Downloaded viaWESTERN UNIV on March 27, 2020 at 18:24:48 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Energy

ETTER

http://pubs.acs.org/journal/aelccp

Eliminating the Detrimental E ects of
Conductive Agents in Sul de-Based Solid-
State Batteries

Sixu Deng, Yipeng Sun, Xia Li, Zhouhong Ren, Jianwen Liang, Kieran Doyle-Davis, Jian
Weihan Li, Mohammad Norouzi Banis, Qian Sun, Ruying Li, Yongfeng Hu, Huan Huang,
Shigang Lu, Jun Luo, and Xueliarig Sun

Cite This:ACS Energy Le®020, 5, 12431251 I:I Read Online

ACCESB [l Metrics & More | Article Recommendations | * Supporting Information

PEDOT@CNTs-LGPS

Current collector
> o

ABSTRACT: Sul de-based solid-state electrolytes (SSEs) are considered
a key part in the realization of high-performance all solid-state lithium-

Conduction

ion batteries (ASSLIBs). Howewnethe incompatibility between ~band .
conductive additives and sule-based SSEs in the cathode composite = [T &
challenges the stable delivery of high-rate capability. Herein, a poly(3,4-
ethylenedioxythiophene) (PEDOT) modiation is designed as a------------ ;
semiconductive additive for cathode composites (cathode/SSE/carb&ii}i i
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competitive rate capacity of over 100 mAH gt 1C, which is 10 times CNTs PEDOT
greater than that of the bare cathode. Detailed surface chemical affef” ) (prtype semi
structural evolutions at the cathodic interface indicate the PEDOT. rermienergy
modi cation not only signicantly suppresses the side reactions but alsfy: o theennmes o 20 24 28 32736 40
realizes eective electron transfer at the cathode/SSE/carbon three-phase
interface. Introducing a controllable semiconductive additive for the
cathode composites in this study ers a promising design to realize the high-rate performance and overcome long-

challenges in the application of conductive additives inde#based ASSLIBs.
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considered as a promising candidate for nextelectrochemical performance of the ASSLIBs,csigcihe

eneration energy storage devices for electrigigh-rate capability, increasing the electronic conductivit
vehicles” Compared to conventional liquid lithium-ion the cathode composites is of crucial importance. In con
batteries, ASSLIBs exhibit excellent safety characteristicstipyial liquid lithium-ion batteries, carbon additives
utilizing nonammable solid-state electrolytes (SSESs) an¢hdispensable to enhance the electronic conductivit
competitive energy densities by accessing the lithium megaéctrodes for high-rate capability. The application of prev.
anode and high-energy cathode matérialong the  carbon materials, such as acetylene black (AB), super
developed SSEs, sle-based inorganic electrolytes, such agarbon nanotubes (CNTs), enables the homogeneous cu
Li,GeRSy, (LGPS), LIPSCI, LiPsS,, and LIPS, possess  gistribution in the cathode layér'* However, the
high LT conductivities ranging from 100 10* S cm?, application of carbon additives in thedssbased ASSLIBs
which have the potential to realize high-performance ASSLIBS.os tremendous obstacles. Carbon additives procidetsu

with stab:e cyclirr:g a_mdl higrg)—lrate.cgpa‘éiﬁg:ﬁdwev%r, the  glectronic percolation pathways in the cathode compo
narrow electrochemical stable window otlsidased SSEs therefore accelerating the decomposition ofiesuBSES

challenges the interfacial stability at the both cathode an
anode, thus producing dramalty increased interfacial _
resistance leading to rapid capacity fadimy.order to ~ Received: February 4, 2020
solve these issues, interfacial engineering approaches have Hegpted: March 18, 2020
widely adopted to avoid direct exposure of the electrodg!Plished: March 18, 2020
materials to the SSEs and therefore prevent the occurrence of

side reactior’s* As a result, the cycling stability of ASSLIBs

has been greatly improved.

