finally, hierarchical Pt/TiO2@C nano-

wire networks with 3D architecture were successfully

constructed.
Experimental

Chemicals and materials

Titanium foam was purchased from Kunshan Kunping Lake

Electronic Technology Co., Ltd., with a purity of 99.9%. Sodium

hydroxide (NaOH), chloroplatinic acid hexahydrate (H2PtCl6-
$6H2O, AR, Pt 37.5%), hydrochloric acid, formic acid and

glucose were acquired from Sinopharm Chemical Reagent

Company. All chemicals were used without any further puri-

fication. High-purity milli-Q water was used in all

experiments.

Synthesis of titanium oxide

Titanium oxide nanowires were in situ prepared by hydro-

thermal method followed by annealing treatment [41]. The

experiment was divided into three steps. The preparation

process needs to be very careful because we must strictly

control the hydrothermal temperature, air flow and time

during carbonization, and formic acid reduction time. During

the experiment, 1 cm � 1 cm titanium foam was ultra-

sonicated in acetone, ethanol and deionized water, respec-

tively, for 15 min. Then, titanium foam and NaOH solution

(1 mol L�1) were sealed into a Teflon-lined stainless-steel

autoclave and heated at 220 �C for 24 h. After cooling to room

temperature, the titanium foam was rinsed with deionized

water and soaked in a 5% dilute hydrochloric acid solution for

15 min. And then washed several times with deionized water

to pH z 7. Finally, the sample was annealed at 600 �C in air to

form titanium oxide.

Synthesis of carbon-coated titanium oxide

Titanium oxide was immersed in a 1 mol L�1 glucose solution

for 1 h and then dried. Afterwards, the samples were incu-

bated at 800 �C for 2 h in Ar atmosphere [42].

Preparation of Pt/TiO2@C

The 600 mL 20 mmol L�1 solutions of H2PtCl6 was reduced by

formic acid (HCOOH), then the titanium foam was put in the
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Fig. 1 e Schematic diagram of the Pt/TiO2@C catalyst preparation process.
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formic acid solution for 48 h to synthesize Pt nanowires on the

TiO2@C nanowires at 20 �C [36].

Characterization of physical properties and electrochemical
measurements

Morphology, composition, structure and electrochemical

properties of the anode material were characterized by

SU8020 scanning electron mi-croscope (SEM), operated at

5 kV, JEM-2010F high-resolution transmission electron mi-

croscope (HRTEM), operated at 200 kV, Rigaku D/MAX2500V X-

ray diffractometer, Thermo ESCALAB 250 X-ray photoeletron

spectrometer (XPS). The electrochemical measurements were

carried out on an electrochemical workstation (CHI760E,

Shanghai CH Instrument Company, China) which has a three-

electrode experimental setup at ambient temperature. Plat-

inum sheet electrode, Ag/AgCl electrode, Pt/TiO2@Cwere used

as counter electrode, reference electrode, working electrode,

respectively. The working electrode was 1 cm� 1 cm titanium

foam, to ensure that the contact area between the working
Fig. 2 e (a) SEM image with magnification of 5 k; (b) SEM image

(d), (e), (f) and (g) Elemental mapping of TiO2@C.
electrode and the electrolyte is 0.25 cm2. Sweep speed during

electrochemical test was 50 mV/s.
Results and discussion

Fig. 2 (a) shows FESEM image of the TiO2 NWs grown within

the Ti foam, suggesting uniform, high density and three-

dimensional architecture of the nanowires. Close-up obser-

vation of the carbon coated TiO2 NWs as shown in Fig. 2 (b)

suggests no obvious morphology difference to the pristine

TiO2 nanowires. The TiO2 NWs have the diameter in a typical

range between of 50e100 nm and length of about 1.5 mm. Fig. 2

(c) displays a typical HRTEM image of a single TiO2@C core-

shell nanowire, in which the surface of TiO2 NW is covered

with a uniform amorphous carbon layer with the measured

thickness of around 3.2 nm. The lattice fringes in the HRTEM

image of the nanowire core is determined to be 0.35 nm,

which is designated to (101) crystal plane of anatase TiO2

phase, as show in Fig. 2 (c). Fig. 2 (d) shows a bright field TEM
with magnification of 45 k; (c) HRTEM image of the TiO2@C;
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Fig. 3 e (a) SEM image of the Pt/TiO2@C nanowires with magnification of 70K; (b) SEM image of the Pt/TiO2@C nanowire with