N solid-state lithium-ion batteries (ASSLIBs) are On the other hand, in order to further improve t
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Figure 1. Structural and elemental characterizations of PEDOT roation. (a) HR-TEM image of PEDOT modiation on the surface of
NMC811 particles; (bf) EDS mapping of S, Ni, Co, and Mn in PEDOT-moslil NMC811 by HAADF-STEM,; (g) EDS mapping of C
and S in PEDOT-modied CNTs by HAADF-STEM. Scale bars are (a) 10 nmf(20 nm, or (g i) 80 nm.

during the charging proc&sas a result, even with very small conductive additives in the cathode composites, therefore
amounts of carbon additives, severe decompositiondef sul e ectively enhancing the interfacial stability between CNTs
SSEs still occurs at the electrolyte/carbon interface and leadsd LGPS, resulting in the obvious improved rate capability
to severe side reactions and the formation of an undesiralaled enhanced cycling stability. This studysa strategy to
interfacial layer between the carbon additives and’ S3Es. address the long-time concern of using conductive additives in
Therefore, the use of carbon additives hinders the electrsdl de SSEs systemeetively boosting the realization of high-
chemical performance in ASSLIBs instead of showing performance ASSLIBs.
positive eect, let alone achieving high-rate capability. In this study, PEDOT thirim is synthesized via MLD as an

To overcome the challenges of using carbon additives iaterfacial material for both NMC811 and CNTs. To
cathode composites in sld-based ASSLIBSs, in this study, weinvestigate the thicknessed, 2, 5, and 10 nm of PEDOT
present an approach by constructing a semiconductive polyraee deposited on the surface of NMC811 and CNTs,
thin Im for sulde-based ASSLIBs to realize the superiorespectively, by controlling the MLD reaction cydlgsies
electrochemical performance with high-rate capacity. AandSlillustrate the morphology ande structure of the
uniform and conformal poly3ethylenedioxythiophene) PEDOT-modied NMC811 and CNTs as comed by
(PEDOT) modi cation was successfully built on both carbortransmission electron microscopy (TEM) and scanning
additives (CNTs) and Ni-rich layered cathode of Li-electron microscopy (SEM) images. The particle size of the
Nig Mny 1Coy 0, (NMC811) via molecular layer deposition commercial NMC811 secondary spheres is aroundn 10
(MLD). The underlying decomposition mechanism aflesul  (Figure SDa After 10 cycles of MLD, an amorphous and
SSEs (LGPS) associated with CNTs is investigated by variawenformal interfacial layer of PEDOT with the thickness
electrochemical tests and characterization techniques, suggasiind 5 nm can be observed at the surface of NMC811 as
ing the high electronic conductivity of CNTs accelerates thehown inFigure &. The energy-dispersive X-ray spectroscopic
decomposition of LGPS and side reactions in the cathod&DX) mappings detected by the high-angle annularedicrk-
composites during the electrochemical reactions, theref@eanning transmission electron microscopy (HAADF-STEM)
leading to the fast capacity degradation especially at highd SEM are shown Figures h f and S2 respectively,
current densities. Promisingly, the PEDOT rmation demonstrating the uniform distribution of S element with Ni,
realizes the application of semiconductive additives to modiBo, and Mn among the NMCB811 particles, explicitly
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Figure 2. Investigation of the stability between CNTs and LGPS during electrochemical reactions. (a) Schematic illustration of the designed
model cells, (b and ¢) CV prdes at 0.1 mV & during the rst cycle, (d) EIS spectra at various constant voltages, and)(8 2p XPS
spectra after CV test in the dérent cathode composites.

con rming the successful madition of PEDOT on the CNTs-LGPS, PEDOT@CNTs-LGPS, bare CNTs, and
surface of NMC811l. Meanwhile, C 1s and S 2p X-raPEDOT@CNTSs, respectively) are employed for the following
photoelectron spectroscopy (XPS) spectra for the PEDOTharacterizations. The chemical stability between CNTs and
modi ed NMC811 are shown kigure S3Typical C 1s XPS LGPS is rst studied by electrochemical impedance spectros-
spectrum of PEDOT is demonstratefigure S3ancluding copy (EIS) as shown figure S8After several hotirsst (no
the aromatic C=C bond at 284.2 eV and the C=S bond atlectrochemical operation), the EIS plots of both (ii) bare
288.1 eV. In the S 2p XPS spectrum showigime S3fthe CNTs-LGPS and (iii) PEDOT@CNTs-LGPS cells remain
band between 162.9 and 168.5 eV with doublet peaks amost the same, indicating the high chemical stability between
attributed to the sulfur atoms of PEDG¥. The EDX  CNTs and LGPS. The electrochemical stability between CNTs
mappings of PEDOT-modd CNTs are demonstrated in and LGPS is then investigated as follows. A linear sweep
Figures @ i andS4 also corrming the uniform modiation voltammetry (LSV) test igst conducted to investigate the
of PEDOT on the surface of CNTs. Furthermore, X-raythickness eect of PEDOT coating. The onset potential shown
di raction (XRD) analysis is conducted to evaluate the crystal Figure S% delayed with the increased thickness of PEDOT
and chemical structure of the bare and PEDOT-etbdi coating, indicating the thicker PEDOT coating is more
NMC811 and CNTs. As shown Hmgures S57, XRD e ective to alleviate the decomposition of LGPS. From the
patterns of the bare and PEDOT-medi NMC811 and  cyclic voltammogram (CV) pttes of the rst cycle shown in
CNTs show good retention of the crystallinity without theFigure B,c, there is no appreciable peak in the (i) LGPS cell,
introduction of a noticeable impurity phase, indicating that thimdicating the good electrochemical stability during the voltage
material properties are well-maintained throughout the MLEange of 1.03.8 V vs LiLi In (1.6 4.4 V vs LiLi).
process. However, the obvious onset potential of 1.97 V can be
In order to investigate theeet of PEDOT modcation on observed in the (ii) bare CNTs-LGPS cell, which is much
the stability between carbon additives andes8SEs and, lower than the onset potential of 2.17 V in the (iii) PEDOT@
ve di erent model cells are designed as shomwigures & CNTs-LGPS cell. Meanwhile, the intense anodic peaks can be
andS1lalndium foil and LGPS are employed as the anodeletected in the (ii) bare CNTs-LGPS cell with the peak
and electrolyte layer, respectively. For the cathode layer, (i) therrent of 5.63 mA § which is 3.3 times higher than that of
pristine LGPS, (ii) bare CNTs mixed with LGPS, (iii) the (iii) PEDOT@CNTs-LGPS cell. Although the anodic
PEDOT-modied CNTs mixed with LGPS, (iv) bare CNTs, peaks decrease sigantly during the following CV cycles as
and (v) PEDOT-moded CNTs (denoted as LGPS, bare shown inFigure S1,he intensities of the peak current in the
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Figure 3. Eects of PEDOT modication on the electrochemical performance. (a) Chadjscharge curves of thest cycle at 0.06, (b)
rate and cyclic stability, (c) Coulombic eiency, (d) average discharge voltage and energy density of cathodes, (e) EIS spectra after 100
cycles, (f) CV proles at the rst cycle, (g) GITT curve during the charge process, and (h) the corresponding polarization plots.