magnification of 200 K; (c) TEM micrograph of Pt nanowires grown on the surface of TiO2@C nanowires; (d) HRTEM

micrograph of several Pt nanowires grown onTiO2@C.
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image of a single TiO2@C core-shell nanowire, and Fig. 2 (e, f, g)

demonstrate the elemental mapping of Ti, O, C of the nano-

wire, respectively. Dense distribution of the Ti and O elements

evidence the TiO2 nanocore, while the low concentration but

larger diameter of the carbon element profile suggests the

carbon shell.

Fig. 3 (a) shows low magnification FESEM image of the Pt/

TiO2@C nanowire networks, demonstrating the uniform

growth of the three dimensional hierarchical nanostructures

with high density. The high magnification FESEM image as

shown in Fig. 3 (b) show that the ultrathin Pt nanowires are

uniformly distributed on the TiO2@CNWs. The Pt NWs/TiO2@C

NWs were characterized by TEM. Fig. 3 (c) showing that Pt

nanowires have the diameter of 3e5 nm and length of

5e10 nm. Fig. 3 (d) shows lattice stripes image of the Pt
Fig. 4 e (a) XRD image of the Pt/TiO2@C and TiO2@C
nanowires. The interplanar spacing of 2.3 �A corresponds to

the (111) plane, and that of 1.9�A can be indexed to the (002)

plane.

Phase structure of the Pt/TiO2@C and TiO2@C samples was

characterized by XRD patterns as shown in Fig. 4 (a). Themain

characteristic diffraction peaks (2 q ¼ 40.0�, 46.5�, 67.8�) prove
the presence of crystalline platinum loaded on the TiO2@C.

The standard reflection peaks of TiO2@C reveal the existence

of anatase TiO2 and a small amount of rutile TiO2. No

diffraction peaks of carbon is present in the XRD pattern due

to thin thickness and low crystallinity of the carbon, but the

carbon layer can be confirmed by Raman spectroscopy. There

are two broad Raman characteristic peaks as shown in Fig. 4

(b), which are D-bands at around 1360 cm�1 and G-bands at

around 1587 cm�1. The ID/IG is 0.91, 0.99 and 1.02, when the
sample; (b) Raman image of TiO2@C sample.
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Fig. 5 e The results of XPS survey (a) XPS full spectrum of TiO2@C; (b) C 1s of TiO2@C; (c) Ti 2p of TiO2@C; (d) Pt 4f of Pt/TiO2@C.
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carbonization temperatures is 700 �C, 800 �C and 900 �C,
respectively. The stronger the intensity of G peak, the greater

the number of graphite-like crystallites in the carbide and the

number of carbon atoms at the edge of the graphite-like

crystallites, and the carbonization of the product is

increased [43]. This means that the conductivity of the sub-

strate can be improved. At a high temperature of 900 �C, the
titanium foam becomes brittle and the titanium oxide easily

peels off from the titanium foam. We coated the carbon at

800 �C to ensure the stability of the catalyst substrate and

excellent conductivity.

The chemical environment of samples was analyzed by X-

ray photoelectron spectroscopy. Fig. 5 (a) displays the survey

spectrum of the Pt/TiO2@C hybrids, showing the existence of

Ti, O, Pt and C elements. Fig. 5 (b) shows the spectrum

collected from the C1s core level, the characteristic peaks at

binding energies of 284.5, 285, 287.8 and 288.9 eV correspond

to the aliphatic/aromatic carbon groups, amorphous carbon,

carbonyl groups, carboxylic groups, esters or lactones
Fig. 6 e (a) Cyclic Voltammograms (CVs) of the Pt/C and Pt/TiO2@

sweep speed is 50 mV/s.
[38,44,45]. Two broad peaks in Fig. 5 (c) reveal high resolution