(ii) bare CNTs-LGPS cell are still much higher than that of thehe PEDOT modication. To further evaluate theeet of
(i) PEDOT@CNTs-LGPS cell. The above results indicatd®EDOT on the interfacial stability between carbon additives
that the decomposition of LGPS in the (ii) bare CNTs-LGPSand sulde SSEs, the CV tested cathode samples were
cell is more severe than in the (ii) PEDOT@CNTs-LGPS celkharacterized by XPS. From the S 2p XPS spectra as shown
The above CV results indicate the decomposition of LGP Figures & andS13 there is no distinctive peak in the (i)
may arise in the cathode composites (the interface betwepristine LGPS cell after CV testing. However, the peaks,
CNTs and LGPS particles) and/or the interface between theorresponding to the decomposition products of LGPS, can be
cathode layer and electrolyte layer. In order to investigate tHetected in the (ii) bare CNTs-LGPS cathédeure £ with
extent of the electrochemical reactions at these two interfac®e formation of L&, S S , and germanium sdes or
both the (iv) bare CNTs and (v) PEDOT@CNTs model cells polysulde species (peak A3 indicating the bare CNTs
are designed and showirigure S118ecause there are only accelerate the decomposition of LGPS during the electro-
CNTs in the cathode layer, it means that the possiblehemical process. In contrast, the decomposition @é sul
electrochemical reactions can be detected only at the interfadectrolyte in the (iii) PEDOT@CNTs-LGPS cathode can be
between cathode layer and electrolyte layer. As shown érectively alleviated as shownFigure g, demonstrating
Figure S11h,the obviously reduced intensity of anodic peakEDOT modication is able to retard the electrochemical
in the rst CV cycle can be observed in both (iv) bare CNTsreactions between CNTs and LGPS.
and (v) PEDOT@CNTSs cells. The peak current is only 0.054 Electrochemical characterizations of the ASSLIBs, in which
mA g !in the (iv) bare CNTs cells. Comparing with the peakthe cathode layer is composed of the as-prepared NMC811/
current in the (ii) bare CNTs-LGPS and (iv) bare CNTs cells,CNTs/LGPS composites combining with LGPS and indium
the decomposition of sde SSEs mainly occur in the cathodefoil as electrolyte layer and anode, respectively, are illustrated
composites with the direct contact between CNTs and LGPi8 Figure 3o investigate the ect of PEDOT modtation on
particles rather than at the interface between the cathode laperformance. Both NMC811 and CNTs are coated by PEDOT
and electrolyte layer. with the thickness of 2, 5, and 10 nm. Tifs charge
EIS plots of the (i) pristine LGPS, (ii) bare CNTs-LGPS, discharge prées of the bare and PEDOT-medi cathodes
and (iiil) PEDOT@CNTs-LGPS cells tested at variousat 0.0&8 are shown inFigure &. Compared to the bare
constant voltages are showfigures @ andS12 The cells  cathode, the 5 nm PEDOT-maeti cathode shows the
are held at the certain voltage for 2 h and then tested by tmeaximum discharge capacity with an obviously reduced
EIS. The obviously increased resistance can be observed ingbkarization. Interestingly, the rate and cycling performances
(ii) bare CNTs-LGPS cell with the increase of the voltages. lof the four cathodes show considerabéeeaticesKigure B).
contrast, the resistance growth can eédigely suppressed by The rate capacities of the bare cathode dramatically decay with
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Figure 4. Understanding the interfacial chemical evolution during electrochemical reaction. S 2p XPS spectra of the (a) cycled bare electrode
(C-bare) and (b) cycled PEDOT-modid electrode (C-PEDOT); (c) S K-edge XANES spectra of the C-bare and C-PEDOT electrodes with

the pristine LGPS as reference; @ Mn, Co, and Ni K-edge XANES spectra of the bare, PEDOT, C-bare, and C-PEDOT electrodes: (d)

Mn K-edge, (e) Co K-edge, and (f) Ni K-edge.

the increase in current density. The discharge capacities drapdi cation eectively suppress the side reactions at the three-
to less than 10 mAh¥gwhen the current density increases to phase interface in the cathode composites. Meanwhile,
1C. In contrast, the PEDOT-moédd cathodes demonstrate optimizing the thickness of the PEDOT layer is also very
much improved rate capacities at each current density. Everinaportant to get the best electrochemical performance. The
1C, 5 nm PEDOT-moded cathode still delivers a dischargethicker PEDOT layer enables less side reactions but limits the
capacity of over 100 mAh'gwhich is over 10 times that of capacity because of the lower conductivity.

the bare cathode. The 5 nm PEDOT-medlicathode also CV pro les of the four cathodes are observédgime &
demonstrates much improved cycling stability during thmterestingly, PEDOT-moeéd cathodes demonstrate reduced
following cycles with the capacity retention of 51.1% afteedox potential gaps and higher peak intensities compared to
cycling when the current density returns 0. ®dwever, the  the bare cathode with increasing thickness in the PEDOT
capacity retention of the bare cathode is only 13.6%mnterfacial layer, indicating the enhanced electrochemical
illustrating its poor cycling performance. The charge reaction activity of batteries with lower resistance by
discharge prées of the bare and PEDOT-meadi cathodes = PEDOT modication. PEDOT-modéd cathodes also dem-

at the 100th cycle also demonstrate the reduced polarizationstrate lower currents at the cutoltage (3.8 V vs/Li

by PEDOT modication Eigure SI4 The corresponding In), which indicates a smaller potential polarization at high
Coulombic eciencies of the bare and PEDOT-mexdli operating voltage. Furthermore, the galvanostatic intermittent
cathodes are shown ffgure 8. Interestingly, the initial titration technique (GITT) curves of the bare and PEDOT-
Coulombic eciencies at each current density show themodi ed cathodes during the charge process are given in
obvious dierences in the four cathodes. Especially, dtiel Figure g along with the corresponding polarization plots in
bare cathode demonstrates the lowest initial Coulombi€igure B. Obviously, the 5 nm PEDOT-madl cathode

e ciencies of 67.7%. Howevéhe initial Coulombic presents the smallest polarization potential with the highest
e ciencies in 5 and 10 nm PEDOT-medi cathodes are capacity during the whole charging process, indicatitige
much improved and demonstrate 87.3% and 89.0%tabilization of the cathodic interface throughout the charging
respectively. Furthermore, the PEDOT-neddicathodes process by PEDOT modation. The CV and GITT results
also show improved average discharge voltages, thus obtaiimidicate that PEDOT modiation eectively reduce the

an energy density greater than that of the bare caftigde (  interfacial resistance at the cathode/SSE/carbon interface in
3d). As shown iirigure @ andTable Sllthe 5 nm PEDOT-  cathode composites during the electrochemical reactions. The
modi ed cathode shows the smallest internal resistance afeeect of various coating strategies is also investigated in this
100 cycles among all the cells, demonstrating that the PEDQTudy. The rate and cycling stability okmint interfacial
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Figure 5. Schematic illustration of the role of PEDOT maxdition.

materials on the NMC811 cathode and CNTs are shown ihetween NMC811 and LGPS during cyélitdpwever, the
Figure S15The results indicate the PEDOT modiion on C-PEDOT electrode demonstrates the alleviated side reactions
the both NMC811 and CNTs demonstrates the best rate andith sulde SSEs, therefore eetively suppressing the
cycling capacities. formation of SQ