Ti 2p spectrum, in which the binding energy peaks centered at

464.7 and 459 eV correspond to the characteristic Ti 2p1/2 and

Ti 2p3/2 peaks of Ti4þ [46], suggesting that the signals of the

titanium oxide is not screened by the thin carbon layer. Fig. 5

(d) shows that the two peaks with the binding energy of

71.4 eV and 74.8 eV correspond to themetal titaniumplatinum

in the Pt/TiO2@C catalyst [47]. Two other weak peaks of Pt2þ

may be due to the slight surface oxidation of the dense Pt

nanowires. The surface of Pt0 would provide more suitable

sites for methanol electro-oxidation. It is essential for high

surface activitywith respect tomethanol electro-oxidation [6].

Electrochemical behaviors of the Pt/TiO2@C and Pt/C

samples were evaluated by cyclic voltammograms (CVs) in

0.5 M H2SO4 solution as shown in Fig. 6 (a). The electrochem-

ically active surface area (ECSA, m2/gPt) of the Pt/C and Pt/

TiO2@C can be estimated according to the following equation

[48]. It is calculated that the ECSA of the commercial Pt/C is

43 m2/g, while the ECSA is 24.7 m2/g for the Pt NWs on the
C in 0.5 M H2SO4 solution; (b) in 0.5 M H2SO4 and 1 M CH3OH,
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Fig. 7 e Amperometric i-t curves of Pt/C and Pt/TiO2@C in

0.5 mol L¡1 H2SO4 and 1 mol L¡1 CH3OH solution.
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TiO2@C nanowires. The actual content of Pt was determined

by an inductively coupled plasma mass spectrometer (ICP)

model Agilent 7500cx, which was about 10% [36].

ECSA¼ SH=V
0:21ðmC=cm2Þ,MPt

The electrocatalytic performance of the Pt/TiO2@C toward

methanol oxidation was evaluated by cyclic voltammetry in a

0.5 M H2SO4 aqueous solution containing 1 M CH3OH at room

temperature. As shown in Fig. 6 (b), it is observed that the

specific peak current density (i.e, the forward anodic peak) of

the Pt/TiO2@C catalysts is 1.2 mA/cm2
Pt, almost twice as high

as that of the commercial Pt/C (0.76 mA/cm2
Pt) though the

electrochemically active surface area of the Pt/TiO2@C is even

much lower. In addition, the oxidation onset potential of Pt/

TiO2@C is 0.35 V, more negative than that of the commercial

Pt/C of 0.46 V, suggesting higher catalytic activity of the hier-

archical Pt/TiO2@C catalyst.

The stability of the catalsyt was tested and the test po-

tential at the i-t curve was 0.6 V which can be seen from Fig. 7,

suggesting that the catalyst Pt/TiO2@C had maintained high

current density, and in the 3500s test, the current density

retention rate of the catalyst Pt/TiO2@C was 20%. And the

methanol oxidation current density retention rate of Pt/C was

10%, revealing better electrochemical stability of the Pt/

TiO2@C catalyst. On the one hand, the anisotropic character-

istics of small Pt nanowires are conducive to electron trans-

port. On the other, compared with other works [37], Pt

nanowires are thinner and more uniform, and have a larger

specific surface area, which also enhances the electrocatalytic

performance.
Conclusion

3D hierarchical Pt/TiO2@C nanowire networks have been ob-

tained using wet chemical methods. The Pt/TiO2@C exhibits

an enhanced electrocatalytic activity toward methanol
oxidation compared to commerical Pt/C catalysts, in which

the Pt/TiO2@C catalysts possessmuch higher catalytic current

density and more negative oxidation onset potential. The

enhanced catalytic performance of the hierarchical nano-

wires can be ascribed to the synergistic effect between the

ultrathin Pt nanowires and the TiO2@C core shell structure as

well as improved electrical conductivity contributed by the

thin carbon shell. The present work proposes that the Pt/

TiO2@C nanowire networks are expected to be a promising

anode catalysts in DMFC applications.
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