In order to investigate the interfacial chemical evolution asThe K-edge XANES spectra of transition metals (TMs,
well as the protective role of the PEDOT nuadion, XPS  including Co, Mn, and Ni) are presentedrigure 4 f to
and X-ray absorption near edge structure (XANES) measurgderstand the structural evolution of the layered NMC811
ments are performed. Panels a andFlyofe 4how the S 2p  during cycling. Generally, the local structural environment of
XPS spectra of the LGPS electrolytes collected from the cyctheé TMs and surrounding oxide corresponds to the shape of
bare electrode (denoted as C-bare) and cycled PEDOThe K-edge XANES peaks, while the threshold energy position
modi ed electrode (denoted as C-PEDOT). The decomis indicative of the TM oxidation st&te’® Before cycling,
position products of LGPS are observed at 160.1 and 162.9 #¥ére is no obvious dirence in both the edge energy and the
corresponding to the,Biand S S , respectivei”. While shape of the peaks in the K-edge XANES spectra between the
the side reactions between NMC811 and LGPS induce thmre and PEDOT-modid electrodes, suggesting the PEDOT
further oxidation of LGPS and the formation of Sénd modi cation did not change the chemical environments of the
SQ? species at 166.8 and 168.8 eV, respetiivelhe C-  TMs. However, both Mn and Co K-edge XANES spectra of
bare electrode shows higher relative contenfSoamd S the C-bare electrode show spectral shape variations after
S decomposition products than the C-PEDOT electrodegycling, indicating the changes of local environment of Mn and
indicating dierent degrees of electrolyte decompositionCo atoms. In contrast, the shape changes of the spectra for the
caused by the bare CNTs and PEDOT-neddiCNTSs. C-PEDOT are less prominent. Meanwhile, the obvious entire
Meanwhile, the high relative peak intensities gf &6d rigid edge shift toward higher energy for the Ni K-edge can be
SQO? in C-bare electrode suggest the presence of severe sithserved in the spectra for the C-bare electrode, indicating the
reactions between the unprotected NMC811 and ¥BPS. oxidation of Ni even though the XANES spectrum was tested
Impressively, both the $Oand S signals are suppressed after being fully discharged to 2.1 V ¥4ilLiln. In contrast,
when using the C-PEDOT electrode, proving teetiee the C-PEDOT electrode shows less change in the Ni K-edge
suppression of side reactions by the PEDOT cadidin. The energy position after cycling. The oxidation of Ni after cycling
S and P K-edge XANES spectra of the C-bare and C-PEDGTiggests that a portion of the lithium ions were unable to
electrodes are comparedFigures ¢ andS16and are in intercalate back into the layered structure of the NMC811
agreement with the XPS results. In the S K-edge XANES, tbathodes even at full discharge, because of the formation of
peak intensity of the C-bare electrode at 2481.9 eV increaseshode electrolyte interface (CEIl) through severe side
noticeably more than that of the C-PEDOT electrodereactions with the sule electrolyte. This is further
indicating the formation of $fom the severe side reactions demonstrated in the XRD patterns as shoviigime S17
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The (110) peak in the C-bare electrode shifts to highecomposites are ectively suppressed by the PEDOT
scattering after cycling in comparison to the C-PEDOTmNodi cation. The above results demonstrate that PEDOT
electrode, meaning that the incomplete lithiation after cyclingodi cation realizes the use of semiconductive additives which
leads to a decrease in the interplanar spacing in the C-bamhance the interfacial stability. This work providesetive
electrode. Therefore, the obvious shape variations of Mn, @pproach to modify conductive additives by semiconductive
K-edge XANES spectra and energy shift of Ni K-edge XANE#ditives in sulle-based ASSLIBs and will attract madse
spectra after cycling combining with the XRD resultsegarding the development of fast-charged cathodes in the
demonstrate that severe side reactions between NMC8ABSLIBs.

and LGPS lead to the scial structure evolution of cathode

for the C-bare electrode, which can leetévely alleviated by ASSOCIATED CONTENT

the PEDOT modication. As a result, the cracks on the surfaceg

f NMC811 I d by the PEDOT protecti X o .
ghown inFig&:ssaSs,fssgﬁgrgize ythe protection &ﬁme Supporting Information is available free of charge at

Considering the electrochemical testing and characterizatigiPS://Pubs.acs.org/doi/10.1021/acsenergylett.0c00256
results, the role of PEDOT matdition is demonstrated in Detailed experimental procedures; SEM images, SEM-
Figure S5Electrons act as the charge carrier in the CNTs asa  EDX mappings, and XRD patterns of PEDOT-mddi
metallic conductor, while PEDOT is a p-type semiconductor,  cathode composites; additional electrochemical charac-

Supporting Information

meaning the charge carriers are Ao EDOT thin Imis terizations; XPS spectrum of pristine LGPS; XANES
deposited on the surface of CNTs by MLD, forming a metal/ spectra and XRD patterns of cycled bare and PEDOT-
p-type semiconductor contact interface. As shdviguire 5 modi ed electrodesPOR

the Fermi energyEf) of CNTs is higher than that of the
PEDOT because the work function, J@f CNTs is lower
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